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Preface

Much of economics is concerned with modeling dynamics. There has been an

explosion of research in this area in the last decade, as \"time series econometrics\"

has practically come to be synonymous with \"empirical macroeconomics.\"

Several texts provide good coverage of the advances in the economic analysis
of dynamic systems, while others summarize the earlier literature on statistical
inference for time series data. There seemeda use for a text that could integrate
the theoretical and empirical issues as well as incorporate the many advances of

the last decade, such as the analysis of vector autoregressions, estimation by gen-
generalized method of moments, and statistical inference for nonstationary data. This
is the goal of Time Series Analysis.

A principal anticipated use of the book would be as a textbook for a graduate
econometrics course in time series analysis. The book aims for maximum flexibility
through what might be described as an integrated modular structure. As an example
of this, the first three sections of Chapter13on the Kalman filter could be covered
right after Chapter 4, if desired. Alternatively, Chapter 13 could be skipped al-

altogether without loss of comprehension.Despitethis flexibility, state-space ideas
are fully integrated into the text beginning with Chapter 1, where a state-space
representation is used (without any jargon or formalism) to introduce the key results

concerning difference equations. Thus, when the reader encounters the formal

development of the state-space framework and the Kalman filter in Chapter 13,
the notation and key ideas should already be quite familiar.

Spectral analysis (Chapter 6) is another topic that could be coveredat a point
of the reader's choosing or skipped altogether. In this case, the integrated modular

structure is achievedby the early introduction and use of autocovariance-generating

functions and filters. Wherever possible, results are described in terms of these
rather than the spectrum.

Although the book is designed with an econometrics couse in time series

methods in mind, the book should be useful for several other purposes. It is

completely self-contained, starting from basic principles accessible to first-year
graduate students and including an extensive math review appendix. Thus the book
would be quite suitable for a first-year graduate course in macroeconomics or
dynamic methods that has no econometriccontent. Such a course might use Chap-
Chapters1 and 2, Sections 3.1 through 3.5, and Sections 4.1 and 4.2.

Yet another intended use for the book would be in a conventional econo-
econometrics course without an explicit time seriesfocus.The popular econometrics texts
do not have much discussion of such topics as numerical methods; asymptotic results

for serially dependent, heterogeneously distributed observations; estimation of
models with distributed lags; autocorrelation- and heteroskedasticity-consistent

xiii



standard errors; Bayesian analysis; or generalized method of moments.All of these

topics receive extensive treatment in Time Series Analysis. Thus, an econometrics
course without an explicit focus on time series might make use of Sections 3.1
through 3.5, Chapters 7 through 9, and Chapter 14, and perhaps any of Chapters

5, 11, and 12 as well. Again, the text is self-contained, with a fairly complete
discussion of conventional simultaneous equations methods in Chapter 9. Indeed,
a very important goal of the text is to develop the parallels between A) the tra-

traditional econometric approach to simultaneous equations and B) the current pop-

popularity of vector autoregressions and generalized method of moments estimation.

Finally, the book attempts to provide a rigorous motivation for the methods

and yet still be accessible for researchers with purely applied interests. This is
achievedby relegation of many details to mathematical appendixes at the ends of
chapters, and by inclusion of numerous examples that illustrate exactly how the
theoretical results are used and applied in practice.

The book developed out of my lectures at the University of Virginia. I am

grateful first and foremost to my many students over the years whose questions
and commentshave shaped the course of the manuscript. I also have an enormous

debt to numerous colleagueswho have kindly offered many useful suggestions,
and would like to thank in particular Donald W. K.Andrews, Stephen R. Blough,
John Cochrane,GeorgeDavis, Michael Dotsey, Robert Engle, T. Wake Epps,

Marjorie Flavin, John Geweke,EricGhysels,CarloGiannini, Clive W. J. Granger,
Alastair Hall, Bruce E. Hansen, Kevin Hassett, Tomoo Inoue, Ravi Jagannathan,
Kenneth F. Kroner, Rocco Mosconi, Masao Ogaki, Adrian Pagan, Peter \320\241.\320\222.

Phillips, Peter Rappoport, Glenn Rudebusch, Raul Susmel, Mark Watson, Kenneth

D. West, Halbert White, and Jeffrey M. Wooldridge. I would also like to thank

\320\240\320\276\320\272-sangLam and John Rogers for graciously sharing their data. Thanks also go
to Keith Sill and Christopher Stomberg for assistance with the figures, to Rita
Chen for assistance with the statistical tables in Appendix B, and to Richard Mickey
for a superb job of copy editing.

James D. Hamilton
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1

Difference Equations

1.1.First-Order Difference Equations

This book is concernedwith the dynamic consequences of events over time. Let's

say we are studying a variable whose value at date t is denoted y,. Suppose we are

given a dynamic equation relating the value \321\203takes on at date t to another variable

w, and to the value \321\203took on in the previous period:

\320\243,
=

\320\244\320\243.-i+ \",. [1-1-1]

Equation [1.1.1] is a linear first-order difference equation. A difference equation is

an expression relating a variable y, to its previous values. This is a first-order

difference equation because only the first lag of the variable (y,_i) appears in the

equation. Note that it expresses y, as a linear function \320\2761\321\203,-^and wt.
An example of [1.1.1]is Goldfeld's A973) estimated money demand function

for the United States. Goldfeld's model related the log of the real money holdings of
the public (m,) to the log of aggregate real income (/,), the log of the interest rate on
bank accounts (rbl), and the log of the interest rate on commercialpaper (ra):

m,
= 0.27 + 0.72m,_! + 0.19/,- 0.045\320\263\342\200\236,

-
0.019\320\263\342\200\236.[1.1.2]

This is a special case of [1.1.1]with \321\203,
=

\321\202\342\200\236\321\204
= 0.72, and

w, = 0.27 + 0.19/,- 0.045\320\263\342\200\236,
-

0.019\320\263\342\200\236.

For purposes of analyzing the dynamics of such a system, it simplifies the algebra
a little to summarize the effects of all the input variables (/\342\200\236rbt, and rcl) in terms
of a scalar w, as here.

In Chapter 3 the input variable w, will be regarded as a random variable, and
the implications of [1.1.1] for the statistical properties of the output series y, will be
explored. In preparation for this discussion, it is necessary first to understand the
mechanicsof difference equations. For the discussionin Chapters 1 and 2, the values
for the input variable {wu w2, . . .} will simply be regarded as a sequence of deter-
deterministic numbers. Our goal is to answer the following question: If a dynamic system

is described by [1.1.1], what are the effects on \321\203of changes in the value of w?

Solving a Difference Equation by Recursive Substitution

The presumption is that the dynamic equation [1.1.1] governs the behavior

of \321\203for all dates t. Thus, for each date we have an equation relating the value of



\321\203for that date to its previous value and the current value of w:

Date Equation

0 \321\203\320\276
=

\321\204\321\203.\321\205+ w0 [1.1.3]

1 \320\2431
=

\320\244\320\243\320\276+ \"i [1.1.4]

2 y2
=

\321\204\321\203,+ w2 [1.1.5]

t \320\243,
=

\320\244\320\243.-1+w,. [1.1.6]

If we know the starting value of \321\203for date t = -1 and the value of w for
dates f = 0, 1, 2, . . . , then it is possible to simulate this dynamic system to find

the value of \321\203for any date. For example, if we know the value of \321\203for t = -1
and the value of w for t = 0, we can calculate the value of \321\203for t = 0 directly

from [1.1.3]. Given this value of y0 and the value of w for t = 1, we can calculate

the value of \321\203for t = 1 from [1.1.4]:

\320\243\\
=

\320\244\320\243\320\276+ wi =
\320\244(\320\244\320\243-1+ wo) + \320\251,

or

\320\2431
~

\320\2442\320\243-1+ \320\244\320\277\320\276+ ^i-

Given this value of y, and the value of w for t = 2, we can calculate the value of

yioxt = 2 from [1.1.5]:

\320\243\320\263
=

\320\244\320\243\\+ W2
=

\320\244(\320\2442\320\243-1+ \320\244\320\251+ \320\251)+ \320\251,

or

\320\243\320\263
=

\320\2443\320\243-1+ 4?wo + \320\244\320\251+ \320\251-

Continuing recursively in this fashion, the value that \321\203takes on at date t can be

described as a function of its initial value y_x and the history of w between date

0 and date t:

This procedure is known as solving the difference equation [1.1.1] by recursive

substitution.

Dynamic Multipliers

Note that [1.1.7] expresses y, as a linear function of the initial value y^1 and
the historical values of w. This makes it very easy to calculate the effect of w0 on

yr If w0 were to change with y_x and wu w2, . . . , w, taken as unaffected, the
effect on y, would be given by

Note that the calculations would be exactly the same if the dynamic simulation
were started at date t (taking \321\203,-\321\205as given); then

yt+/ could be described as a

2 Chapter 1 \\ Difference Equations



function of y,_! and w,, wl+1, . . . , wl+j:

yl+J
=

<t>i+1y,-i + \320\244\320\247+ \320\244'-1*,*! + \320\244\321\203\"\320\247+2

+ \342\226\240\342\226\240\342\200\242+ 4>w,4.t + wt+l.

The effect of w, on yt+i
is given by

i\302\243?
=\" tiiio]

Thus the dynamic multiplier [1.1.10] depends only on/, the length of time separating

the disturbance to the input (w,) and the observed value of the output (\321\203,+1).
The

multiplier does not depend on t; that is, it does not depend on the dates of the
observations themselves.This is true of any linear difference equation.

As an example of calculating a dynamic multiplier, consider again Goldfeld's

money demand specification [1.1.2].Supposewe want to know what will happen
to money demand two quarters from now if current income /, were to increaseby

one unit today with future income /,+ j and It+2 unaffected:

dmt+2 = dmt+2 dw, = ^ dw,

dl
\320\223

dl, dw, dl,
*

dl,'
From [1.1.2], a one-unit increase in /, will increase w, by 0.19 units, meaning that

dwjdl, = 0.19.Since \321\204
= 0.72, we calculate

^^ =
@.72J@.19)

= 0.098.
dl,

.Because /, is the log of income, an increase in /, of 0.01 units corresponds to a 1%

increase in income. An increase in m, of @.01)-@.098) as 0.001 correspondsto

a 0.1% increase in money holdings. Thus the public would be expected to increase
its money holdings by a little less than 0.1% two quarters following a 1% increase
in income.

Different values of \321\204in [1.1.1] can produce a variety of dynamic responses
of \321\203to w. If 0 < \321\204< 1, the multiplier dy,+//dw, in [1.1.10] decays geometrically

toward zero. Panel (a) of Figure 1.1 plots \321\2041as a function of/ for \321\204
- 0.8. If

-1 < \321\204< 0, the multiplier dyl+J/dw, will alternate in sign as in panel (b). In this
case an increase in w, will cause y, to be higher, yt+ j to be lower, y,+2 to be higher,
and so on. Again the absolute value of the effect decays geometrically toward zero.
If \321\204> 1, the dynamic multiplier increases exponentially over time as in panel (c).
A given increase in w, has a larger effect the farther into the future one goes. For
\321\204< -1, the system [1.1.1]exhibits explosive oscillation as in panel (d).

Thus, if \\\321\204\\< 1, the system is stable; the consequences of a given change in

w, will eventually die out. If \\\321\204\\> 1, the system is explosive.An interesting pos-

possibility is the borderline case, \321\204
= 1. In this case, the solution [1.1.9] becomes

yt+i
= yt-i + w, + wl+1 + w,+2 + \342\200\242\342\200\242\342\200\242+ w,+j-i + w,+/. [1.1.11]

Here the output variable \321\203is the sum of the historical inputs w. A one-unit increase

in w will cause a permanent one-unit increasein y:

^ = 1 for/= 0,1,
dw,

We might also be interested in the effect of w on the present value of the

stream of future realizations of y. For a given stream of future values \321\203\342\200\236yl+1,

1.1. First-Order Difference Equations 3



(\320\260)\321\204
= 0.8 (b) \321\204

= -0.8

(\321\201)\321\204
= 1.1 (d) \321\204= -1.1

FIGURE 1.1 Dynamic multiplier for first-order difference equation for different

values of \321\204(plot of dy,+l/dw,
=

\321\204'as a function of the lag /).

y,+1, . . . and a constant interest rate1 r > 0, the present value of the stream at

time t is given by

v + -\320\243'*1 +
\320\243'+2

+
\320\243'+3

+ \342\200\242\342\200\242\342\200\242
\320\243'

1 + r A + rf A + rf

Let /3 denote the discount factor:

/3 -
1/A + r).

Note that 0 < /3 < 1. Then the present value [1.1.12] can be written as

i
l-o

[1.1.12]

[1.1.13]

Consider what would happen if there were a one-unit increase in w, with

wl+1. wi+2, \342\226\240\342\200\242\342\200\242unaffected. The consequences of this change for the present value

of \321\203are found by differentiating [1.1.13] with respect to w, and then using [1.1.10]

\342\226\240Theinterest rate is measured here as a fraction of 1; thus r = 0.1 corresponds to a 10% interest
rate.

4 Chapter 1 \\ Difference Equations



to evaluate each derivative:

i
y_0 OW 0

[1.1.14]

provided that |/\320\227\321\204|< 1.

In calculating the dynamic multipliers [1.1.10] or [1.1.14], we were asking
what would happen if w, were to increaseby one unit with wl+1, wl+2, \342\226\240\342\226\240. , wl+l
unaffected. We were thus finding the effect of a purely transitory change in w.
Panel (a) of Figure 1.2 shows the time path of w associated with this question, and

panel (b) shows the implied path for y. Because the dynamic multiplier [1.1.10]
calculates the response of \321\203to a single impulse in w, it is also referred to as the

impulse-response function.

Time

(a) Value of w

0.2

Time

(b) Value of \321\203

FIGURE 1.2 Paths of input variable (w() and output variable (y,) assumed for

dynamic multiplier and present-value calculations.

1.1. First-Order Difference Equations 5



Sometimes we might instead be interested in the consequences of a permanent

change in w. A permanent change in w means that w,, wl+1, . . . , and w,+j would
all increase by one unit, as in Figure 1.3. From formula [1.1.10], the effect on yl+j
of a permanent change in w beginning in period t is given by

Sy,+i +
9y,+j + dyl+j

dw, dwl+1 dwl+2
+ \321\204+ 1.

When \\\321\204\\< 1, the limit of this expression as/ goesto infinity is sometimes described
as the \"long-run\" effect of w on y:

Um +
3wl+1 3wt+2 dwl+j]

1 + \321\204+ \321\2042+

= 1/A -
\320\244).

[1.1.15]

IIIIIIHIIIIIIII

Time

(a) Value of w

\320\267-

2 -

Time

(b) Value of \321\203

FIGURE 1.3 Paths of input variable (vf,) and output variable (y,) assumed for

long-run effect calculations.
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For example,the long-ran income elasticity of money demand in the system [1.1.2]
is given by

0.19

1 - 0.72
= 0.68.

A permanent 1% increase in income will eventually lead to a 0.68% increasein
money demand.

Another related question concerns the cumulative consequences for \321\203of a

one-time change in w. Here we consider a transitory disturbance to w as in panel

(a) of Figure 1.2, but wish to calculate the sum of the consequences for all future

values of y. Another way to think of this is as the effect on the present value of \321\203

[1.1.13] with the discount rate /3
= 1. Setting/3 = 1 in [1.1.14] shows this cumulative

effect to be equal to

i
i-o

[1.1.16]

provided that \\\321\204\\< 1. Note that the cumulative effect on \321\203of a transitory change
in w (expression [1.1.16]) is the same as the long-ran effect on \321\203of a permanent
change in w (expression [1.1.15]).

1.2. pth-Order Difference Equations
Let us now generalize the dynamic system [1.1.1] by allowing the value of \321\203at date

t to depend on p of its own lags along with the current value of the input variable

w;.

y, =
\320\244\320\263\320\243,-\320\263\320\244\320\240\320\243,-\320\240 [1.2.1]

Equation [1.2.1] is a linear pth-order difference equation.
It is often convenient to rewrite the pth-order difference equation [1.2.1] in

the scalar y, as a first-order difference equation in a vector \302\243,.Define the (pxl)
vector g, by

\320\243,

\320\243.-1

\320\243.-2

\342\226\240\320\2431-\320\240+1.

[1.2.2]

That is, the first element of the vector g at date t is the value \321\203took on at date t.
The second element of (j, is the value \321\203took on at date t - 1, and so on. Define

the (p x p) matrix F by

[1.2.3]

Pi

1

0

\321\2042

0

1

\320\244\320\267

0

0

... \320\244,-\320\263

0

... 0

\321\204,

0

0

0 0 0 0.

1.2.pth-Order Difference Equations 7



For example,for p
= 4, F refers to the following 4x4 matrix:

F = 10 0 0
0 10 0
0 0 10

Forp
= 1 (the first-order difference equation [1.1.1]), F is just the scalar \321\204.Finally,

define the (p x 1) vector v, by

0
0

0.

Considerthe following first-order vector difference equation:

&
= Fg,_, + v,,

[1.2.4]

[1.2.5]

or

\320\243,

\320\243.-1

\320\243.-2

\321\2041\321\2042\321\2043

1 0 0
0 1 0

\321\204\321\200-1\321\204\321\200

\320\276 \320\276

\320\276 \320\276

0 0 0 1 0.

\"\320\233-\320\223

\320\243.-2

\320\243,\321\202\321\212

.\320\243.-\321\200.

+

0

0

.0.

This is a system of p equations. The first equation in this system is identical to

equation [1.2.1]. The secondequation is simply the identity

y,-i
= yt-i,

owing to the fact that the second elementof g, is the same as the first element of

&_i. The third equation in [1.2.5] states thaty,_2
= y,_2; thepth equation states

thaty,_p+1
=

y,_p+I.
Thus, the first-order vector system [1.2.5] is simply an alternative represen-

representationof the pth-order scalar system [1.2.1]. The advantage of rewriting the pth-
order system [1.2.1] in the form of a first-order system [1.2.5]is that first-order

systems are often easier to work with than pth-order systems.
A dynamic multiplier for [1.2.5] can be found in exactly the same way as was

done for the first-order scalar system of Section 1.1. If we knew the value of the

vector g for date t = -1 and of v for date t = 0, we could find the value of g for

date 0 from

So =
\320\237-i + t0.

The value of g for date 1 is

& =
F\302\253o+ v, = F(FS_, + \321\202\320\276)+ t, =

\321\202., + Fv0 + vx.

Proceeding recursively in this fashion produces a generalization of [1.1.7]:

%,
= F+Ig_, + F'v0 + F'-\320\247 + F'-2v2 + \342\200\242\342\200\242\342\200\242+ Fv,_! + v(. [1.2.6]

8 Chapter 1 \\ Difference Equations



Writing this out in terms of the definitions of g and v,

\320\243,

\320\243i-i

\320\243,-\320\263

\320\243-i

\320\243-2

\320\243-\320\267

.\320\243-\321\200.

+ F'

+ F1

\320\236

\320\236

\320\276

\320\276

\320\276

.0.

+ F\"

\320\276

\320\276

.0.
[1.2.7]

Consider the first equation of this system, which characterizes the value of y,. Let
/ft denote the A, 1) element of F', /$ the A, 2) element of F1, and so on. Then
the first equation of [1.2.7] states that

\320\243,
=

[1.2.8]

This describes the value of \321\203at date t as a linear function of p initial values of \321\203

Cy_i, \321\203-2,\342\226\240\342\226\240\342\226\240, \320\243-\321\200)
and the history of the input variable w since time 0 (w0, wu

. . . ,w,). Note that whereas only one initial value for \321\203(the value \321\203_ t) was needed
in the case of a first-order difference equation, p initial values for \321\203(the values

\321\203-\320\270y_2, \342\226\240\342\200\242\342\200\242.\320\243-\321\200)are needed in the caseof a pth-order difference equation.
The obvious generalization of [1.1.9]is

t+l = F'+'fe.,+ F'v, + F'-4+i + F/-2v,+2 +

from which

\320\233\320\223\320\247+1

[1.2.9]

[1.2.10]

Thus, for a pth-order difference equation, the dynamic multiplier is given by

? [1.2.11]
dw,

where/H' denotes the A, 1) element of F>. For/ = 1, this is simply the A, 1)
element of F, or the parameter \321\204\321\205.Thus, for any pth-order system, the effect on

y,+1 of a one-unit increase in w, is given by the coefficient relating y, to y,_i in

equation [1.2.1]:

dw,
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Direct multiplication of [1.2.3] reveals that the A, 1) element of F2 is (\321\204\\+

so

dw,
Vl V2

in a pth-order system.
For larger values of/, an easy way to obtain a numerical value for the dynamic

multiplier dy,+jldw, is to simulate the system. This is done as follows. Set y_j =

y-2 = \342\226\240\342\226\240\342\226\240=
y_p

= 0, w0
= 1, and set the value of w for all other dates to 0.

Then use [1.2.1]to calculate the value of y, for t = 0 (namely, y0
= 1). Next

substitute this value along with \321\203,-1,\321\203,-\320\263,\342\226\240\342\226\240\342\226\240>yt-p+i back into [1.2.1] to calculate

y,+ ], and continue recursively in this fashion. The value of \321\203at step t gives the

effect of a one-unit change in w0 on y,.
Although numerical simulation may be adequate for many circumstances, it

is also useful to have a simple analytical characterization of dyt+jldwt, which, we
know from [1.2.11], is given by the A,1) element of F1.This is fairly easy to obtain

in terms of the eigenvalues of the matrix F. Recall that the eigenvalues of a matrix
F are those numbers A for which

|F -
AI,|

= 0.

For example, for p
= 2 the eigenvalues are the solutions to

[1.2.12]

i &1 _ [a 0]
1 Oj L\302\2604

= 0

or

-A)
1 -A

= A2
- -

\321\204\320\263
= \320\236. [1.2.13]

The two eigenvalues of F for a second-order difference equation are thus given by

\320\244\321\205+ \320\243/\320\244\320\273+

A, =

[1.2.14]

[1.2.15]

For a general pth-order system, the determinant in [1.2.12] is a pth-order poly-

polynomial in A whose p solutions characterize the p eigenvalues of F. This polynomial

turns out to take a very similar form to [1.2.13]. The following result is proved in

Appendix l.A at the end of this chapter.

Proposition 1.1: The eigenvalues of the matrix F defined in equation [1.2.3] are the
values of A that satisfy

A\" - -
\321\204\321\200.\321\205\320\220

-
\321\204.

= 0. [1.2.16]

Once we know the eigenvalues, it is straightforward to characterize the dy-
dynamic behavior of the system. First we consider the case when the eigenvalues of

F are distinct; for example, we require that Aj and A2 in [1.2.14] and [1.2.15] be
different numbers.
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General Solution of a pth-OrderDifference Equation
with Distinct Eigenvalues

Recall2 that if the eigenvalues of a (p x p) matrix F are distinct, there exists
a nonsingular (p x p) matrix T such that

F = \320\242\320\233\320\242\021 [1.2.17]

where \320\233is a (p x p) matrix with the eigenvalues of F along the principal diagonal
and zeros elsewhere:

\320\233=

\342\226\240Ax

0

.0

0

A2

0

\320\276...

\320\276...

\320\276...

0\"

0

An_

[1.2.18]

This enables us to characterize the dynamic multiplier (the A, 1) element of

F1 in [1.2.11]) very easily. For example, from [1.2.17]we can write F2 as

F2 = \320\242\320\233\320\2421x \320\242\320\233\320\242\021

= T x \320\233x (T-1T) x \320\233x T\021

=
\320\242\321\205\320\233\321\2051\321\200\321\205\320\233\321\205

\320\242\021

= \320\242\320\2332!1-1.

The diagonal structure of \320\233implies that \320\2332is also a diagonal matrix whose elements
are the squares of the eigenvalues of F:

\320\2332=

'\320\2202\320\236\320\236\342\200\242

\320\236\320\220?\320\236\342\200\242

01

0

.0 0 0 \342\200\242\342\200\242\342\200\242\320\220

More generally, we can characterize F' in terms of the eigenvalues of F as

F' = TAT\021 x \320\242\320\233\320\242\021x \342\226\240\342\200\242\342\200\242x \320\242\320\233\320\2421

x \320\233x T\021,

[1.2.19]

which

where

= T x \320\233

simplifies to

x (T-

\320\233>=

j terms

XT) X

\"A{

0

.0

\320\233

=

0

A{

0

x (T-'T)

TAyT-i

\320\276...

\320\276...

\320\276...

x \342\226\240

0\"

0

\320\272.

2See equation [A.4.24] in the Mathematical Review (Appendix A) at the end of the book.
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Let tl}
denote the row i, column ; element of T and let t1' denote the row i, column

/ element of T\021. Equation [1.2.19] written out explicitly becomes

F> =

\302\25311'12
\342\200\242\342\200\242\342\200\242

V

hi hz ' ' '
*2p

t t \342\200\242\342\200\242\342\226\240/
pi pi pp-

\342\226\240A{0 0 \342\200\242\342\200\242\342\200\2420\342\226\240

0 A4 0 \342\226\240\342\226\240\342\200\2420

. 0 0 0 \342\200\242\342\200\242\342\200\242XI

\342\200\242(\320\237t12 ... f.P

p.\\ ^22 ... [2p

fp\\ fP2 . , , fPP

rtu tn

f21 t22

1'4 lp2\022 lPp\"P-l I-' '

from which the A,1) element of F' is given by

)

or

where

fiP

(PP

/\320\231'
= c,A{ + c2X{ + \342\226\240\342\226\240\342\226\240+ [1.2.20]

c, =
[tutn]. [1.2.21]

Note that the sum of the ct terms has the following interpretation:

ct + c2 + \342\226\240\342\226\240\342\226\240+ cp
= [tntn] + [ti2t21] + \342\200\242\342\200\242\342\200\242+ [hptPl], [1.2.22]

which is the A, 1) element of T-T\021. Since TT\021 is just the (p x p) identity

matrix, [1.2.22] implies that the c, terms sum to unity.

[1.2.23]c, + c2 + +
cp

= 1.

Substituting [1.2.20] into [1.2.11] gives the form of the dynamic multiplier
for a pth-order difference equation:

dw,
[1.2.24]

Equation [1.2.24] characterizesthe dynamic multiplier as a weighted average of
each of the p eigenvalues raised to the /th power.

The following result provides a closed-formexpressionfor the constants (cu

c2, \342\226\240\342\226\240\342\226\240, cp).

Proposition 1.2; If the eigenvalues (Al5 A2, . . . , Ap) of the matrix F in [1.2.3] are

distinct, then the magnitude c, in [1.2.21] can be written

ct =

fi (A,
-

A,)

[1.2.25]

k-i
k*l

To summarize, thepth-order difference equation [1.2.1] implies that

,\320\275
=

/\320\231+1)\320\233-.+ f\\i+1)y,-2 +\342\226\240\342\226\240\342\226\240+m.-P [1.2.26]
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The dynamic multiplier

is given by the A, 1) element of F':

*,=f\\2- [1-2-28]

A closed-form expression for \321\204/can be obtained by finding the eigenvalues of F,
or the values of A satisfying [1.2.16]. Denoting these p values by (A1; A2, . \342\226\240. , Ap)
and assuming them to be distinct, the dynamic multiplier is given by

\321\204,
= c,\\{ + c2A4 + \342\200\242\342\200\242\342\200\242+ c,A> [1.2.29]

where (cb c2, . . . , cp)
is a set of constants summing to unity given by expression

[1.2.25].
For a first-order system (p

= 1), this rule would have us solve [1.2.16],

A -
\320\244,

= 0,

which has the single solution

At = fa. [1.2.30]

According to [1.2.29], the dynamic multiplier is given by

From [1.2.23], Cj
= 1. Substituting this and [1.2.30]into [1.2.31] gives

dw,
\342\204\242

or the same result found in Section 1.1.
For higher-order systems, [1.2.29] allows a variety of more complicated dy-

dynamics. Suppose first that all the eigenvalues of F (or solutions to [1.2.16]) are
real. This would be the case, for example, if p - 2 and \321\204\\+ 4\321\2042> 0 in the
solutions [1.2.14] and [1.2.15] for the second-order system. If, furthermore, all of

the eigenvalues are lessthan 1 in absolute value, then the system is stable, and its

dynamics are represented as a weighted average of decaying exponentials or de-
decaying exponentials oscillating in sign. Forexample,considerthe following second-

order difference equation:

\320\243,
= 0.6y,_, + 0.2)>,_2+ w,.

From equations [1.2.14] and [1,2.15],the eigenvalues of this system are given by

f\\ \302\243.i \342\200\242lff\\ \302\243\\J.i Aff\\ *^\\

A,
=

\302\260-6+ V(\302\260-6) + 4(\302\260-2)- 0.84

0.6 -
\320\243\321\204.\320\261J+ 4@.2)

A2
=

-^y
\342\200\224-= -0.24.

From [1.2.25], we have

c, =
A,/(A,

-
A2)

= 0.778

c2 =
A2/(A2

-
Aj) = 0.222.

The dynamic multiplier for this system,
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is plotted as a function of / in panel (a) of Figure 1.4.3 Note that as / becomes

larger, the pattern is dominated by the larger eigenvalue (Ax), approximating a

simple geometric decay at rate Aj.

If the eigenvalues (the solutions to [1.2.16]) are real but at least one is greater

than unity in absolute value, the system is explosive. If A! denotes the eigenvalue
that is largest in absolute value, the dynamic multiplier is eventually dominated by

an exponential function of that eigenvalue:

hm \342\200\224\342\200\224-\342\226\240\342\200\224= c,.
)-,* dw, \\{

Other interesting possibilities arise if some of the eigenvalues are complex.
Whenever this is the case, they appear as complex conjugates. For example, if

p = 2 and \321\204\\+ 4<t>2< 0, then the solutions At and A2 in [1.2.14] and [1.2.15] are
complexconjugates.Supposethat A, and A2 are complex conjugates, written as

Ax
= a + \320\253 [1.2.32]

A2 = a - \320\253. [1.2.33]

For the p = 2 caseof [1.2.14] and [1.2.15], we would have

a =
\321\204,/2 [1.2.34]

b = (l/2)V-# - 4i- [1.2.35]
Our goal is to characterize the contribution to the dynamic multiplier cL\\{

when Ax is a complex number as in [1.2.32]. Recall that to raise a complexnumber

to a power, we rewrite [1.2.32]in polar coordinate form:

Ax
= i?-[cos@) + i-sin@)], [1.2.36]

where \320\262and R are defined in terms of a and b by the following equations:

R = Va2 + b2

cos@)
= alR

sin@) = blR.

Note that R is equal to the modulus of the complex number Ax.

The eigenvalue Ax in [1.2.36] can be written as4

and so

A{
=

Ri[e1\302\273']
= #[cos@/) + i-sinFl/)]. [1.2.37]

Analogously, if A2 is the complex conjugate of A1( then

A2
= i?[cos@)

- i-sin@)],

which can be written5

A2
= R[e-is\\.

Thus

A/, = Ri[e-\"f] = i?/[cosFl/) -
i-sin@/)]. [1.2.38]

3Again, if one's purpose is solely to generate a numerical plot as in Figure 1.4, the easiest approach
is numerical simulation of the system.

4See equation [\320\233.3.25]in the Mathematical Review (Appendix A) at the end of the book.
5See equation [A.3.26].
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1.2

-1.2-
20

(\320\260)\320\224
= 0.6, \321\2042

= 0.2

1.2-

II \342\226\240!I \342\226\240\342\226\240-\342\226\240!

\342\200\2241.2 \342\200\242

20

(b) \321\2041
= 0.5, & = -0.8

FIGURE 1.4 Dynamic multiplier for second-orderdifference equation for differ-

differentvalues of \321\204^and \321\2042(plot of dy,+lldw, as a function of the lag j).

Substituting [1.2.37] and [1.2.38] into [1.2.29] gives the contribution of the complex
conjugates to the dynamic multiplier dyl+jldwt:

= ClRi[cos(ej) + i-sin@O] + c2i?'[cos@/)
- i-si

i-[Cl - c2]-R'-Sm(ej).

The appearance of the imaginary number i in [1.2.39] may seem a little

troubling. After all, this calculation was intended to give the effect of a change in

the real-valued variable w, on the real-valued variable y,+j as predicted by the real-
valued system [1.2.1], and it would be odd indeed if the correct answer involved
the imaginary number i! Fortunately, it turns out from [1.2.25] that if A! and A2

are complex conjugates, then c^ and c2 are complex conjugates; that is, they can
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be written as

q = a + pi
c2 = a -

pi

for some real numbers a and p. Substituting these expressions into [1.2.39] yields

CiA{ + c2A\302\243
=

[(a + pi) + (a -
pi)]-R'co&@f) + i-[(a + pi) - (a -

pi)]-R'sm(ej)

= [2a]-R'cos(ej) + i-[2pi\\-R'sin(ej)
= 2ai?'cos@/)- 2pR'sin(ej),

which is strictly real.
Thus, when some of the eigenvalues are complex, they contribute terms

proportional to i?'cos@/)and i?'sin@/) to the dynamic multiplier dy,+jldw,. Note
that if R = 1\342\200\224thatis, if the complex eigenvalues have unit modulus\342\200\224the mul-

multipliers are periodic sine and cosinefunctions of/. A given increase in w, increases

yt+i for some ranges of/ and decreases
yl+j

over other ranges, with the impulse
never dying out as / -* \302\260=.If the complex eigenvalues are lessthan 1 in modulus

(R < 1),the impulse again follows a sinusoidal pattern though its amplitude decays
at the rate R'. If the complex eigenvalues are greater than 1 in modulus (R > 1),
the amplitude of the sinusoids explodesat the rate R'.

For an example of dynamic behavior characterized by decaying sinusoids,
consider the second-order system

0.5

0.5

+ V@.5)'
2

- V@.5)'
2

-
4@

- 4@

.8)

.8)

y,
=

0.5\321\203\320\263_!
-

0.8\321\203,_2+ wt.

The eigenvalues for this system are given from [1.2.14]and [1.2.15]:

0.25 + 0.86i

= 0.25- 0.86i,
z

with modulus

R = V@.25J + @.86J= 0.9.
Since R < 1, the dynamic multiplier follows a pattern of dampedoscillation plotted

in panel (b) of Figure 1.4. The frequency6 of these oscillations is given by the

parameter 0 in [1.2.39], which was defined implicitly by

cos@) = alR = @.25)/@.9)= 0.28

or

\320\262= 1.29.

The cycles associatedwith the dynamic multiplier function [1.2.39] thus have a

period of

2\321\202\320\263B\320\232\320\227\320\2334159)

\320\262 1.29

that is, the peaks in the pattern in panel (b) of Figure 1.4 appear about five periods

apart.

\302\253SeeSection A.I of the Mathematical Review(Appendix A) at the end of the book for a discussion
of the frequency and period of a sinusoidal function.
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Solution of a Second-Order Difference Equation
with Distinct Eigenvalues

The second-orderdifference equation (p = 2) comes up sufficiently often

that it is useful to summarize the properties of the solution as a general function

of \321\204\\and \321\2042,which we now do.7
The eigenvalues A! and A2 in [1.2.14] and [1.2.15] are complex whenever

\321\204\\ 0,

or whenever (\321\2041;\321\2042)lies below the parabola indicated in Figure 1.5. For the case

of complex eigenvalues, the modulus R satisfies

or, from [1.2.34] and [1.2.35],

R2 = a2 + b2,

-
(\321\2042+ 4\321\2042I4

=
-\321\2042.

Thus, a system with complex eigenvalues is explosive whenever \321\2042< -1. Also,
when the eigenvalues are complex, the frequency of oscillations is given by

\320\262= cos-^a/R) =
\321\201\320\276\320\262-\320\247\321\204\320\224\320\263Vr3>2)],

where \"cos\" \\x)\" denotes the inverse of the cosine function, or the radian measure

of an angle whose cosineis x.

FIGURE 1.5 Summary of dynamics for a second-orderdifference equation.

This discussion closely follows Sargent A987, pp. 188-89).
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For the caseof real eigenvalues, the arithmetically larger eigenvalue
be greater than unity whenever

j) will

\321\2041+ \\/\321\204\\
> 1

or

> 2 -
\321\204,.

Assuming that \\1 is real, the left side of this expression is a positive number and

the inequality would be satisfied for any value of <^ > 2. If, on the other hand,

\321\204^< 2, we can square both sides to conclude that Aj will exceed unity whenever

\320\2441

or

4 -

4>i > 1 -

\321\204\\

Thus, in the real region, A! will be greater than unity either if ^ > 2 or if (\321\204\320\270\321\204^

lies northeast of the line \321\2042
= 1 -

\321\204^in Figure 1.5. Similarly, with real eigenvalues,
the arithmetically smaller eigenvalue (A2) will be less than -1 whenever

< -1

< -2 -
> 2 + \321\204.

Again, \320\230\321\2041<
- 2, this must be satisfied, and in the case when fa > -2, we can

square both sides:

\321\204\\ \320\220\321\204\320\263> 4 + 4\321\2041+ \321\204\\

\320\244\320\263> 1 + &\342\226\240

Thus, in the real region, A2 will be less than -1 if either \321\204^<-2 or (\321\204\320\270\321\204^)lies

to the northwest of the line \321\204\320\263
= 1 + \321\204\321\202.in Figure 1.5.

The system is thus stable whenever (fa, \321\204^)lies within the triangular region
of Figure 1.5.

General Solution of a pth-OrderDifference Equation
with Repeated Eigenvalues

In the more general case of a difference equation for which F has repeated
eigenvalues and s < p linearly independent eigenvectors, result [1.2.17] is gener-
generalized by using the Jordan decomposition,

F = MJM\021 [1.2.40]

where M is a (p x p) matrix and J takes the form

J =

Ji

\320\236

\320\236

h

\320\236\320\236
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with

J,

A, 1 0

0 A( 1

\320\236\320\236A,-

0 0 0

0 0 0

0 0
0 0
0 0

A, 1

0 A, _

[1.2.41]

for A, an eigenvalue of F. If [1.2.17] is replacedby [1.2.40], then equation [1.2.19]
generalizes to

where

J'

\302\245'= MJ'M\021

\"J{ 0
\320\276J4

\342\200\242\342\200\242\342\226\240

[1.2.42]

\320\276\320\276

Moreover, from [1.2.41], if J, is of dimension (n, x \320\270,),then8

\"\320\220*(\320\236\320\220\320\2231\302\251\320\220\320\2232
\342\200\242\342\200\242\342\200\242

\320\241,-'1)\320\220\320\223\"'+\320\223

\320\276 \320\274

[1.2.43]

where

\342\200\242/(;-1H-2)

n(n - 1) \342\200\2423-2-1

.0

for j ^ n

otherwise.

Equation [1.2.43] may be verified by induction by multiplying [1.2.41] by [1.2.43]

and noticing that (/) + (\342\200\236Z0
= ('J1).

For example, consider again the second-order difference equation, this time

with repeated roots. Then

so that the dynamic multiplier takes the form

Long-Run and Present-Value Calculations

If the eigenvalues are all less than 1 in modulus, then F' in [1.2.9] goes to
zero as / becomes large. If all values of w and \321\203are taken to be bounded, we can

\"This expression is taken from Chiang A980, p. 444).
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think of a \"solution\" of y, in terms of the infinite history of w,

\320\243,
= Wt + l/fiVC,.! + ll>2wt-2 + \320\244\320\267\320\237,-3+ \342\200\242\342\200\242\342\200\242, [1.2.44]

where \321\204{
is given by the A,1) elementofF' and takes the particular form of [1.2.29]

in the case of distinct eigenvalues.
It is also straightforward to calculate the effect on the present value of \321\203of

a transitory increase in w. This is simplest to find if we first consider the slightly

more general problem of the hypothetical consequences of a change in any element

of the vector v, on any element of \302\243,+,-
in a general system of the form of [1.2.5].

The answer to this more general problemcanbeinferred immediately from [1.2.9]:

The true dynamic multiplier of interest, dyt+ildwt,
is just the A,1) elementof the

(p x p) matrix in [1.2.45]. The effect on the present value of g of a change in v

is given by

/3'F'
=

(Ip
- /3F)~\\ [1.2.46]

provided that the eigenvalues of F are all less than /3\021 in modulus. The effect on
the present value of \321\203of a change in w,

/-0

dw,
'

is thus the A, 1) element of the (p x p) matrix in [1.2.46]. This value is given by

the following proposition.

Proposition 1.3: If the eigenvalues of the (p x p) matrix F defined in [1.2.3] are

all less than /3\021 in modulus, then the matrix (Ip
-

/3F)\021 exists and the effect of

w on the present value of \321\203is given by its A, 1) element:

1/A
-

\321\204\321\204-\321\204\321\204\320\263 \320\244\321\200-\320\244\"-1
~

\320\244\321\200\320\240\-

Note that Proposition 1.3 includes the earlier result for a first-order system

(equation [1.1.14]) as a specialcase.
The cumulative effect of a one-time change in w, on \321\203\342\200\236yl+1, . . . can be

considered a specialcaseof Proposition 1.3 with no discounting. Setting /3
= 1 in

Proposition 1.3 shows that, provided the eigenvalues of F are all less than 1 in

modulus, the cumulative effect of a one-timechange in w on \321\203is given by

f ^ =
1/A -\321\204\320\263-\321\204\320\263 \320\244\320\240\320\243 [1-2-47]

/-\320\276aw,

Notice again that [1.2.47] can alternatively be interpreted as giving the even-

eventuallong-run effect on \321\203of a permanent change in w:

lim + ^ + % + +
H~ dw, dwt+1 dw,+2
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APPENDIX l.A. Proofs of Chapter 1 Propositions
U Proof of Proposition 1.1. The eigenvalues of F satisfy

|F
-

\320\2201\342\200\236|
= \320\236.

For the matrix F defined in equation [1.2.3],this determinant would be

[l.A.l]

~\321\204\\

1

0

.0

\320\244\320\263

0

1

0

\320\244\320\267
\342\200\242\342\200\242

0 \342\200\242\342\226\240

0 \342\200\242\342\200\242

0 \342\226\240\342\226\240

\342\200\242
\321\204\321\200-i

0

0

1

\321\204\321\200-\\
0

0

0.

-

_

\342\200\242\320\220

0

0

.0

(+

0
\320\220

0

0

1

0

0

0

\320\220-

0

\320\220)

\342\226\240\342\226\240\342\226\2400

\342\226\240\342\226\240\342\226\2400

\342\226\240\342\226\240\342\226\2400

\342\226\240\342\226\240\342\226\2400

\320\244\320\263\320\244\320\267

-\320\220 0

1 -\320\220

\320\276-

0

0

\320\220.

...
\321\204\321\200_,

... \320\276

\342\200\2420

\320\244

0

0

0 \320\276 \320\276 1 -A

. [1.A.2]

Recall that if we multiply a column of a matrix by a constant and add the result to another
column, the determinant of the matrix is unchanged. If we multiply the pth column of the
matrix in [1.A.2] by (I/A) and add the result to the (p - l)th column, the result is a matrix
with the same determinant as that in [1.A.2]:

i
~ \320\220\321\2042\321\204\320\267

' ' '
\320\244\321\200-2\320\244\321\200\342\200\224\\\"*\"(*^\321\200'\320\220)\320\244\321\200

1 -\320\220 0 \342\200\242\342\226\240\342\226\2400 0 0

IF
-

AI,| =
0 1 -A 0 0

0 0 0 \342\226\240\342\226\240\342\226\2401 -\320\220 \320\236

\320\236 0 0 \342\226\240\342\226\240\342\226\240\320\236 \320\236 -\320\220

Next, multiply the (p \342\200\224
l)th column by (I/A) and add the result to the (p

\342\200\224
2)th column:

IF
-

AI,|

\320\244\\
~ A <fe \320\244\320\263

1 -A 0

0 1 -A

0 0
0 0

\320\244\321\200-\320\263+ \320\244\321\200-\320\220+

\320\236

\320\236

\320\236

\320\236

\342\200\236.,+ <\321\203\320\273\320\244\321\200

\320\276 \320\276

\320\276 \320\276

-A

0

0

-A

Continuing in this fashion shows [l.A.l] to be equivalent to the determinant of the following

upper triangular matrix:

|F -
AI,|

-A

0

-\320\273

\320\276

\320\276

-\320\273

But the determinant of an upper triangular matrix is simply the product of the terms along
the principal diagonal:

|F -
AIP |

=
[\321\204{

- A + \321\20421\\+ <\302\2433/A2+ \342\200\242\342\226\240\342\200\242+ \321\204\321\200/\\\"-1]
\342\226\240

[-A]\"\021 fl
.

31
= (-1)\" \342\200\242

[A\"
-

\321\204,\320\233'-1
-

<feA\"-2
- \342\226\240\342\226\240\342\226\240-

\321\204\321\200].
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The eigenvalues of F are thus the values of A for which [1.A.3] is zero, or for which

A' -
<M\"-'

- <M\"-2 - \342\200\242\342\200\242\342\200\242-
\320\244\320\240

= 0,

as asserted in Proposition 1.1. \342\226\240

\342\226\240Proof of Proposition 1.2. Assuming that the eigenvalues (A,,A2, . . . , Kp) are distinct,
the matrix T in equation [1.2.17]can be constructed from the eigenvectors of F. Let tf
denote the following (pxl) vector,

t,
=

\"Af\021'

Af\022

Af\023

A'

1

where A, denotes the ith eigenvalue of F. Notice

Ft, =

~\321\2041\321\204\320\263\321\204\320\263

1 \320\236\320\236

\320\2361 \320\236

\320\276 \320\276

\320\276 \320\276

.0 0 0

Mf-' +

1 0J

\342\226\240Af-1\"

Af*

Af\023

A,'

1

Af-1

Af2

A?

A,

Since A, is an eigenvalue of F, it satisfies [1.2.16]:

Substituting [1.A.6]into [1.A.5] reveals

Ft, =

Af
\"

Af-'

Af-2

A?

_ A<

= A,

\"Af-'~

Af-2

a;
1

[1.A.4]

[1.A.5]

[1.A.6]

Ft,.
=

A,t(.

Thus t, is an eigenvector of F associatedwith the eigenvalue A/.
We can calculate the matrix T by combining the eigenvectors(t,, t2,

[1.A.7]

, tp) into a

[1.A.8]

(j> X p) matrix

T =
[t,

To calculate the particular values for c, in equation [1.2.21], recall that T\021 is char-
characterized by

TT-' = lp, [1.A.9]
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where T is given by [1.A.4] and [1.A.8]. Writing out the first column of the matrix system

of equations [1.A.9]explicitly, we have

\"A?-1 AS\021
\342\226\240

A?\022 Af\022
\342\200\242

\320\220\320\2233A?\023
\342\200\242

a;-'

a?\022

A?\023

a;

1

r\"

t\"

t31

(P-i.i

=

1
0
0

0

_0_
aj a;
1 1

This gives a system of p linear equations in the p unknowns ((\", tz\\ . . . , Cl). Provided
that the A, are all distinct, the solution can be shown to be9

1

tn =

t\" =

(A,

(A2

- A

- A

2)(A,

,)(A,

- A

1
- A

\320\267)-

\320\233'

1

\342\200\242\342\200\242
(A,

-

\342\226\240\342\226\240
(A2

-

A.)

A.)

'\"
(A, - A,)(A,

-
A2)

\342\226\240\342\226\240\342\200\242
(A,

-
A,.,)'

Substituting these values into [1.2.21]gives equation [1.2.25]. \342\226\240

\342\226\240Proof of Proposition 1.3. The first claim in this proposition is that if the eigenvalues of

F are less than 0
- 4n modulus, then the inverse of (I,

- 0F) exists.Suppose the inverse
of (I,

- 0F) did not exist. Then the determinant |I,
- 0F|would have to be zero. But

|I, - 0F| = |-0 \342\200\242
[F

-
0-4,]| = (-0)\"|F - 0-4,|,

so that |F
- 0\024,,|would have to be zero whenever the inverse of (I,

- 0F) fails to exist.
But this would mean that 0 -' is an eigenvalue of F, which is ruled out by the assumption
that all eigenvalues of F are strictly less than 0~' in modulus. Thus, the matrix I,

- 0F
must be nonsingular.

Since [I, -
0F]~l exists, it satisfies the equation

[I,
-

jBF]-'[I,
- 0F] = I,. [1.A.10]

Let x,, denote the row i, column; element of [I,
- 0F]~\\ and write [1.A.10] as

\342\226\24010

0 1

\320\237-04

-0
-0*,., -04

0 0

-0 1 [l.A.ll]

0 0

The task is then to find the A, 1) element of [I, -
0F]~\\ that is, to find the value

of xn. To do this we need only consider the first row of equations in [l.A.ll]:

[xu xu \342\226\240\342\226\240\342\226\240
*,,]

\342\226\2401-
04>, -04-1

-0 1 0

0 0 1 .

[1 0 0 0]. [1.A.12]

'See Lemma 2 of Chiang A980, p. 144).
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Considerpostmultiplying this system of equations by a matrix with Is along the principal

diagonal, /3 in the row p, column p
- 1 position, and OS elsewhere:

\320\22310

0 1

0 0'
0 0

0 0 /3 1.

The effect of this operation is to multiply the pth column of a matrix by /3 and add the result

to the (p
- l)th column:

-p
[1 0 \342\226\240\342\226\240\342\200\2420 0].

Next multiply the (p
- l)th column by /3 and add the result to the (p

- 2)th column.

Proceeding in this fashion, we arrive at

[*\342\200\236xn
\342\226\240\342\226\240\342\226\240

*\342\200\236]x

1 0

0 \342\226\240\342\226\240\342\226\24001

= [1 0 \342\226\240\342\226\240\342\226\2400 0]. [1.A.13]

The first equation in [1.A.13] states that

*\342\200\236= 1/A -
\320\240\321\204%

-
\320\2402\320\244\320\263

as claimed in Proposition1.3. \342\226\240
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Lag Operators

2.1. Introduction
The previous chapter analyzed the dynamics of linear difference equations using

matrix algebra. This chapter developssomeof the same results using time series
operators.We begin with some introductory remarks on someuseful time series

operators.
A time series is a collection of observations indexed by the date of each

observation. Usually we have collected data beginning at some particular date (say,
t = 1) and ending at another (say, t = T):

{\320\243\321\214\320\243\320\272\342\226\240\342\226\240\342\226\240> \320\243\321\202)-

We often imagine that we could have obtained earlier observations (y0, y.\\,

\321\203.2>\342\200\242\342\200\242\342\200\242)or teter observations (yT+u yT+2, \342\226\240\342\226\240\342\200\242) had the process been observed
for more time. The observed sample {yv, y2, . . . , yT) could then be viewed as a

finite segment of a doubly infinite sequence, denoted {y,}^- -*:

{y,}7--~=
{\342\200\242\342\200\242\342\200\242,\320\243-\320\270\320\243\320\277,\320\243\320\270\320\2432\320\243\321\202<\320\243\321\202+1,\320\243\321\202+\320\263>\342\226\240\342\226\240\342\226\240)\342\226\240

observed sample

Typically, a time series {y,}?--xis identified by describing the fth element.

For example, a time trend is a serieswhose value at date t is simply the date of the
observation:

\320\243,
= t.

We could also considera time series in which each elementis equal to a constant

c, regardless of the date of the observation /:

\320\243,
= \321\201

Another important time series is a Gaussian white noise process, denoted

\320\243,
=

\320\265\342\200\236

where {e,}T--^ is a sequence of independent random variables each of which has

a N@, or2)distribution.

We are used to thinking of a function such as \321\203
= f(x) or \321\203

= g(x, w) as an

operation that accepts as input a number (x) or group of numbers (x, w) and

produces the output (y). A time series operator transforms one time series or group
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of time series into a new time series. It accepts as input a sequence such as

{*,}\320\223--= or a group of sequencessuch as ({*,}\320\223__\302\273,{w,}T- -=) and has as output a

new sequence {y,}T~ -\302\273\342\200\242Again, the operator is summarized by describing the value
of a typical element of {y}T--^ in terms of the corresponding elements of
\320\234\320\223-\342\200\224

An example of a time series operator is the multiplication operator, repre-
represented as

\320\243,
= Pxr [2.1.1]

Although it is written exactly the sameway as simple scalar multiplication, equation

[2.1.1] is actually shorthand for an infinite sequence of multiplications, one for

each date t. The operator multiplies the value x takes on at any date t by some

constant p to generate the value of \321\203for that date.
Another exampleof a time series operator is the addition operator:

\320\243,
= x, + w,.

Here the value of \321\203at any date t is the sum of the values that x and w take on for

that date.
Since the multiplication or addition operators amount to element-by-element

multiplication or addition, they obey all the standard rules of algebra. For example,
if we multiply each observation of {\320\273:,},\"--*by p and each observation of

{wt}?= -\302\273by p and add the results,

px< + pwt,

the outcome is the same as if we had first added toJ\302\260--\302\273to {\320\270\302\273,}\320\223\342\200\224\302\273and then

multiplied each elementof the resulting series by p;

p(x, + w,).

A highly useful operator is the lag operator. Suppose that we start with a

sequence {x}*__\302\253,and generate a new sequence {y,}?._\302\253,,where the value of \321\203for

date t is equal to the value x took on at date / \342\200\2241:

y, = *,_,. [2.1.2]
This is described as applying the lag operator to {*,}\"__\302\253,.The operation is repre-
represented by the. symbol L:

lov-x,-!. [2.1.3]
Consider the result of applying the lag operator twice to a series:

L(Lxt) =
\320\246\321\205,_\321\212)

= x,_2.

Such a double application of the lag operator is indicated by \"L2\":

L2X,
= X,-2-

In general, for any integer k,

Lkx, = x,-k. [2.1.4]
Notice that if we first apply the multiplication operator and then the lag

operator, as in

\320\264\321\201,->\321\200\321\205,-+\321\200\321\205,_\321\212

the result will be exactly the same as if we had applied the lag operator first and
then the multiplication operator:

X,-* JC/-1\342\200\224\302\273PX,-V
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Thus the lag operator and multiplication operator are commutative:

L{px,)
=

/\320\234\320\273,.

Similarly, if we first add two series and then apply the lag operator to the result,

(*/, wt)-*x, + *,-\302\273*,_! + w,_u

the result is the same as if we had applied the lag operator before adding:

(x,, w,) -\302\273(x,-u w,^) -> *,_! + w,_v

Thus, the lag operator is distributive over the addition operator:

L{x,+ w,)
= Lx, + Lw,.

We thus see that the lag operator follows exactly the same algebraic rules as

the multiplication operator. For this reason, it is tempting to use the expression

\"multiply y, by L\" rather than \"operate on {y,}T--~ by L,\" Although the latter

expression is technically more correct, this text will often use the former shorthand

expression to facilitate the exposition.

Faced with a time series defined in terms of compound operators, we are free
to use the standard commutative, associative,and distributive algebraic laws for
multiplication and addition to express the compound operator in an alternative
form. For example, the process defined by

y,= (a + bL)Lx,
isexactly the same as

y: = {aL + bL2)x,
= ax,_l + bx,_2.

To take another example,

A -
AiL)(l

-
K2L)x, = A -

AtL
- \\2L + A^L2)*,

=
A

-
[A! + \\2]L + AiAjL2)*, [2.1.5]

= x,- (At + A2)*,_i + (AiAj)*,^.

An expression such as {aL + bL2) is referred to as a polynomial in the lag

operator. It is algebraically similar to a simple polynomial (\321\217\320\263+ bz2) where z is
a scalar. The difference is that the simple polynomial (\321\217\320\263+ bz2) refers to a
particular number, whereas a polynomial in the lag operator {aL + bL2)refers to

an operator that would be applied to one time series (xjf--- to produce a new
time series {y}T--=\342\200\242

Notice that if {x,}~. _\302\253,is just a series of constants,

x,
= \321\201 for all t,

then the lag operator applied to x, produces the same series of constants:

Lx, = *,_! = \321\201

Thus, for example,

{aL + pL2+ yL*)c
= {a + p + y)

\342\226\240\321\201 [2.1.6]

2.2. First-Order Difference Equations
Let us now return to the first-order difference equation analyzed in Section 1.1:

\320\243,
=

\320\244\321\203.-i+ \321\203,- [2.2.1]
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Equation [2.2.1] can be rewritten using the lag operator [2.1.3]as

\321\203,
=

\321\204\320\254\321\203,+ w,.

This equation, in turn, can be rearranged using standard algebra,

y,
-

\321\204\320\254\321\203,
= w,,

or

A -
\321\204\320\254)\321\203,

= w,. [2.2.2]

Next consider \"multiplying\" both sides of [2.2.2] by the following operator:

A + \321\204\320\254+ \321\2042\320\2542+ \321\204*\320\2543+ \342\226\240\342\226\240\342\226\240+ \321\204'\320\254'). [2.2.3]

The result would be

A + \321\204\320\254+ \321\204'\320\2542+ \321\204'\320\2543+ \342\226\240\342\226\240\342\226\240+ \321\204>\320\254')A
-

\321\204\320\254)\321\203,

= A + \321\204\320\254+ \321\2042\320\2542+ \321\2043\320\2543+ \342\226\240\342\200\242\342\200\242+ \321\204'\320\254')*,.
[ \" J

Expanding out the compound operator on the left side of [2.2.4]results in

A + \321\204\320\254+ \321\2042\320\2542+ tfV + \342\200\242\342\200\242\342\200\242+ \321\204>\320\254'){\\
-

\321\204\320\254)

= A + \321\204\320\254+ \321\2042\320\2542+ fib3 + \342\200\242\342\200\242\342\226\240+ \321\204'\320\254')

-{\\ + \321\204\320\254+ \321\2042\320\2542+ \321\204'\320\2543+ \342\226\240\342\226\240\342\200\242+ \321\204'\320\254')\321\204\320\254 r2 2 5|=
A + \321\204\320\254+ \321\2042\320\2542+ \321\204?\320\2543+ \342\200\242\342\226\240\342\200\242+ \321\204'\320\254')

-
(\321\204\320\254+ \321\2042\320\2542+ \321\2043\320\2543+ \342\226\240\342\226\240\342\226\240+ \321\204'\320\254'+ \321\204'+1\320\254'+1)

Substituting [2.2.5] into [2.2.4] yields

A
-

\321\204'+1\320\254'+1)\321\203,
= A + \321\204\320\254+ \321\2042\320\2542+ \321\204'\320\2543+ \342\200\242\342\200\242\342\226\240+ \321\204'\320\254')\320\275>,.[2.2.6]

Writing [2.2.6] out explicitly using [2.1.4] produces

or

Notice that equation [2.2.7] is identical to equation [1.1.7]. Applying the

operator [2.2.3]is performing exactly the same set of recursive substitutions that
were employed in the previous chapter to arrive at [1.1.7].

It is interesting to reflect on the nature of the operator [2.2.3] as / becomes
large.We saw in [2.2.5] that

A + \321\204\320\254+ \321\2042\320\2542+ tfb3 + \342\226\240\342\226\240\342\226\240+ \321\204'\320\254')(\\
-

\321\204\320\254)\321\203,
=

\321\203,
-

\321\204'+1\321\203^.

That is, A + \321\204\320\254+ \321\204*\320\2542+ \321\204\321\212\320\2543+ \342\200\242\342\200\242\342\200\242+ \321\204>\320\254')A
-

\321\204\320\254)\321\203,differs from \321\203,by
the term ty+xy_x. If \\\321\204\\< 1 and if y_i is a finite number, this residual \321\204'+1\320\243-\320\263

will become negligible as / becomeslarge;

A + \321\204\320\254+ \321\2042\320\2542+ tfb3 + \342\200\242\342\200\242\342\200\242+ \321\204'\320\254'){\\
-

\321\204\320\254)\321\203,
=

\321\203, for / large.

A sequence {\321\203,}\320\242=-~is said to be bounded if there exists a finite number \321\203such

that

\\y,\\ <y for all t.

Thus, when \\\321\204\\< 1 and when we are considering applying an operator to a bounded

sequence, we can think of

A + \321\204\320\254+ \321\2042\320\2542+ \321\2043\320\254\321\212+ \342\200\242\342\200\242\342\200\242+ \321\204'\320\254')
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as approximating the inverse of the operator A
-

\321\204\320\254),with this approximation
made arbitrarily accurate by choosing; sufficiently large:

A
-

\321\204\320\254)-1
= lim A + \321\204\320\254+ \321\204*\320\2542+ \321\204\321\212\320\254\321\212+ \342\200\242\342\200\242\342\200\242+ \321\204\320\250).[2.2.8]

This operator A -
\321\204\320\254)~\320\263has the property

A -
\321\204\320\246-\\\\

-
\321\204\320\246

= 1,

where \021\" denotes the identity operator:

iy,
=

\321\203,-

The following chapter discusses stochastic sequences rather than the deter-
deterministic sequences studied here. There we will speak of mean square convergence
and stationary stochastic processes in place of limits of bounded deterministic

sequences, though the practical meaning of [2.2.8] will be little changed.
Provided that \\\321\204\\< 1 and we restrict ourselves to bounded sequences or

stationary stochastic processes,both sides of [2.2.2] can be \"divided\" by A
-

\321\204\320\254)

to obtain

y, =
A

-
\321\204\320\246-'w,

or

y,= w, + <*>*,_!+ 4?w,_2 + tfw,_3 + \342\200\242\342\200\242\342\200\242. [2.2.9]

It should be emphasized that if we were not restricted to considering bounded
sequencesor stationary stochastic processes {w}% _* and {\321\203,}*\342\200\236_\302\253,,then expression

[2.2.9] would not be a necessary implication of [2.2.1].Equation [2.2.9] is consistent
with [2.2.1], but adding a term \320\260\320\276\321\204',

\321\203,
=

\320\260\320\276\321\204'+ w, + (K_! + \302\2534-2 + *\320\247-\321\215+ \342\200\242\342\200\242\342\200\242
. [2.2.10]

produces another series consistent with [2.2.1] for any constant ao.Toverify that

[2.2.10] is consistent with [2.2.1], multiply [2.2.10] by A
-

\321\204\320\254):

A
-

\321\204\320\246\321\203,
= A

-
\321\204\320\246\320\260\320\276\321\204<+ A

-
\321\204\320\246{\\

-
\321\204\320\246-1*,

so that [2.2.10] is consistent with [2.2.1] for any constant ao.
Although any process of the form of [2.2.10]is consistent with the difference

equation [2.2.1],notice that since \\\321\204\\< 1,

\\ao<tA
~* \302\260\302\260as t-* -\302\253.

Thus, even if {w}*=_\302\253,is a bounded sequence, the solution {y,}?= -\342\200\236givenby [2.2.10]
is unbounded unless ao

= 0 in [2.2.10]. Thus, there was a particular reason for

defining the operator [2.2.8]to be the inverse of A
-

\321\204\320\254)\342\200\224namely,A
-

\321\204\320\254)'1

defined in [2.2.8] is the unique operator satisfying

A -
\321\204\320\254)~\\\\

-
\321\204\320\254)

= 1

that maps a bounded sequence{w,}7- -\302\253into a bounded sequence {^,}\320\223--\302\253-

The nature of A
-

\321\204\320\254)'1when \\\321\204\\
> 1 will be discussed in Section 2.5.

2.3. Second-Order Difference Equations
Consider next a second-order difference equation:

\320\243,
=

\320\244\320\263\320\243.-i+ \320\244\320\263\320\243,-2+ \320\251. [2.3.1]
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Rewriting this in lag operator form produces

A
- &L - &L2)y,= w,. [2.3.2]

The left side of [2.3.2]contains a second-order polynomial in the lag operator
L. Supposewe factor this polynomial, that is, find numbers At and A2 such that

A - &L -
\321\2042\320\2542)

= A
-

\320\220^)A
-

A2L) = A -
[Aj + AJL + k^L2). [2.3.3]

This is just the operation in [2.1.5] in reverse. Given values for \321\2041and \321\2042,we seek

numbers Aj and A2 with the properties that

At + A2
=

\321\204\321\205

and

AiA2
=

-\320\244\320\263.

For example, if \321\2041
= 0.6 and \321\2042

= -0.08, then we should choose At
= 0.4 and

A2
= 0.2:

A
- 0.6L+ 0.08L2)

= A
- 0.4L)(l - 0.2L). [2.3.4]

It is easy enough to see that these values of At and A2 work for this numerical

example, but how are Aj and A2 found in general? The task is to choose At and A2

so as to make sure that the operator on the right side of [2.3.3] is identical to that

on the left side. This will be true whenever the following represent the identical

functions of z:

A -
\321\204,\320\263

-
\321\2042\320\2632)

= A
- A,z)(l -

A2z). [2.3.5]

This equation simply replaces the lag operator L in [2.3.3] with a scalar z. What

is the point of doing so? With [2.3.5], we can now ask, For what values of z is the

right side of [2.3.5] equal to zero? The answer is, if either z = Af1 or z =
Af *,

then the right side of [2.3.5] would be zero.It would not have made sense to ask

an analogous question of [2.3.3]\342\200\224Ldenotes a particular operator, not a number,
and L =

Af' is not a sensible statement.
Why should we care that the right side of [2.3.5] is zero if \320\263= Af1 or if z =

Af'? Recall that the goal was to chooseAt and A2 so that the two sides of [2.3.5]
represented the identical polynomial in z. This means that for any particular value

z the two functions must produce the same number. If we find a value of z that

sets the right side to zero, that same value of z must set the left side to zero as
well. But the values of z that set the left side to zero,

A
- bz -

\321\204\320\263\320\2632)
= 0, [2.3.6]

are given by the quadratic formula:

*\302\273
=

:;i
-\321\202*

\321\200-\320\267.7]

6 + V^+^
=2^

\342\200\242 [23-8]

Setting z =
Zt or z2 makes the left side of [2.3.5] zero, while z = Af' or

Af' sets the right side of [2.3.5] to zero. Thus

Af1
= z, [2.3.9]

Af1
= za. [2.3.10]
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Returning to the numerical example [2.3.4] in which \321\2041= \320\276.\320\261and \320\2442
= -0.08,

we would calculate

0.6

0.6

-

+

V@.6)*
-

2@.08)
V(flW -

4@.08)

4@.08)

and so

At
= 1/B.5) = 0.4

A2
= 1/E.0) = 0.2,

as was found in [2.3.4].
When \321\204\\+ 4<j>2 < 0, the values Zj and z2 are complex conjugates, and their

reciprocals At and A2 can be found by first writing the complex number in polar
coordinate form. Specifically, write

Zj = a + \320\253

as

Zj
= /?[cos@) + i-sin@)] = Re\".

Then

2l-i = R-^e-* = R-l-[cos(e) -
i-sin@)].

Actually, there is a more direct method for calculating the values of Aj and

A2 from \321\2041and \321\2042.Divide both sides of [2.3.5]by z2:

(z~2
-

\302\253M-i
-

\320\244\320\263)
=

(\320\263\021
-

A1)(z\021
-

A2) [2.3.11]

and define A to be the variable z\021:

A-2-1. [2.3.12]

Substituting [2.3.12]into [2.3.11] produces

(A*
-

\320\224\320\233
-

\321\2042)
=

(A
-

At)(A
-

A2). [2.3.13]

Again, [2.3.13] must hold for all values of A in order for the two sides of [2.3.5]
to represent the same polynomial. The values of A that set the right side to zero
areA =

Aj and A =
A2. These same values must set the left side of [2.3.13] to zero

as well:

(A2
-

&\320\233
-

\321\2042)
= 0. [2.3.14]

Thus, to calculate the values of Aj and A2 that factor the polynomial in [2.3.3], we
can find the roots of [2.3.14] directly from the quadratic formula:

[2.3.16]

1

A2
=

!.3.4],

0.6 +

0.6 -

\320\2441+ V4

2

\320\2441
- V4

2

we would

V@.6J
-

2

V@.6J -

!>2 + 4<k

!>2 + 4^2

thus calci

- 4@.08)

-
4@.08)

A\302\273
2 \342\226\240

= 0l4

0.6 - V@.6J -
4@.08)

2
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It is instructive to comparethese results with those in Chapter 1. Therethe

dynamics of the second-order difference equation [2.3.1] were summarized by

calculating the eigenvalues of the matrix F given by

-[1 oj-
[2.3.17]

The eigenvalues of F were seen to be the two values of A that satisfy equation

[1.2.13]:

(A*
-

\321\204,\320\220
- fc) - 0.

But this is the same calculation as in [2.3.14]. This finding is summarized in the
following proposition.

Proposition 2.1: Factoring the polynomial A
-

\321\204\321\205\320\254
-

\321\2042\320\2542)as

A
-

\321\204,\320\254
- fcL2) =

A
- AtL)(l -

A2L) [2.3.18]

is the same calculation as finding the eigenvalues of the matrix F in [2.3.17]. The

eigenvalues Aj and A2 ofF are the same as the parameters Aj and A2 in [2.3.18], and
are given by equations [2.3.15] and [2.3.16].

The correspondence between calculating the eigenvalues of a matrix and

factoring a polynomial in the lag operator is very instructive. However, it introduces
one minor source of possible semantic confusion about which we have to be careful.

Recall from Chapter 1 that the system [2.3.1] is stable if both Aj and A2 are less

than 1 in modulus and explosive if either At or A2 is greater than 1 in modulus.

Sometimes this is describedas the requirement that the roots of

(A2
- fcA -

\321\204\320\263)
= \320\236 [2.3.19]

lie inside the unit circle. The possible confusion is that it is often convenient to

work directly with the polynomial in the form in which it appears in [2.3.2],

A
- ftz -

\321\2042\320\2632)
= 0, [2.3.20]

whose roots, we have seen, are the reciprocalsof those of [2.3.19]. Thus, we could
say with equal accuracy that \"the difference equation [2.3.1] is stable whenever

the roots of [2.3.19] lie inside the unit circle\" or that \"the difference equation

[2.3.1] is stable whenever the roots of [2.3.20] lie outside the unit circle.\" The two
statements mean exactly the same thing. Some scholars refer simply to the \"roots
of the difference equation [2.3.1],\" though this raises the possibility of confusion

between [2.3.19] and [2.3.20]. This book will follow the convention of using the

term \"eigenvalues\" to refer to the roots of [2.3.19]. Wherever the term \"roots\" is
used, we will indicate explicitly the equation whose roots are being described.

From here on in this section, it is assumed that the second-order difference

equation is stable, with the eigenvalues At and A2 distinct and both inside the unit

circle. Where this is the case, the inverses

A -
AjL)\021

= 1 + Aji + \\2L2 + \\\\L3 + \342\200\242\342\200\242\342\200\242

A
-

Aji)\021
= 1 + k\\L + k\\L2 + A|L3 + \342\200\242\342\200\242\342\200\242

are well defined for bounded sequences. Write [2.3.2] in factored form:

A -
A,L)A

-
K2L)y, = w,

and operate on both sides by A
-

A^)\021^
- Aji)\021:

y,
= A

- A^-41 - A2L)-4. [2.3.21]
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Following Sargent A987, p. 184), when Aj \320\244A2, we can use the following operator:

Notice that this is simply another way of writing the operator in [2.3.21]:

A
- A,L) \342\200\242

A
- A2L)

1

A
- A,L) \342\226\240

A
-

A2L)\"

Thus, [2.3.21] can be written as

= I -^\342\200\224
[1 + Aji + K\\L2 + A?L3 + \342\200\242\342\200\242

\342\200\242]~
A2

\342\200\242
A2L + AIL2 + A|L3 + \342\226\240\342\226\240\342\226\240]\\w,

A2

Ai
-

A2
l

or

\320\2431
= [ci + c2]w, + [CjAi + c2A2]w,_i + [CjAf + c2A2]w,_2

+ [c^ + c2A2]w,_3 + \342\200\242\342\200\242\342\200\242
,

where

c, =
A,/(A,

-
A2) [2.3.24]

c2 = -A2/(A! -
A2). [2.3.25]

From [2.3.23] the dynamic multiplier can be read off directly as

dw,

the same result arrived at in equations [1.2.24]and [1.2.25].

2.4. pth-Order Difference Equations
Thesetechniques generalize in a straightforward way to a pth-order difference

equation of the form

\320\2431
=

\320\2441\320\2431-1+ \320\244\320\263\320\2431-\320\263+ \342\200\242\342\200\242\342\200\242+
\320\244\320\240\320\243,-\320\240

+ w,. [2.4.1]

Write [2.4.1]in terms of lag operators as

A
-

\321\204\321\205\320\254
-

\321\2042\320\2542 \321\204\342\200\236\320\254\320\240)\321\203,
= w,. [2.4.2]

Factor the operator on the left side of [2.4.2] as

A
-

\321\204^\320\254
-

\321\2042\320\2542
- \342\226\240\342\226\240\342\200\242-

\321\204\321\200\320\254\")
= A

- AiL)(l -
A2L)

\342\200\242\342\226\240\342\200\242
A

-
KpL). [2.4.3]

This is the same as finding the values of (A1; A2, . . . , kp) such that the following

polynomials are the same for all z:
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As in the second-order system, we multiply both sides of this equation by z p and

define A = z\021:

(A\"
-

\302\253M\"-1
\"

\320\244\320\263^2
- \342\200\242\342\226\240\342\226\240-

\321\204\321\200.,\320\272
-

\321\204\321\200)

= (A
-

A,)(A
-

A2)
\342\200\242\342\200\242\342\200\242

(A
-

A,).
l ' ' J

Clearly, setting A = A, for i = 1, 2, . . . , \320\276\321\202\321\200causes the right side of [2.4.4]to

equal zero. Thus the values (Ab A2, . . . , Ap) must be the numbers that set the left

side of expression [2.4.4] to zero as well:

This expression again is identical to that given in Proposition 1.1, which charac-

characterized the eigenvalues (Ab A2, . . . , Ap) of the matrix F defined in equation [1.2.3].
Thus, Proposition 2.1 readily generalizes.

Proposition 2.2: Factoring a pth-order polynomial in the lag operator,

A -
\321\204^\320\254

-
\321\2042\320\2542

- \342\226\240\342\200\242\342\200\242-
\321\204\321\200\320\254\320\240)

= A
- Aji)(l -

A2L)
\342\200\242\342\226\240\342\226\240

A
-

Api),
is the same calculation as finding the eigenvaluesof the matrix F defined in [1.2.3].
The eigenvalues (A,, A2,. . . , Ap) of F are the same as the parameters (A,, A2,. . . ,
Ap)

in [2.4.3] and are given by the solutions to equation [2.4.5].

The difference equation [2.4.1]isstableif the eigenvalues (the roots of [2.4.5])
lie inside the unit circle, or equivalently if the roots of

1 -
\321\204,\320\263

-
\321\2042\320\2632

- \342\200\242\342\226\240\342\200\242-
\321\204\321\2002\321\200

= 0 [2.4.6]

lie outside the unit circle.

Assuming that the eigenvalues are inside the unit circle and that we are

restricting ourselves to considering bounded sequences, the inverses A
- A^)\021,

A -
A2L)~\\ . . . , A

-
Api)\021 all exist, permitting the difference equation

A
- AtL)(l -

A2L)
\342\226\240\342\200\242\342\226\240

A
-

\\pL)y,
=

w,

to be written as

y, = A - \\iL)-\\\\- \\2L)~l
\342\200\242\342\200\242\342\226\240

A
- Api)\024. [2.4.7]

Provided further that the eigenvalues (A1; A2, . . . , Ap) are all distinct, the poly-
polynomial associated with the operator on the right side of [2.4.7]can again be ex-

expanded with partial fractions:

1
1 . . . ri - \320\273\321\202\320\233

[2.4.8]

-
\320\2202\320\263)\342\226\240\342\200\242\342\226\240(!-\\p

A
-

A\302\273z) A
- A2z) A

-
\\pzY

Following Sargent A987, pp. 192-93), the values of (c1;c2,\342\226\240\342\226\240\342\226\240,cp) that make [2.4.8]
true can be found by multiplying both sides by A

-
kxz){\\

-
K2z)

\342\200\242\342\200\242\342\200\242
A

- Kpz):

1 = c,(l -
\320\2202\320\263)A

-
\320\2203\320\263)

\342\200\242\342\200\242\342\200\242
A

-
kpz)

+ c2(l- A,z)(l
-

\320\2203\320\263)
\342\226\240\342\200\242\342\226\240

A
-

\\pz)
+ \342\226\240\342\226\240\342\226\240

[2.4.9]

+ cp(l
-

A,z)(l
-

\320\2202\320\263)
\342\226\240\342\226\240\342\200\242

A
-

kp.xz).

Equation [2.4.9] has to hold for all values of z. Since it is a (p - l)th-order
polynomial, if (c1; c2, . . . , cp)

are chosen so that [2.4.9] holds for p particular
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distinct values of z, then [2.4.9] must hold for all z. To ensure that [2.4.9] holds

at \320\263= Af1 requires that
'

1 =
Cj(l

-
A2Af ^(l -

\320\2203\320\220\320\2231)
\342\200\242\342\200\242\342\200\242

A
-

ApAf1)

or

1
(At

- A2)(At -
A3)

\342\200\242\342\200\242\342\226\240
(A,

-
Ap)\"

For [2.4.9] to hold for z = Af1, A3\021, . . . , \\p
1

requires

[2.4.10]

(A2
-

A,)(A2
-

A3)
\342\200\242\342\200\242\342\226\240

(A2
-

\320\220,)

K
C\"

=

(A,
-

A,)(A,
-

A2)
\342\200\242\342\226\240\342\226\240

(A,
-

A,.,)\"
[2412]

Note again that these are identical to expression [1.2.25] in Chapter 1. Recall from
the discussion there that ct + c2 + \342\200\242\342\200\242\342\200\242+ cp

= 1.
To conclude,[2.4.7]can be written

= Ci(l + Aji + k\\L2 + k\\I? + \342\226\240\342\226\240
-)w, + c2(l + A2L + AfL2 + A^L3 + \342\226\240\342\200\242

)w,

+ ---+cp{\\ +
\\pL

+
k2pL2

+ \\pV + ---)wt

or

y,
=

[Cj + c2 + \342\200\242\342\200\242\342\200\242+ cp]w, + [c^! + c2A2 + \342\200\242\342\200\242\342\226\240+ cpAp]iv,..i

+ [ClA? + c2Af + \342\226\240\342\226\240\342\200\242+ cp\\p]Wl_2 [2.4.13]

+ [CjA] + c2A2 + \342\200\242\342\226\240\342\226\240+
\320\241\321\200\320\220\321\200]\320\270'(_\320\267

+

where (cu c2, . . . , cp) are given by equations [2.4.10] through [2.4.12]. Again,
the dynamic multiplier can be read directly off [2.4.13]:

^
=

[ClA( + c2Ai + \342\200\242\342\200\242\342\200\242+
\321\201\321\200\320\251, [2.4.14]

reproducing the result from Chapter 1.

There is a very convenient way to calculate the effect of w on the present

value of \321\203using the lag operator representation. Write [2.4.13] as

y, =
l/f0W, + I^W,-! + $2wt-2 + \320\244\320\267^1-3+ ' \342\200\242'

[2.4.15]

where

\321\204!
= [c^i + c2A\302\243+ \342\226\240\342\200\242\342\200\242+

cp\\ip], [2.4.16]

Next rewrite [2.4.15] in lag operator notation as

\321\203,
=

\321\204{\320\246\\\320\274\342\200\236 . [2.4.17]

where \321\204(\320\254)denotes an infinite-order polynomial in the lag operator:

2.4. pth-Order Difference Equations 35



Notice that \321\204)
is the dynamic multiplier [2.4.14]. The effect of w, on the present

value of \321\203is given by

p
aw, /-\320\276 dw,

[241g]

1-0

Thinking of \321\204(\320\263)as a polynomial in a real number z,

\321\204(\320\263)
=

ifo + \321\204\321\205\320\263+ \321\2042\320\2632+ \321\204\321\212\320\263\321\212+ \342\226\240\342\226\240\342\226\240
,

it appears that the multiplier [2.4.18] is simply this polynomial evaluated at z =
/3;

\320\264

>-\320\276
\320\240'\320\243'+'=

\320\244(\320\240)
=

\320\244\320\276+ \320\244\320\244+ \320\244\320\263\320\2402+ \320\244\320\267\320\2403+ \342\200\242\342\226\240\342\226\240\342\226\240[2.4.19]

dw,

But comparing [2.4.17]with [2.4.7], it is apparent that

\321\204{\320\254)
= [A

-
\320\220^)A

- A2L)
\342\200\242\342\200\242\342\200\242

A
-

KpL)]-\\

and from [2.4.3] this means that

\321\204(\320\254)
= [1

-
\321\204,\320\254

-
\321\2042\320\2542 \320\244\320\240\320\254\"]-\320\232

We conclude that

\321\204{\320\263)
= [1

-
\321\204,\320\263

- fa2 \321\204.\320\263\320\240]-1

for any value of \320\263,so, in particular,

\320\244(\320\240)
= [1

\"
\320\244\320\263\320\240

~
\320\244\320\263\320\2402 \320\244\321\200\320\240]-1. [2.4.20]

Substituting [2.4.20] into [2.4.19]reveals that

^
-

[2\320\23321]

reproducing the claim in Proposition 1.3. Again, the long-run multiplier obtains

as the special caseof [2.4.21]with /3
= 1:

limUw + ^ + ...+^
y^\302\253I aw, dw,+ 1 dw,+

2.5. Initial Conditions and UnboundedSequences
Section 1.2 analyzed the following problem. Given apth-order difference equation

\320\243,
=

\320\2441\320\233-1+ \320\244\320\263\320\243,-\320\263+ \342\200\242\342\200\242\342\200\242+
\320\244\320\240\320\243,-\320\240

+ w,, [2.5.1]

p initial values of y,

\320\243-1.\320\243-2 y-P, [2.5.2]

and a sequence of values for the input variable w,

{w0,wu . . . , w,}, [2.5.3]
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we sought to calculate the sequence of values for the output variable y:

{\320\243\320\276,\320\2431\320\243,)-

Certainly there are systems where the question is posed in precisely this form. We
may know the equation of motion for the system [2.5.1] and its current state [2.5.2]
and wish to characterize the values that {y0, yit. . . ,y,}might take on for different

specifications of {w0, wx, . . . , w,}.

However, there are many examples in economics and finance in which a

theory specifies just the equation of motion [2.5.1] and a sequence of driving
variables [2.5.3].Clearly,these two pieces of information alone are insufficient to

determine the sequence {y0, yu . . . , y}, and some additional theory beyond that
contained in the difference equation [2.5.1] is needed to describefully the de-

dependence of \321\203on w. These additional restrictions can be of interest in their own

right and also help give some insight into some of the technical details of manip-
manipulatingdifference equations. For these reasons,this section discusses in some depth

an example of the role of initial conditions and their implications for solving dif-

difference equations.
Let Pt denote the price of a stock and D, its dividend payment. If an investor

buys the stock at date t and sells it at f + 1, the investor will earn a yield of
DJP, from the dividend and a yield of (P,+i

- P,)IPiin capital gains. The investor's
total return (r,+ 1) is thus

rl+1
= (P,+i

-
\320\240.\320\243\320\240,+ DJP,.

A very simple model of the stock market posits that the return investors earn on

stocks is constant across time periods:

r = (Pl+1 -
Pd/P, + DJP, r>0. [2.5.4]

Equation [2.5.4] may seem too simplistic to be of much practical interest; it

assumes among other things that investors have perfect foresight about future stock

prices and dividends. However, a slightly more realistic model in which expected
stock returns are constant involves a very similar set of technical issues. The ad-
advantage of the perfect-foresight model [2.5.4]is that it can be discussed using the

tools already in hand to gain some further insight into using lag operators to solve

difference equations.
Multiply [2.5.4] by P, to arrive at

rP, = Pl+1 - P,+ D,
or

Pl+1
= A + r)P, - D,. [2.5.5]

Equation [2.5.5] will be recognized as a first-order difference equation of the form
of [1.1.1]with y,

= Pt+1, \321\204
= A + r), and w,

=
-\302\243>,.From [1.1.7], we know

that [2.5.5] implies that

P,+1 =
A + rY+1P0

-
A + rYD0

-
A + /\342\226\240)'-\302\273\302\243,

-
A + ry-*D2 [2.5.6]

A + r)D,-i
- Dr

If the sequence {Do, Du . . . , D,}and the value of Po were given, then [2.5.6]
could determine the values of {\320\240\321\212P2, . \342\226\240. , P,+i}- But if only the values {Do,Dlt
. . . , D}are given, then equation [2.5.6] would not be enough to pin down {Plt

Piy \342\226\240\342\226\240\342\226\240> Pi+i\\- There are an infinite number of possible sequences {Pu P2, \342\226\240\342\226\240\342\226\240,

Pl+1} consistent with [2.5.5] and with a given {Do, Du . . . , D}. This infinite

number of possibilities is indexed by the initial value Po.
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A further simplifying assumption helps clarify the nature of these different

paths for {Pu Pi, \342\200\242\342\226\240\342\226\240> Pi+i}- Suppose that dividends are constant over time:

D,= D for all t.

Then [2.5.6] becomes

Pl+i =
A + r)'+1P0

-
[A +r)' + A + r)'-1

+ \342\200\242\342\200\242\342\200\242+ A + r) + \\}D

= A + ry+1[P0 -
(D/r)] + (D/r).

Consider first the solution in which Po = D/r. If the initial stock price should

happen to take this value, then [2.5.7] implies that

P, = D/r [2.5.8]

for all t. In this solution, dividends are constant at D and the stock price is constant

at D/r. With no change in stock prices, investors never have any capital gains or

losses, and their return is solely the dividend yield DIP = r. In a world with no
changes in dividends this seems to be a sensibleexpressionof the theory represented

by [2.5.4]. Equation [2.5.8]is sometimes described as the \"market fundamentals\"

solution to [2.5.4] for the case of constant dividends.
However, evenwith constant dividends, equation [2.5.8] is not the only result

consistent with [2.5.4]. Suppose that the initial price exceeded D/r.

Po > D/r.

Investors seem to be valuing the stock beyond the potential of its constant dividend
stream. From [2.5.7] this could be consistent with the asset pricing theory [2.5.4]

provided that Pl exceeds D/r by an even larger amount. As long as investors all

believe that prices will continue to rise over time, eachwill earn the required return
r from the realized capital gain and [2.5.4]will be satisfied. This scenario has

reminded many economists of a speculative bubble in stock prices.
If such bubbles are to be ruled out, additional knowledge about the process

for {P,}?=_* is required beyond that contained in the theory of [2.5.4]. For example,
we might argue that finite world resources put an upper limit on feasible stock

prices, as in

\\P,\\ < P for all t. [2.5.9]

Then the only sequence for {P,}f\302\253_* consistent with both [2.5.4]and [2.5.9] would

be the market fundamentals solution [2.5.8].
Let us now relax the assumption that dividends are constant and replace it

with the assumption that {D}f__* is a bounded sequence. What path for
{\320\240,}\320\223--\302\273in [2.5.6] is consistent with [2.5.9] in this case? The answer can be found

by returning to the difference equation [2.5.5]. We arrived at the form [2.5.6] by

recursively substituting this equation backward. That is, we used the fact that [2.5.5]
held for dates t,t - l,t - 2,. . . ,0and recursively substituted to arrive at [2.5.6]
as a logical implication of [2.5.5]. Equation [2.5.5] could equally well be solved
recursively forward. To do so, equation [2.5.5] is written as

\320\223\320\2631\320\240'+1
+ D']- [2'5\320\233\302\2603
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An analogous equation must hold for date t + 1:

P,+i =
Y*-r[P,+2

+

Substitute [2.5.11] into [2.5.10]to deduce

[2.5.11]

[Pl+2 + Dl+l] ]J [2.5.12]

Using [2.5.10] for date t + 2,

Pl+ 2
=

+

and substituting into [2.5.12] gives

Continuing in this fashion T periods into the future produces

\320\223
\320\223-2

If the sequence {P,}*__\302\273is to satisfy [2.5.9], then

If {\302\243>,},\"=_=is likewise a bounded sequence, then the following limit exists:

\321\202\320\223
1

V+i

Thus, if {P,K\302\260\302\253_* is to be a bounded sequence, then we can take the limit of [2.5.13]
as T\342\200\224*a> to conclude

[2-5-141

which is referred to as the \"market fundamentals\" solution of [2.5.5]for the general
case of time-varying dividends. Notice that [2.5.14] produces [2.5.8]as a special
case when D, = D for all /.

Describing the value of a variable at time t as a function of future realizations
of another variable as in [2.5.14] may seem an artifact of assuming a perfect-

foresight model of stockprices.However, an analogous set of operations turns out

to be appropriate in a system similar to [2.5.4] in which expected returns are
constant.1 In such systems [2.5.14] generalizes to

'SeeSargent A987) and Whiteman A983) for an introduction to the manipulation of difference

equations involving expectations.
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where E, denotes an expectation of an unknown future quantity based on infor-

information available to investors at date t.
Expression [2.5.14] determines the particular value for the initial price Po that

is consistent with the boundedness condition [2.5.9]. Setting t = 0 in [2.5.14] and

substituting into [2.5.6] produces

-
A + ry-'D,

-
A + r)-2D2 A +

Thus, setting the initial condition Po to satisfy [2.5.14] is sufficient to ensure that

it holds for all t. Choosing Po equal to any other value would cause the consequences

of each period's dividends to accumulate over time so as to leadto a violation of

[2.5.9] eventually.

It is useful to discuss these same calculations from the perspective of lag
operators. In Section 2.2 the recursive substitution backward that led from [2.5.5]
to [2.5.6]was represented by writing [2.5.5] in terms of lag operators as

[1 -
A + r)L]Pl+1 = -D, [2.5.15]

and multiplying both sides of [2.5.15]by the following operator:

[1 + A + r)L + A + rJL2 + \342\226\240\342\226\240\342\226\240+ A + r)'L'\\. [2.5.16]

If A + r) were less than unity, it would be natural to consider the limit of [2.5.16]
as f -\302\273<*>:

[1
- A + r)L]~l = 1 + A + r)L + A + rJL2 + \342\200\242\342\200\242\342\200\242.

In the case of the theory of stock returns discussed here, however, r > 0 and
this operator is not defined. In this case, a lag operator representation can be

sought for the recursive substitution forward that led from [2.5.5] to [2.5.13]. This
is accomplishedusing the inverse of the lag operator,

which extends result [2.1.4] to negative values of k. Note that L~l is indeed the
inverse of the operator L:

L~\\Lw) = L-4-i =
\"V

In general,

L~kV = L'-k,

with L\302\260defined as the identity operator:

L\302\260w,
= wt.
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Now consider multiplying [2.5.15] by

[1 + A + r)-'L-' + A + r)-2L~2 + \342\200\242\342\200\242\342\200\242+ A + r)-cr-i)L-cr-D]
x [-A + r)-

to obtain

[1 + A + ry'L-1 + A + r)-2L~2 + \342\226\240\342\226\240\342\226\240+ A + r)-(r-
x [1 -

A + rJ-'L\021]^!

= [1 + A + \320\263)\021/,\021+ A + r)-2L-2 + \342\200\242\342\200\242\342\200\242

or

which is identical to [2.5.13] with t in [2.5.13] replaced with t + 1.
When r > 0 and {P,)T= -\302\253isa bounded sequence, the left side of the preceding

equation will approach P,+ 1 as T becomes large. Thus, when r > 0 and {\320\240,}\320\223__\302\253,

and [DJf--\302\273 are bounded sequences, the limit of the operator in [2.5.17] exists

and could be viewed as the inverse of the operator on the left side of [2.5.15]:

[1 -
A + r)L]-'

= -A + r)-1^1
x [1 + A + r)-1^1 + A + r)-2L~2+\342\226\240\342\226\240\342\226\240].

Applying this limiting operator to [2.5.15]amounts to solving the difference equa-
equationforward as in [2.5.14] and selecting the market fundamentals solution among
the set of possible time paths for {P,},*L _\302\253,given a particular time path for dividends

Thus, given a first-order difference equation of the form

A -
\321\204\320\246\321\203,

= wn [2.5.18]

Sargent's A987) advice was to solve the equation \"backward\" when \\\321\204\\< 1 by
multiplying by

[1
-

\321\204\320\246-1
= [1 + \321\204\320\254.+ \321\2042\320\2542+ \321\2043\320\2543+ \342\226\240\342\226\240

\342\226\240] [2.5.19]

and to solve the equation \"forward\" when \\\321\204\\> 1 by multiplying by

I1^!^^ [2.5.20]= -^-^-'[l + \321\204-'\321\214-1+ \321\204~2\321\214~2+ \321\204-\321\212\321\214~\320\263+ \342\226\240\342\226\240\342\226\240].

Defining the inverse of [1 -
\321\204\320\254\\in this way amounts to selecting an operator

[1 -
\321\204\320\254]'1with the properties that

[1 -
\321\204\320\254]-1

x [1
-

\321\204\320\246
= 1 (the identity operator)

and that, when it is applied to a bounded sequence {wjf. _\302\253,,

[1
-

\321\204\320\246-1*,,

the result is another bounded sequence.

The conclusion from this discussion is that in applying an operator such as
[1 -

\321\204\320\246'1,we are implicitly imposing a boundedness assumption that rules out

2.5. Initial Conditions and Unbounded Sequences 41



phenomena such as the speculative bubbles of equation [2.5.7] a priori. Where
that is our intention, so much the better, though we should not apply the rules

[2.5.19] or [2.5.20]without some reflection on their economic content.
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Stationary

ARMA Processes

This chapter introduces univariate ARMA processes,which provide a very useful
classof models for describing the dynamics of an individual time series. The chapter

begins with definitions of someof the key concepts used in time series analysis.
Sections3.2through 3.5 then investigate the properties of various A RMA processes.
Section 3.6 introduces the autocovariance-generating function, which is useful for

analyzing the consequences of combining different time series and for an under-
understanding of the population spectrum. The chapter concludes with a discussion of
invertibility (Section 3.7), which can be important for selecting the ARMA rep-
representation of an observed time seriesthat is appropriate given the usesto bemade

of the model.

3.1. Expectations, Stationarity, and Ergodicity

Expectations and Stochastic Processes

Suppose we have observeda sample of size \320\223of some random variable Y,\\

{\320\243\320\270\320\243\320\263,\342\226\240\342\226\240\342\226\240, \320\243\321\202)- [3-1.1]

For example, consider a collection of \320\223independent and identically distributed
(i.i.d.) variables e,,

{eu e2, . . . , eT}, [3.1.2]
with

e,
~ N@, a-2).

This is referred to as a sampleof size\320\223from a Gaussian white noise process.
The observed sample[3.1.1]represents \320\223particular numbers, but this set of

\320\223numbers is only one possibleoutcome of the underlying stochastic processthat

generated the data. Indeed, even if we were to imagine having observed the process
for an infinite period of time, arriving at the sequence

\320\234\320\223-\342\200\224
=

{\342\200\242\342\200\242\342\200\242,\320\243-i,\320\243\320\276,\320\243\320\270\320\2432>\342\226\240\342\226\240\342\200\242, \320\243\321\202,\320\243\321\202+\320\270\320\243\321\202+\320\263,\342\226\240\342\226\240\342\226\240),

the infinite sequence {y}?m _\302\253would still be viewed as a single realization from a

time series process. For example, we might set one computer to work generating
an infinite sequence of i.i.d. N(Q, a2) variates, {e,A)}f_ _\342\200\236,and a second computer
generating a separate sequence, {ei2'}^,\302\273. We would then view these as two

independent realizations of a Gaussian white noise process.
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Imagine a battery of / such computers generating sequences {\321\203,A)}\320\223=_\302\273,

{\321\203\320\240'}\320\223-_\302\253,..., {^S7'},*.-*, and consider selecting the observation associated with

date t from each sequence:

WK y?\\ \342\200\242\342\200\242\342\200\242,^'b

This would be describedas a sample of / realizations of the random variable Y,.
This random variable has some density, denoted fY,(yr), which is called the un-

unconditional density of Yt. For example, for the Gaussian white noise process, this

density is given by

The expectation of the fth observation of a time series refers to the mean of

this probability distribution, provided it exists:

E(Yt) -
\\[jjy,{y) dy,. [3.1.3]

We might view this as the probability limit of the ensemble average:

\320\222\320\224
= plim A/7) 2 yjo. [3.1.4]

For example, if {\320\243,}\320\223=_\342\226\240represents the sum of a constant /n plus a Gaussian white

noise process {e,}f_ __,

Y, = ft + e,, [3.1.5]

then its mean is

E(Yt) =
M + E(e,) = M. [3.1.6]

If Y, is a time trend plus Gaussian white noise,

Y,
= (It + e,, [3.1.7]

then its mean is

Y,) =
fit. [3.1.8]

Sometimes for emphasis the expectation E(Yt) is called the unconditional

mean of Y,. The unconditional mean is denoted /n,:

\320\222\320\224
= Mr

Note that this notation allows the general possibility that the mean can be a function

of the date of the observation t. For the process[3.1.7]involving the time trend,
the mean [3.1.8]isa function of time, whereas for the constant plus Gaussian white

noise, the mean [3.1.6] is not a function of time.
The variance of the random variable Y, (denoted yOl) is similarly defined as

To,
- E(Y, - n,J = j_ (y,

-
n,Jfy,(y,) dy,. [3.1.9]
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For example,for the process [3.1.7], the variance is

To,
= E(Y,

- ptJ =
E(ef)

= a2.

Autocovariance

Given a particular realization such as {^,A)}\320\223--=\320\265on a time series process,
consider constructing a vector x,A) associated with date t. This vector consists of

the [j + 1]most recent observations on \321\203as of date t for that realization:

A)X1-

We think of each realization {y,}T= _\302\273as generating one particular value of the
vector x, and want to calculate the probability distribution of this vector x,(/) across

realizations i. This distribution is called the joint distribution of (Y,, Yt_u . . . ,

\320\243,_\321\203).
From this distribution we can calculate the/th autocovariance of Y, (denoted

Vjd'-

X fy,,y,-, \321\203,-,(\320\243\342\200\236\320\243.-1,\342\226\240\342\226\240-,\320\243.-i)dy, dy,.l
\342\226\240\342\226\240\342\226\240

dy,.j [3.1.10]

= E(Y, -
\321\212)(\320\223,\321\207

-
\320\274,_\321\203).

Note that [3.1.10] has the form of a covariance between two variables X and Y:

Cov(AT,Y)
= E(X

-

Thus [3.1.10] could be described as the covariance of Y, with its own lagged value;
hence, the term \"autocovariance.\" Notice further from [3.1.10]that the Oth au-
autocovariance is just the variance of Yr, as anticipated by the notation y0, in [3.1.9].

The autocovariance
yjt

can be viewed as the A, / + 1) element of the variance-

covariance matrix of the vector x,. For this reason, the autocovariances are de-
described as the second moments of the process for Y,.

Again it may be helpful to think of the /th autocovariance as the probability
limit of an ensemble average:

\321\203\342\200\236
= plim A/7) 2 [YP -

mJ
\342\200\242

[\320\243\320\237,
~

ft-y]. [3.1.11]

As an example of calculating autocovariances, note that for the process in

[3.1.5] the autocovariances are all zero for/ \320\2440:

y,
= E(Y, - p)(Y,4- /0 = E(e,e,.j)= 0 for/ \320\2440.

Stationarity

If neither the mean \321\206,nor the autocovariances yjt depend on the date t, then

the process for Y, is said to be covariance-stationary or weakly stationary:

E(Yt) =
ix for all (

E(Y, -
\320\274)(\320\243,_\321\203

-
/u) =

\320\243) for all t and any/.
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For example,the process in [3.1.5] is covariance-stationary:

(cr2 for/ = 0=
|0

By contrast, the process of [3.1.7]is not covariance-stationary, because its mean,
fit, is a function of time.

Notice that if a process is covariance-stationary, the covariance between Y,

and \320\243,_\321\203depends only on /, the length of time separating the observations, and

not on t, the date of the observation. It follows that for a covariance-stationary
process, y, and -y_y would represent the same magnitude. To see this, recall the

definition

y,
= E(Y, - MY,., -

il). [3.1.12]

If the process is covariance-stationary, then this magnitude is the same for any
value of t we might have chosen; for example, we can replace t with t + j:

But referring again to the definition [3.1.12], this last expression is just the definition

of \321\203_,.Thus, for any covariance-stationary process,

\320\243/=y_y for all integers/. [3.1.13]
A different concept is that of strict stationarity. A process is said to be strictly

stationary if, for any values of j\\, /2, . . . ,/\342\200\236,the joint distribution of (\320\243\342\200\236Yt+h,

Y,+j2, \342\200\242. . , Yt+jr) depends only on the intervals separating the dates (/1;/2, . . . ,
/\342\200\236)and not on the date itself (f). Notice that if a process is strictly stationary with

finite second moments,then it must be covariance-stationary\342\200\224if the densities over
which we are integrating in [3.1.3] and [3.1.10] do not depend on time, then the
moments /li, and yJ: will not depend on time. However, it is possibleto imagine a

process that is covariance-stationary but not strictly stationary; the mean and au-
tocovariancescould not be functions of time, but perhaps higher moments such as
E(Y?) are.

In this text the term \"stationary\" by itself is taken to mean \"covariance-

stationary.\"
A process{Y,} is said to be Gaussian if the joint density

is Gaussian for any ji, j2, \342\226\240\342\226\240\342\226\240, ]'\342\200\236\342\226\240Since the mean and variance are all that are

needed to parameterize a multivariate Gaussian distribution completely, a covariance-

stationary Gaussian process is strictly stationary.

Ergodicity
We have viewed expectations of a time seriesin terms of ensemble averages

such as [3.1.4] and [3.1.11]. These definitions may seem a bit contrived, since
usually all one has available is a single realization of size \320\223from the process, which

we earlier denoted {y(l\\ y^\\ \342\200\242\342\200\242\342\226\240, \320\243?)-From these observations we would cal-

calculate the sample mean y. This, of course,is not an ensemble average but rather
a time average:

[3-1.14]
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Whether time averages such as [3.1.14] eventually converge to the ensemble concept
E(Yt) for a stationary process has to do with ergodicity. A covariance-stationary

process is said to be ergodic for the mean if [3.1.14] converges in probability to
E(Y,) as \320\223-*o\302\273.1A process will be ergodic for the mean provided that the auto-
covariance -y,- goes to zero sufficiently quickly as j becomes large. In Chapter 7 we
will see that if the autocovariances for a covariance-stationary process satisfy

2M<\302\273. [3-1.15]

then {Y,} is ergodicfor the mean.

Similarly, a covariance-stationary processis said to be ergodic for second
moments if

t-j+i

for all /. Sufficient conditions for second-moment ergodicity will be presented in

Chapter 7. In the special case where {Y,} is a stationary Gaussian process,condition

[3.1.15] is sufficient to ensure ergodicity for all moments.
For many applications, stationarity and ergodicity turn out to amount to the

same requirements. For purposes of clarifying the concepts of stationarity and
ergodicity, however, it may be helpful to consider an example of a processthat is

stationary but not ergodic. Supposethe mean /u(l' for the ith realization

W'K\"\302\273-\302\273is generated from a N(Q, A2) distribution, say

Y,<\"
=

M@ + e,. [3.1.16]
Here {e,}is a Gaussian white noise process with mean zero and variance cr2 that

is independent of fit'K Notice that

M,
=

E(m.<\302\260)+ E(e,) = 0.

Also,

y0l =
\320\225(\321\206\320\234+ e,I = A2 + o-2

and

y,, =
\302\243(,\302\273(')+ \320\265,)(\320\274(\"+ el4)

= \\2 for/ \320\2440.

Thus the process of [3.1.16]is covariance-stationary. It does not satisfy the sufficient

condition [3.1.15]for ergodicity for the mean, however, and indeed, the time average

e,) =
M\302\253

converges to f\342\204\226rather than to zero, the mean of Y,.

3.2. White Noise

The basic building block for all the processes considered in this chapter is a sequence
{\320\265,}\320\223--*whose elements have mean zero and variance cr2,

E(e,) = 0 [3.2.1]

E(e2)= a*, [3.2.2]

and for which the e's are uncorrelated across time:

'Often \"ergodicity\" is used in a more general sense; see Anderson and Moore A979, p. 319) or
Hannan A970, pp. 201-20).
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\320\225(\320\265,\320\265\321\202)
= \320\236 for t \320\244\321\202. [3.2.3]

A process satisfying [3.2.1] through [3.2.3] is describedas a white noise process.
We shall on occasion wish to replace[3.2.3]with the slightly stronger condition

that the e's are independent across time:

e,, eT independent for t \320\244\321\202. [3.2.4]

Notice that [3.2.4] implies [3.2.3] but [3.2.3] does not imply [3.2.4]. A process
satisfying [3.2.1] through [3.2.4] is called an independent white noise process.

Finally, if [3.2.1] through [3.2.4] hold along with

e, ~
N@, a-2), [3.2.5]

then we have the Gaussian white noise process.

3.3. Moving Average Processes

The First-Order Moving Average Process

Let {s,}bewhite noise as in [3.2.1] through [3.2.3], and consider the process

Y,
= il + e, + ee,_,, [3.3.1]

where /li and \320\262could be any constants. This time seriesis calleda first-order moving

average process, denoted MA(l). Theterm \"moving average\" comes from the fact

that Y, is constructed from a weighted sum, akin to an average, of the two most

recent values of e.
Theexpectation of Y, is given by

E(Yt)
= EQl + e, + \320\262\320\265,_,)

= ft + E(e,) + 0\302\243(e,_,)
=

\321\206. [3.3.2]

We used the symbol /li for the constant term in [3.3.1] in anticipation of the result

that this constant term turns out to be the mean of the process.
The variance of Y, is

E(Y, -
MJ

= E(e, + 6e,^f
= E(e? + 20e,g,_, + f^O [3.3.3]
= a2 + 0 + 6>V2

= A + e^o2.
The first autocovariance is

E(Y, -
\320\274)(\320\243,-1

-
\320\274)

= E(e, + \320\262\320\265,_1)(\320\262,_1+ 0\320\265,_2)

= E(e,e,_i + ee?_! + 0e,e,_2+ 02e,-ie,_2) [3.3.4]

= 0 + \320\262\320\2762+ 0 + 0.

Higher autocovariances are all zero:

E(Y, - il)(Y,4-ft) =E(e,+ \320\262\320\265,_1)(\320\262,_/+ 0e,_;_,)
= 0 for / > 1. [3.3.5]

Since the mean and autocovariances are not functions of time, an MAA) process
is covariance-stationary regardless of the value of \320\262.Furthermore, [3.1.15] is clearly

satisfied:

i \\y,\\
= a + 0V + \320\274-

Thus, if {e,} is Gaussian white noise, then the MA(Y) process [3.3.1] is ergodic for

all moments.
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The /th autocorrelation of a covariance-stationary process (denotedp;) is de-

defined as its /th autocovariance divided by the variance:

[3.3.6]

Again the terminology arises from the fact that
p;

is the correlation between Y,

and Y,4:

Cov(y,, \320\243,_\321\203)
\320\241\320\276\320\263\320\263(\320\243\342\200\236\320\243,_,)

=

Since Pi is a correlation, \\p/\\
s 1 for ally, by the Cauchy-Schwarz inequality. Notice

also that the Oth autocorrelation p0 is equal to unity for any covariance-stationary
process by definition.

From [3.3.3] and [3.3.4],the first autocorrelation for an MA(l) process is
given by

[331]

Higher autocorrelations are all zero.

The autocorrelation p; can be plotted as a function of/ as in Figure 3.1. Panel

(a) shows the autocorrelation function for white noise, while panel (b) gives the

autocorrelation function for the MA(l) process:

\320\243,
= e, + 0.8e,_!.

For different specifications of 9 we would obtain different values for the first
autocorrelation \321\200\320\263in [3.3.7]. Positive values of 9 induce positive autocorrelation

in the series. In this case, an unusually large value of Y, is likely to be followed

by a larger-than-average value for Yl+1, just as a smaller-than-average \320\243,may well

be followed by a smaller-than-average Y,+v By contrast, negative values of 9 imply
negative autocorrelation\342\200\224a large Y, might be expected to be followed by a small
value for Yt+1.

The values for \321\200\320\263implied by different specifications of 9 are plotted in Figure
3.2. Notice that the largest possible value for p1 is 0.5; this occurs if 9 = 1. The
smallest value for pi is -0.5, which occurs if 9 = - 1. For any value of p, between
-0.5 and 0.5, there are two different values of 9 that could produce that auto-

autocorrelation. This is because the value of 6/A + \320\2622)is unchanged if 9 is replaced
by 1/9:

A/9) \320\2622\342\200\242
A/9) 9_

For example, the processes

and

\320\243,
= e, + 2e,_i

would have the same autocorrelation function:

2
_

0.5
Pl

A + 22) A + 0.52)

We will have more to say about the relation between two MA{\\) processes that

share the same autocorrelation function in Section 3.7.
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Log(I)

(c) MA{A): Y, = e, - 0.6e,_i+ 0.3e,_2
- 0.5e,_3 + 0.5e,_4

(d) \320\220\320\233A):\320\243,
=

0.8\320\243,_, + s,

(e) ARA): Y,
=

-0.8\320\243,,.! + e,

FIGURE 3.1 Autocorrelation functions for assorted ARMA processes.

The qth-OrderMoving Average Process

A qth-order moving average process, denoted MA(q), is characterized by

\320\243,
=

fji + e, + ^e,-! + 6>2e,_2 + \342\200\242\342\200\242\342\200\242+ 6>,e,_,, [3.3.8]

where {e,}satisfies [3.2.1] through [3.2.3] and (\320\262\320\270\320\2622,. . . , \320\262\321\217)
could be any real

numbers. The mean of [3.3.8]is again given by /n:

E(Yr) =
\320\274+ E(e,) + e.-Eie,^) + 62-\320\225(\320\265,\342\200\2362)+ \342\226\240\342\226\240\342\226\240+ eq-E(e,_q)

= M.

The variance of an MA(q) process is

y0
= E{Y,

- MJ = E{e,+ \320\2621\320\265,^+ e2e,_2 + \342\200\242\342\200\242\342\200\242+ eqe,.4f. [3,3.9]
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FIGURE 3.2 The first autocorrelation (pj for an MA{\\) process possible for

different values of \320\262.

Since the e's are uncorrelated, the variance [3.3.9] is2

To
= a2 + \320\262\\\320\2602+ ela2 + \342\226\240\342\226\240\342\226\240+ \320\262^\320\2602

= A + 6>? + 6>| + \342\200\242\342\200\242\342\200\242+ 6>2)<t2. [3.3.10]

For \321\203
= 1,2, ... ,?,

\321\203,
=

E[(e, + eie,_i + 6>2e,_2 + \342\200\242\342\200\242\342\200\242+
\320\262\321\207\320\265,.\321\207)

X (e,_; + (M,,,-! +
e2e,_y_2 + \342\200\242\342\200\242\342\200\242+

\320\262,\320\265<-/-\302\253)] [3.3.11]

Terms involving e's at different dates have been dropped because their product
has expectation zero, and 60 is defined to be unity. For/ > q, there are no e's with

common dates in the definition of ys, and so the expectation is zero. Thus,

10
\"

**'>*\342\200\242
[3.3.12]

For example, for an MAB) process,

\320\243\320\276
= [1 + 0? + 01]-a2

\320\2431
= [0i + \320\2622\320\2621]-\320\260-2

\320\243\320\263
=

[\320\2622]-(\321\2022

\320\243\320\267
=

\320\2434
= \342\200\242\342\200\242\342\226\240= 0.

For any values of @u 62, . . . , \320\262\321\217),the MA(q) process is thus covariance-

stationary. Condition [3.1.15] is satisfied, so for Gaussian e, the MA(q) process is
also ergodic for all moments. The autocorrelation function is zero after q lags, as
in panel (c) of Figure 3.1.

The Infinite-Order Moving Average Process

The MA{q) processcan be written

l-o

2See equation [A.5.18] in Appendix A at the end of the book.
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with \320\2620
= 1. Consider the process that results as q \342\200\224*\302\260\302\260:

\320\243,
= M + E 0/e,_/ =

M + <M, + <M,_i + \321\2042\320\265,-2+ \342\200\242\342\200\242\342\200\242\342\226\240[3.3.13]
/-\320\276

This could be described as an \320\234\320\224(\302\260\302\260)process. To preserve notational flexibility

later, we will use i/r's for the coefficients of an infinite-order moving average process
and S's for the coefficients of a finite-order moving average process.

Appendix 3.A to this chapter shows that the infinite sequence in [3.3.13]
generates a well defined covariance-stationary process provided that

E \320\244}
< \302\260\302\260- [3.3.14]

i-o

It is often convenient to work with a slightly stronger condition than [3.3.14]:

\320\266

2 \320\251
< \302\273. [3.3.15]

/-0

A sequence of numbers {i/>;}JLo satisfying [3.3.14] is said to be square summable,
whereas a sequence satisfying [3.3.15] is said to be absolutely summable. Absolute

summability implies square-summability, but the conversedoesnot hold\342\200\224there

are examples of square-summabl^ sequences that are not absolutely summable
(again, see Appendix 3.A). \\

The mean and autocovariances of an MA(oo) process with absolutely sum-
summable coefficients can be calculated from a simple extrapolation of the results for

an MA(q) process:3

+ <fce,-2+ \342\200\242\342\200\242\342\200\242+ <M,-r) [3.3.16]

[3.3.17]

[3.3.18]=
^(\321\204/\321\204\320\270

+ \321\204,+ 1\321\204\320\263+ \321\204^\320\263\320\244\320\263
+

\320\244/+\320\267\320\244\320\267+\342\200\242\342\200\242\342\200\242)\342\200\242

Moreover, an MA(\302\253>)process with absolutely summable coefficients has absolutely
summable autocovariances:

\320\266

2W<-- [3.3.19]

Hence, an MA(\302\253>)process satisfying [3.3.15] is ergodic for the mean (see Appendix
3.A). If the e's are Gaussian, then the process is ergodic for all moments.

3Absolute summability of {^},x.o and existence of the second moment E(e}) are sufficient conditions
to permit interchanging the order of integration and summation. Specifically, if {XT}j., is a sequence
of random variables such that

E(Y,) = lim \320\225(\321\206+

yn = E(Y, - tf
= lim \320\225(\321\204\320\276\320\265,

= lim (\321\204\320\276+

\321\203,
= E(Y,- (jl)

\321\204\320\276\320\265,+ \321\204\321\205

+ *.*_,

\320\244\\+ \320\244\\+

(Y,-j
~

\320\230)

<\302\273,

then

*{ i( *r}
=

2_
\320\225(\320\245\320\242).

See Rao A973, p. 111).
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3.4. Autoregressive Processes

The First-Order Autoregressive Process

A first-order autoregression, denoted AR(l), satisfies the following difference

equation:

yf
= c + \302\253yf_,+ ef. [3.4.1]

Again, {e,}is a white noise sequence satisfying [3.2.1] through [3.2.3]. Notice that

[3.4.1] takes the form of the first-order difference equation [1.1.1] or [2.2.1] in

which the input variable w, is given by w, = \321\201+ \320\265,.We know from the analysis

of first-order difference equations that if \\\321\204\\& 1, the consequences of the e's for
\320\243accumulate rather than die out over time. It is thus perhaps not surprising that
when \\\321\204\\2: 1, there does not exist a covariance-stationary process for Y, with finite
variance that satisfies [3.4.1], In the case when \\\321\204\\< 1, there is a covariance-
stationary process for Y, satisfying [3.4.1]. It is given by the stable solution to [3.4.1]
characterized in [2.2.9]:

Y, = (c + e,) + \321\204-(\321\201+ \320\265,_,)+ \321\2042-(\321\201+ e,_2) + \321\204*-(\321\201+ e,_3) + \342\200\242\342\200\242\342\200\242
. ,

= [c/(l
-

\321\204)]+ s, + \321\204\320\265,_1+ \321\2042\320\265,_2+ <\302\243\320\247-\320\267+ \342\200\242\342\200\242\342\200\242\342\200\242

This can be viewed as an MA(\302\253>)process as in [3.3.13] with
i/r; given by \321\204'.When

\\\321\204\\< 1, condition [3.3.15] is satisfied:

y-o y-o

which equals 1/A
-

\\\321\204\\)provided that \\\321\204\\< 1. The remainder of this discussion

of first-order autoregressive processesassumes that \\\321\204\\< 1. This ensures that the

MA(oo) representation exists and can be manipulated in the obvious way, and that

the ARA) process is ergodicfor the mean.

Taking expectations of [3.4.2],we see that

E(Y,) = [c/(l -
\321\204)]+ 0 + 0 + \342\200\242\342\200\242\342\200\242

,

so that the mean of a stationary AR(l) process is

ft
= c/(l

-
\321\204). [3.4.3]

The variance is

y0
= E(Y,

~ tf
= E(e,+ <\302\243e,_i+ \320\2442\320\265,-2+ \320\2443\320\265,-\321\212+ ' '

\320\2362 [3.4.4]
= A + \321\2042+ \321\2044+ \321\2046+ \342\226\240\342\226\240

-\320\243(\321\2022

=
<\321\20221{\\

-
\321\2042),

while the jth autocovariance is

\321\203,
= E(Y,

- fi)(Y,-, -
ft)

= E[e, + \321\204\320\265,_1+ \321\2042\320\265,-2+ \342\200\242\342\200\242\342\200\242+ \320\2441^-,+ \321\204>+1\320\265,_/_1

+
\321\2041+2\320\265,\320\247-2

+ \342\200\242\342\200\242
\342\200\242]X [\320\265,\321\207+ \321\204\320\265,^^,+ <^\320\265,_\321\203_2+ \342\200\242\342\200\242

\342\200\242][3.4.5]
=

[\321\204'+ \321\204'+2+ \321\204'**+
\342\226\240\342\226\240

-\320\243\320\2602

=
\321\204'[1+ \321\2042+ \321\204*+ \342\200\242\342\200\242

-\320\243\320\2602
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It follows from [3.4.4] and [3.4.5] that the autocorrelation function,

Pi
=

V7o
=

\320\2441, [3.4.6]

follows a pattern of geometricdecayas in panel (d) of Figure 3.1. Indeed, the

autocorrelation function [3.4.6] for a stationary AR(l) process is identical to the

dynamic multiplier or impulse-responsefunction [1.1.10]; the effect of a one-unit

increase in e, on Yt+J is equal to the correlation between Y, and Y,+j. A positive

value of \321\204,like a positive value of \320\262for an MAA) process, implies positive cor-

correlation between Y, and Y,+ i. A negative value of \321\204implies negative first-order
but positive second-orderautocorrelation, as in panel (e) of Figure 3.1.

Figure 3:3 shows the effect on the appearance of the time series {y,} of varying

the parameter \321\204.The panels show realizations of the process in [3.4.1] with \321\201= 0

and e, ~
N@, 1) for different values of the autoregressive parameter \321\204.Panel (a)

displays whjte noise (\321\204
=

\320\236).A series with no autocorrelation looks choppy and

patternless to the eye; the value of one observation gives no information about the

value of the next observation. For \321\204
= 0.5 (panel (b)), the series seems smoother,

with observations above or below the mean often appearing in clusters of modest
duration. For \321\204

\342\200\2240.9 (panel (c)), departures from the mean can be quite pro-

prolonged; strong shocks take considerable time to die out.

The moments for a stationary AR(l) were derived above by viewing it as an

MA(oo) process. A secondway to arrive at the same results is to assume that the
processis covariance-stationary and calculate the moments directly from the dif-

difference equation [3.4.1]. Taking expectations of both sides of [3.4.1],

E(Y.) = \321\201+ \321\204-\320\225(\320\243,^)+ E(et). [3.4.7]

Assuming that the process is covariance-stationary,

E(Y,) =
\302\243(Y(_t)

=
M. [3.4.8]

Substituting [3.4.8] into [3.4.7],

/li
= \321\201+ \321\204\321\206+ 0

or

\321\206
= c/(l

-
\321\204), [3.4.9]

reproducing the earlier result [3.4.3].

Notice that formula [3.4.9]is clearly not generating a sensible statement if

\\\321\204\\s 1. For example,if \321\201> 0 and \321\204> 1, then Y, in [3.4.1] is equal to a positive
constant plus a positive number times its lagged value plus a mean-zero random
variable. Yet [3.4.9] seems to assert that Y, would be negative on averagefor such

a process! The reason that formula [3.4.9] is not valid when \\\321\204\\s 1 is that we

assumed in [3.4.8] that Y, is covariance-stationary, an assumption which is not

correct when \\\321\204\\\320\2631.

To find the second moments of Y, in an analogous manner, use [3.4.3] to
rewrite [3.4.1]as

Y,
= M(l

-
\321\204)+ \320\244\320\243,.,+ \320\265,

or

(\320\243,
-

\320\274)
=

\320\244\320\240.-\320\245
-

/0 + ef. [3.4.10]
Now square both sides of [3.4.10]and take expectations:

E(Y, - nf =
\321\2042\320\225(\320\243,^

-
\320\274J+ 2*\320\225[(\320\243,_,

-
/OeJ + E(ef). [3.4.11]
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(\320\260)\321\204
= 0 (white noise)
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= 0.5
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FIGURE 3.3 Realizations of an ARA) process, Y,
=

\321\204\320\243,_1+ \320\265\342\200\236for alternative

values of \321\204.
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Recall from [3.4.2] that (Y,_i -
fi) is a linear function of e,^, e,_2,

But e, is uncorrelated with e,-lt e,_2, . . . , so e, must be uncorrelated with

(\320\243,_!
-

/\321\207).Thus the middle term on the right side of [3.4.11]is zero:

\302\243[(\320\243,_!
- /i)ej = 0. [3.4.12]

Again, assuming covariance-stationarity, we have

E(Y, -
MJ

=
\302\243(Y,_t

- /i)a =
To- [3.4.13]

Substituting [3.4.13] and [3.4.12] into [3.4.11],

To =
\320\2442\320\243\320\276+ 0 + \320\276-2

or

\320\243\320\276
= <72/(l

-
<\302\2432),

reproducing [3.4.4].

Similarly, we could multiply [3.4.10] by (\320\243,_,
-

/n) and take expectations:

E[(Y, -

Y,-y
-

\320\230)]

But the term (Y,_y-
-

/n) will be a linear function of
e,_y-, e,_;_1; e,_y_2, . . . ,

which, for/ > 0, will be uncorrelated with e,. Thus, for/ > 0, the last term on the

right side in [3.4.14] is zero. Notice,moreover, that the expression appearing in

the first term on the right side of [3.4.14],

is the autocovariance of observations on Y separated by / - 1 periods:

\302\243[(?,_!
-

\320\274)(\320\243|,-1\320\234,-.]
-

\321\206)]
=

ry-i.

Thus, for/ > 0, [3.4.14]becomes

\320\243>
=

\320\244\320\243<-1- [3.4.15]

Equation [3.4.15] takes the form of a first-order difference equation,

\320\243,
= <K-i + wt,

in which the autocovariance \321\203takes the place of the variable \321\203and in which the
subscript / (which indexes the order of the autocovariance) replaces t (which indexes
time).Theinput wt in [3.4.15] is identically equal to zero. It is easy to see that the
difference equation [3.4.15] has the solution

\320\242\321\203
=

\320\244'\320\243\320\276,

which reproduces [3.4.6]. We now see why the impulse-response function and

autocorrelation function for an ARA) process coincide\342\200\224they both represent the
solution to a first-order difference equation with autoregressive parameter \321\204,an

initial value of unity, and no subsequent shocks.

The Second-Order AutoregressiveProcess
A second-order autoregression, denoted ARB), satisfies

Y,= \321\201+ (fcY,.! + \321\2042\320\243,_2+ \320\265\342\200\236 [3.4.16]
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or, in lag operator notation,

A -
\321\204,\320\254

-
\321\2042\320\2542)\302\245,

= \321\201+ e,. [3.4.17]

The difference equation [3.4.16] is stable provided that the roots of

A
-

\321\204\320\263\320\263
- <M2) = 0 [3.4.18]

lie outside the unit circle. When this condition is satisfied, the ARB) processturns

out to be covariance-stationary, and the inverse of the autoregressive operator in

[3.4.17] is given by

i/<(L) = A -
\320\244\320\245\320\254

-
\321\204\320\263\320\254\320\263\320\2431

=
\321\2040+ \320\244,\320\254+ \321\2042\320\2542+ \321\204\321\212\320\254\321\212+ \342\226\240\342\226\240\342\226\240. [3.4.19]

Recalling [1.2.44], the value of
i/ry can be found from the A, 1) element of the

matrix F raised to the /th power, as in expression [1.2.28].Where the roots of

[3.4.18] are distinct, a closed-form expression for
i/ry is given by [1.2.29] and [1.2.25].

Exercise3.3at the end of this chapter discusses alternative algorithms for calculating
\320\244\320\263

>

Multiplying both sides of [3.4.17]by \321\204(\320\254)gives

\320\243,
=

\321\204{\320\254)\321\201+ \321\204(\320\254)\320\265,. [3.4.20]

It is straightforward to show that

\321\204{\320\254)\321\201
= c/(l

-
\321\204,

-
\321\2042) [3.4.21]

and

S W < \302\260\302\260; [3.4.22]

the reader is invited to prove these claims in Exercises 3.4 and 3.5. Since[3.4.20]
isan absolutely summable MA(\302\253>)process, its mean is given by the constant term:

ft
= c/(l

-
\321\204,

-
\321\204\320\263). [3.4.23]

An alternative method for calculating the mean is to assume that the process
is covariance-stationary and take expectations of [3.4.16]directly:

E(Yt)
= \321\201+ \321\204,\320\225{\320\243,.,)+ \321\2042\320\225(\302\245,.2)+ E(et),

implying

fj.
= \321\201+ \321\204\321\204+ \321\204\320\263\321\206+ 0,

reproducing [3.4.23].
\320\242\320\276find second moments, write [3.4.16] as

Y,
=

\321\206-A
-

\321\2041
-

\321\204\320\263)+ \321\204.\320\243,.,+ \321\2042\320\243,_2+ \320\265,

or

(Y,
-

\320\274)
= ^(Y,-!

-
\320\234)+ \320\244\320\263{\320\243,-\320\263

~
/*) + \320\262,. [3.4.24]

Multiplying both sides of [3.4.24]by (Y,_;
-

/u) and taking expectations produces

V,
=

*i7,-i +
\320\244\320\263\320\252-\320\263for/= 1,2,.... [3.4.25]

Thus, the autocovariances follow the same second-orderdifference equation as

does the process for Y,, with the difference equation for -y,- indexed by the lag /.
The autocovariances therefore behave just as the solutions to the second-order
difference equation analyzed in Section 1.2. An ARB) process is covariance-
stationary provided that \321\2041and \321\204\320\263lie within the triangular region of Figure 1.5.
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When \321\204-iand \321\2042lie within the triangular region but above the parabola in that

figure, the autocovariance function yt is the sum of two decaying exponential
functions of /. When \321\204\320\263and \321\2042fall within the triangular region but below the
parabola, y;

is a damped sinusoidal function.

The autocorrelations are found by dividing both sides of [3.4.25]by y0:

Pj
=

<hpy_, +
<fcp,-_2 for/

= 1, 2, [3.4.26]
In particular, setting / = 1 produces

Pi
=

\320\244\\+ <fcPi

or

Pl = fc/(l -
\321\2042). [3.4.27]

For/ = 2,

\320\240\320\263
=

\320\2441\320\2401+ \320\244\320\263- [3.4.28]

The variance of a covariance-stationary second-order autoregression can be
found by multiplying both sides of [3.4.24]by (\320\243,

-
/li) and taking expectations:

E(Y, -
MJ

=
\321\2041-\320\225(\302\245,_1

-
p)(Y,

-
\321\206)+ \320\2442-\320\225(\320\243,_2

-
\320\234)(\320\243,

-
\320\274)

+ E(e,)(Y,
- /t),

or

\320\223\320\276
= <hVi + \320\2442\320\2432+ <r2. [3.4.29]

The last term (cr2) in [3.4.29] comes from noticing that

E(e,)(Y,
-

\320\274)
=

\302\243(e,)[*i(y,_i
-

fi) + \320\244\320\263{\320\243,-\320\263
-

/*) + et]

Equation [3.4.29]can be written

\320\223\320\276
=

\320\2441\320\2401\320\2430+ \320\244\321\202/\320\235\320\243\320\276+ \320\276-2. [3.4.30]

Substituting [3.4.27] and [3.4.28] into [3.4.30] gives

or

A -
\320\223\320\276

=
-

\320\244\320\263J
~

\320\2441\320\243

The pth-Order Autoregressive Process

A pth-order autoregression, denoted AR(p), satisfies

Yt= \321\201+ &\320\243,.! + \320\244\320\263\320\243,-\320\263+ ' ' ' +
*\320\240\320\243,_\320\240

+ \320\262,. [3.4.31]

Provided that the roots of

1 -
<M

-
\320\244\320\263*2 \320\244\320\240\320\263\"

= 0 [3.4.32]

all lie outside the unit circle, it is straightforward to verify that a covariance-

stationary representation of the form

Y, = /1 + \321\204(\320\254)\320\265, [3.4.33]
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exists where

\321\204(\320\254)
= A

- fcL -
\321\2042\320\2542 \320\244\321\200\320\254\-1

and 2*_0 |i/ry|
< <\302\273.Assuming that the stationarity condition is satisfied, one way

to find the mean is to take expectations of [3.4.31]:

\321\206
= \321\201+ fan + (fen + \342\200\242\342\226\240\342\200\242+

\321\204\321\200\321\206,

or

fi = c/(l -
\321\2041

-
\321\2042

- \342\226\240\342\226\240\342\226\240-
\321\204\321\200). [3.4.34]

Using [3.4.34], equation [3.4.31]can be written

Y,
-

\321\206
= fc^r-i

-
/\302\273)+ \320\244\320\263(\320\243,-\320\263-/*) + \342\200\242\342\200\242\342\200\242

[34351

Autocovariances are found by multiplying both sides of [3.4.35]by (Y,_y-
-

/li) and

taking expectations:

= UxT,-! +
\320\244,\320\223\321\203-2

+ ' \342\200\242' + ^r>-P for/ = 1,2, ... \342\200\242

y
UiTi + \320\2442\320\2432+ \342\226\240\342\226\240\342\226\240+

\320\244\320\240\320\243\320\240
+ a-2 for/ =0.

Using the fact that
-y_y

=
-yy, the system of equations in [3.4.36] for/ = 0, 1,

. . . ,p can be solved for y0, f\\, . . . , yp
as functions of \320\2602,\321\204\320\270\321\2042,. . . , \321\204\321\200.It

can be shown4 that the (p x 1) vector (y0, ylt . . . , yp^i)' is given by the first p
elements of the first column of the (p2 x p2) matrix cr2[lp3

-
(F (x) F)]\021 where

F is the (p x p) matrix defined in equation [1.2.3] and (g) indicates the Kronecker
product.

Dividing [3.4.36] by y0 produces the Yule-Walker equations:

Pi
=

M-i + <fcPy-2
+ \342\200\242\342\200\242\342\200\242+

\320\244\320\240\320\252-\320\240for/
= 1, 2, [3.4.37]

Thus, the autocovariances and autocorrelations follow the same pth-order
difference equation as does the process itself [3.4.31]. For distinct roots, their

solutions take the form

7/
= giA{ + g2Ai + \342\226\240\342\226\240\342\226\240

+gpkp, [3.4.38]

where the eigenvalues (A1; . . . , kp) are the solutions to

A\" -
cM'-1 -

\320\2442\320\220*-2
- \342\200\242\342\200\242\342\200\242-

\321\204\321\200
= \320\236.

3.5. Mixed Autoregressive Moving Average Processes

An ARMA(p, q) process includes both autoregressive and moving average terms:

Y,
= \321\201+ <kY,_! + <feY,.2 + \342\200\242\342\200\242\342\200\242+

\321\204\321\200\320\243,-\321\200
+ e, + flie,_, [3.5.1]

+ 6>2e,_2 + \342\200\242\342\200\242\342\200\242+ fl,e,_,,

or, in lag operator form,

\321\201+ A + ^L + 62L2 + \342\200\242\342\200\242\342\200\242+ e,L\e,.")
l ' ' J

Provided that the roots of

\342\226\240Thereader will be invited to prove this in Exercise 10.1 in Chapter 10.

i~~J *\342\200\242' -\342\200\242-\342\226\240-



lie outside the unit circle, both sides of [3.5.2]canbedivided by A
-

\321\204\320\263\320\254
-

- \342\200\242\342\200\242\342\200\242-
\320\244\320\240\320\243)

to obtain

\320\243,
= il + \321\204{\320\254)\320\265,

where

n j. e^ + q2l? + \342\200\242\342\200\242. + \320\262Li)
\321\204{\320\254)

=
-

\321\2042\320\2542 \321\204\321\200\320\254\

2 W < \302\260\302\260

\320\243-\320\276

IX
= C/A

-
\321\204\321\202.

-
\321\2042

- \342\226\240\342\226\240\342\226\240-
\321\204\321\200).

Thus, stationarity of an ARMA process dependsentirely on the autoregressive
parameters (<\302\243,,\321\2042,. . . , \321\204\321\200)

and not on the moving average parameters Fi, 62,
..., eq).

It is often convenient to write the ARMA process [3.5.1]in terms of deviations
from the mean:

Y,
-

ft,
= ^(y,.!

-
M) + \321\2042(\302\245,_2

-
M) + \342\200\242\342\200\242\342\200\242

+
\321\204\321\200(\320\243,_\321\200

-
fi) + e, + \320\2621\320\265,_1+ 62e,_2 + \342\200\242\342\200\242\342\200\242+ eqe,_q.

Autocovariances are found by multiplying both sides of [3.5.4]by (Y,_,-
-

ft) and

taking expectations. For / > q, the resulting equations take the form

7,
=

<\302\243i7,-i+ \320\244\320\263\320\252-\320\263+
\342\226\240\342\226\240\342\226\240+ \320\244\321\200\320\243;-\321\200forj

= q + l,q + 2,. . . . [3.5.5]

Thus, after q lags the autocovariance function y} (and the autocorrelation function

Pj) follow the pth-order difference equation governed by the autoregressive
parameters.

Note that [3.5.5] does not hold fory1 ^ q, owing to correlation between
9y-er_y-

and
\320\243,_\321\203.Hence, an ARMA{p, q) processwill have more complicated autocovar-

autocovariancesfor lags 1 through q than would the corresponding AR(p) process. For
j > q with distinct autoregressive roots, the autocovariances will be given by

This takes the same form as the autocovariances for an AR(p) process [3.4.38],
though because the initial conditions (y0, ?,, . . . , yq)

differ for the ARMA and

AR processes, the parameters hk in [3.5.6] will not be the same as the parameters
gk in [3.4.38].

There is a potential for redundant parameterization with ARMA processes.
Consider, for example,a simple white noise process,

\320\243,
= e,. [3.5.7]

Suppose both sides of [3.5.7] are multiplied by A
- pL):

A
- PL)Yt =

A
- PL)e,. [3.5.8]

Clearly, if [3.5.7] is a valid representation, then so is [3.5.8] for any value of p.

Thus, [3.5.8] might be describedas an ARMAA, 1) process, with \321\204\320\263
=

\321\200and

\320\261\320\263
= -p. It is important to avoid such a parameterization. Since any value of p

in [3.5.8] describes the data equally well, we will obviously get into trouble trying
to estimate the parameter p in [3.5.8] by maximum likelihood. Moreover, theo-
theoretical manipulations based on a representation such as [3.5.8] may overlook key
cancellations. If we are using an ARMAA, 1) model in which 9X is close to -\321\204\\,

then the data might better be modeled as simple white noise.
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A related overparameterization can arise with an ARMA(p, q) model.Con-
Consider factoring the lag polynomial operators in [3.5.2] as in [2.4.3]:

A
- AtL)(l -

A2L)
\342\200\242\342\200\242\342\200\242

A
-

XpL)(Y,
- /i) ,- , gl

= A
- 4lL)(l -

\321\211\320\254)
\342\226\240\342\200\242\342\200\242

A
-

r,qL)et.
l \342\200\242' J

We assume that |A,| < 1 for all i, so that the process is covariance-stationary. If

the autoregressive operator A
-

\321\204\321\205\320\254
-

\321\204\320\263\320\254\320\263
- \342\200\242\342\200\242\342\200\242-

\321\204\321\200\320\254\321\200)and the moving
average operator A + ^L + 62L2 + \342\200\242\342\200\242\342\200\242+ 6qL4) have any roots in common,
say, A,

=
Tjj for some i and /, then both sides of [3.5.9] can be divided by

A
- A,L):

\320\277
k-l
k + i

A -A,
q

=
\320\237
k-l
k+j

A
-

VkL)e,,

A
-

\302\253?L
-

\321\204*\320\263\320\2542 \321\204*\321\200^\320\254\"-1)(\302\245,
-

\321\206)

= A + 6*L + OIL1+ \342\200\242\342\200\242\342\200\242+ O'^U-^e,,
l ' J

where

- A2L) \342\200\242\342\200\242\342\200\242
A

- A,_,L)A -
Ai+1L)

\342\200\242\342\200\242\342\200\242
A

-
XPL)

A + 6>!*L + 6>2*L2 + \342\200\242\342\200\242\342\200\242+ e^iL*\021)
-

A
-

\321\202,^)A
-

r,2L)
\342\200\242\342\200\242\342\200\242

A
- i?y_1L)(l -

i,y+lL)
\342\200\242\342\200\242\342\200\242

A
-

r,qL).
The stationary A/?MA(p, q) process satisfying [3.5.2] is clearly identical to the

stationary ARMA(p
- 1, q - 1)process satisfying [3.5.10].

3.6. The Autocovariance-Generating Function
For each of the covariance-stationary processesfor Y, considered so far, we cal-
calculated the sequence of autocovariances {yt)J=-x. If this sequence is absolutely
summable, then one way of summarizing the autocovariances is through a scalar-
valued function called the autocovariance-generating function:

gy{z) = S y,z>. [3.6.1]
y--x

This function is constructed by taking the /th autocovariance and multiplying it by

some number z raised to the /th power, and then summing over all the possible
values of /. The argument of this function (z) is taken to be a complex scalar.

Of particular interest as an argument for the autocovariance-generating func-
functionis any value of z that lies on the complex unit circle,

z = cos(w) -
isin(w)

=
\320\265~1\321\213,

where i = V~l and \321\210is the radian angle that z makes with the real axis. If the

autocovariance-generating function is evaluated at \320\263= \320\265~1\321\210and divided by 2\321\202\321\202,

the resulting function of w,

is called the population spectrum of Y. The population spectrum will be discussed
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in detail in Chapter 6. There it will be shown that for a process with absolutely

summable autocovariances, the function sY(<o) exists and can be used to calculate

all of the autocovariances. This means that if two different processes share the

same autocovariance-generating function, then the two processes exhibit the iden-

identical sequence of autocovariances.
As an example of calculating an autocovariance-generating function, consider

the MA{\\) process. From equations [3.3.3] to [3.3.5], its autocovariance-generating

function is

gr(z) =
[\320\262<\321\2022)\320\263-1+ [A + 0>2]z\302\260 + [ffcr2]^ ^[Oz-1 + A + 6*) + Oz].

Notice that this expression could alternatively be written

gY{z) =
<t2A + te)(l + fe-1). [3.6.2]

Theform of expression [3.6.2] suggests that for the MA{q) process,

Y,
=

/li + A + e,L + 02L2+ \342\226\240\342\226\240\342\226\240+ eqL\et,

the autocovariance-generating function might be calculated as

gy(z) =
<72A + 6lZ + 62Z2+ \342\226\240\342\226\240\342\226\240+ eqZ\") [3 63]
x A + e^-1 + e2z~2 + \342\200\242\342\200\242\342\200\242+ eqz-i).

This conjecture can be verified by carrying out the multiplication in [3.6.3] and

collecting terms by powers of z:

A + exz + \320\2622\320\2632+ \342\200\242\342\200\242\342\200\242+ 6qzi) x A + fljz-1+ e2z~2 + \342\226\240\342\226\240\342\226\240+ eqz-i)
=

(*,)*\302\253
+

(\302\273,-i
+

\320\265\320\273J''\021'+ (V* + Viei +
W*07\022'

+ \342\200\242\342\200\242\342\226\240+ F1! + \320\2622\320\262\321\202.+ 6l36l2 + \342\200\242\342\200\242\342\200\242+
\320\262,\320\262,_1)\320\2631 [3.6.4]

+ A + \320\262?+01 + \342\200\242\342\226\240\342\226\240+ 62,)z\302\260

+ F>! + \302\25120!+ 6I36I, + \342\200\242\342\200\242\342\200\242+
\320\261-\320\224.\320\236*-1

+ \342\200\242\342\200\242\342\200\242+ (Oq)z-i.

Comparison of [3.6.4]with [3.3.10] or [3.3.12] confirms that the coefficient on z>
in [3.6.3] is indeed the yth autocovariance.

This method for finding gY(z) extends to the MA(\302\260o)case. If

Y, =
fL + 0(L)e, [3.6.5]

with

i/<(L)
=

\321\204\320\276+ <l>iL + \321\2042\320\2542+ \342\200\242
\342\200\242,

\342\200\242
[3.6.6]

and

S W < \302\273, [3.6.7]
1-0

then

gr(z) = o*t(zMz-1). [3.6.8]
For example, the stationary ARA) processcan bewritten as

Y, -
M

= A
-

\321\204\320\254\320\223'\320\265,,
i

which is in the form of [3.6.5] with i/r(L) =
1/A

\342\200\224
\321\204\320\254).The autocovariance^

generating function for an ARA) process could therefore be calculated from
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To verify this claim directly, expand out the terms in [3.6.9]:

x A + \321\204\320\263~\321\205+ \321\2042\320\263'2+ \321\2043\320\263-3+\342\200\242\342\200\242\342\200\242).

from which the coefficient on z' is

\321\201\320\2632(\321\204'+ \321\204'+\321\205\321\204+ \321\204'+2\321\2042+\342\200\242\342\200\242\342\200\242)
=

<\321\2022\321\204'/A
-

\321\2042).

This indeed yields the/th autocovariance as earlier calculated in equation [3.4.5].
The autocovariance-generating function for a stationary ARMA{p, q) process

can be written

cr2(l + 6:z + 62z2 + \342\200\242\342\200\242\342\200\242+ eqzi)(\\ + ^z\021 + 82z~2+ \342\200\242\342\200\242\342\200\242+ 6qz-4)
8r{Z) =

\302\253I*\021
-

\320\244\320\263*~2 \320\244\320\240*-\"\320\243

[3.6.10]

Filters

Sometimes the data are filtered, or treated in a particular way before they

are analyzed, and we would like to summarize the effects of this treatment on the
autocovariances. This calculation is particularly simple using the autocovariance-

generating function. For example,supposethat the original data Y, were generated
from an MA{\\) process,

Y, = A + 0L)e,, [3.6.11]

with autocovariance-generating function given by [3.6.2]. Let's say that the data

as actually analyzed, X,, represent the change in Y, over its value the previous

period:

X, = Y,- y,_t
= A

- L)Y,. [3.6.12]

Substituting [3.6.11] into [3.6.12], the observeddata can be characterized as the

following MA{2) process,

X, =
A

- L)(l + 6>L)e,= [1+ (\320\262
-

V)L
- 6>L2]e,=[1+ \320\262,\320\254+ 62\320\2542]\320\265\342\200\236[3.6.13]

with 0t = @ \342\200\224
1) and 02

s - \320\262.The autocovariance-generating function of the

observed data X, can be calculated by direct application of [3.6.3]:

gx(z) =
<r2(l + Bvz + 62z2)(l + e^z-1+ e2z~2). [3.6.14]

It is often instructive, however, to keep the polynomial A + 6^z + 62z2) in its

factored form of the first line of [3.6.13],

A + 6^z + e2z2) = A - z)(l + 6z),

in which case [3.6.14]could be written

gx{z) =
a\\\\

-
z){\\ + flz)(l - z'l)(l + ez'i)

[3 6 15]=
A

- *)A - z-x) \342\226\240
gr(z).

Of course, [3.6.14] and [3.6.15] represent the identical function of z, and which

way we choose to write it is simply a matter of convenience.Applying the filter
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A \342\200\224
L) to Y, thus results in multiplying its autocovariance-generating function by

A
- z)(l -

\320\263\021).

This principle readily generalizes. Supposethat the original data series {Y,}

satisfies [3.6.5] through [3.6.7]. Let's say the data are filtered according to

X, = h(L)Y, [3.6.16]

with

h(L)
= 2 hjV

i- -~*

in < -.

Substituting [3.6.5] into [3.6.16], the observeddata X, are then generated by

X,
= AA)M + \320\272(\320\254)\321\204(\320\254)\320\265,

*
\320\274*+ \321\204*(\320\254)\320\265\342\200\236

where /n* = h(l)n and i/>*(L)
= A(L)i/<(L). The sequenceof coefficientsassociated

with the compound operator {i/>*}7= _* turns out to be absolutely summable,5 and

the autocovariance-generating function of X, can accordingly be calculated as

gx{z) = o***{z)**{z-1) =
<r!ft(*I/<(zIKz-1)ft(z-1)

= h{z)h{2-l)gY{2). [3.6.17]

Applying the filter h(L) to a series thus results in multiplying its autocovariance-
generating function by h(z)h(z'1).

3.7. Invertibility

Invertibility for the MAA) Process

Consideran MA{\\) process,

Y, -
M

= A + 0L)e,, [3.7.1]

with

[cr2 for t = \321\202

'Specifically,

= (\342\200\242\342\200\242\342\200\242+ h.,z-' + A./+,z\"/H
' + \342\200\242\342\200\242\342\200\242+ ft.,*\021 + \320\220\342\200\236\320\263\"+ ft,\320\2631+

+ ft,*' + \320\220,\321\207.,\320\263'*'+ \342\200\242\342\200\242
\342\200\242)(*.*\"+ *.*' + \"\320\234\"+ \342\200\242\342\200\242\342\200\242).

from which the coefficient on z1 is

\320\244*
=

\320\254\321\204\342\200\236+ ft,.,*, + ft,-,fc + \342\200\242\342\200\242\342\200\242= S \320\220\321\203-\320\226-
i\342\200\224A

Then

E{s'St)
10 otherwise.

2 W\\
- 2

\320\243-\342\200\224\320\243--\302\273
2 *,->. \342\226\2402 2 \\\321\214,-\320\266\\

= I \320\2502 |a,-vI
= 2 \320\2342 l*,l < \302\273.

64 Chapter 3 \\ Stationary ARMA Processes



Provided that \\\320\262\\< 1, both sides of [3.7.1]can be multiplied by A + 6L)~l to

obtain6

A
- 6L + 62L2 - 63L3 + \342\226\240\342\226\240

-)(Y,
-

ju.)
= e,, [3.7.2]

which could be viewed as an A/?(\302\260\302\260)representation. If a moving average repre-
representation such as [3.7.1] can be rewritten as an AR(\302\253>)representation such as [3.7.2]
simply by inverting the moving average operator A + 0L), then the moving average

representation is said to be invertible. For an MAA) process,invertibility requires

\\\320\262\\< 1; if \\\320\262\\\320\2601, then the infinite sequence in [3.7.2] would not be well defined.

Let us investigate what invertibility means in terms of the first and second
moments of the process. Recall that the MA{\\) process [3.7.1] has mean /n and

autocovariance-generating function

gY{z) =
<72A + 6z){\\ + fe\021). [3.7.3]

Now consider a seemingly different MAA) process,

\320\243,
-

\321\206
= A + \320\262\320\254)\320\265\342\200\236 [3.7.4]

with

f fort = \321\202

otherwise.

Note that Y, has the same mean (/u) as Y,. Its autocovariance-generating function

is

gr{z) = &2{l
= &*{{6~lz-1+ l)Fz)}{F-lz+ lXfe\021)} [3.7.5]

Suppose that the parameters of [3.7.4], (\320\262,a2), are related to those of [3.7.1]by

the following equations:

\320\262= \320\262'1 [3.7.6]

a2 = \320\2622\320\2602. [3.7.7]

Then the autocovariance-generating functions [3.7.3] and [3.7.5] would be the

same, meaning that Yt and Y, would have identical first and second moments.
Notice from [3.7.6] that if \\\320\262\\< 1, then \\\320\262\\> 1. In other words, for any

invertible MA{\\) representation [3.7.1], we have found a noninvertible MA{\\)

representation [3.7.4] with the same first and second moments as the invertible

representation. Conversely, given any noninvertible representation with \\\320\262\\> 1,
there exists an invertible representation with \320\262= A/6) that has the same first and
second moments as the noninvertible representation. In the borderline case where

\320\262-
\302\2611,there is only one representation of the process, and it is noninvertible.

Not only do the invertible and noninvertible representations share the same

moments, either representation [3.7.1] or [3.7.4] could be usedas an equally valid

description of any given MAA) process! Suppose a computer generated an infinite

sequence of Y's according to [3.7.4] with 6 > 1.Thus we know for a fact that the

data were generated from an MA{\\) process expressed in terms of a noninvertible

representation. In what sense could these samedata beassociated with an invertible

MAA) representation?

'Note from [2.2.8] that

A + Si.)-1- [1
- (-6)L]-[ = 1 + (-6)L + (~6fL2+ (-
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Imagine calculating a series {\320\265,}\320\223=_\302\273defined by

where \320\262= A/6) is the moving average parameter associated with the invertible

MAA) representation that shares the same moments as [3.7.4].Note that since

\\\320\262\\< 1, this produces a well-defined, mean square convergent series {e,}.
Furthermore, the sequence {e,} so generated is white noise. The simplest way

to verify this is to calculate the autocovariance-generating function of e, and confirm

that the coefficient on z' (the /th autocovariance) is equal to zero for any/ \320\2440.

From [3.7.8] and [3.6.17], the autocovariance-generating function for e, is given

by

g,(z) = A + 6z)~\\\\ + 6z-^gy{z). [3.7.9]

Substituting [3.7.5]into [3.7.9],

gc{z) = A + ez)~\\\\ + ez-i)\\aW){\\ + e^)(l + **) . ,
= &2\320\2622,

where the last equality follows from the fact that \320\262'1= \320\262.Since the autocovariance-

generating function is a constant, it follows that e, is a white noise process with
variance \320\2542\321\201\320\240-.

Multiplying both sides of [3.7.8]by A + \320\262\320\254),

Y,
- il = A + 6L)e,

is a perfectly valid invertible MAA) representation of data that were actually

generated from the noninvertible representation [3.7.4].
The converse proposition is also true\342\200\224suppose that the data were really

generated from [3.7.1] with \\\320\262\\< 1, an invertible representation. Then there exists

a noninvertible representation with 6 = 1/6 that describes these data with equal

validity. To characterize this noninvertible representation, consider the operator
proposed in [2.5.20] as the appropriate inverse of A + \320\262\320\254):

(ej-'L-^l
- (b-^L-1 + (e-2)L~2- (e-3)L-3+ \342\200\242\342\200\242

\342\200\242]

=
\320\262\320\254~1[\\

- 6L\021 + 62L'2 - 03L-3 + \342\200\242\342\200\242\342\200\242].

Define i, to be the series that results from applying this operator to (\320\243,
-

/n),

I, -
\320\262(\320\243\321\205+1

-
M)

- e2(Yl+2 -
M) + 03(Y,+3

- ,,.)- ..., [3.7.11]
noting that this series converges for \\\320\262\\< 1. Again this series is white noise:

gi(z) = {fo-^l - to\021 + d2z~2 - 03*-3 + \342\200\242\342\200\242\342\200\242]}

x {0z[l
- ez1+ 62z2 - 03z3 + \342\226\240\342\226\240

-]}(T2A + fe)(l + 6z~l)

Thecoefficient on z! is zero for/ \320\2440, so t, is white noise as claimed. Furthermore,
by construction,

\320\243,
-

M
= A + \320\262\320\254)\321\221\342\200\236

so that we have found a noninvertible MAA) representation of data that were
actually generated by the invertible MAA) representation [3.7.1].

Either the invertible or the noninvertible representation could characterize

any given data equally well, though there is a practical reason for preferring the
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invertible representation. To find the value of e for date t associated with the
invertible representation as in [3.7.8], we need to know current and past values of
Y. By contrast, to find the value of \321\221for date t associated with the noninvertible

representation as in [3.7.11], we need to use all of the future values of Y! If the

intention is to calculate the current value of e, using real-world data, it will be
feasible only to work with the invertible representation. Also, as will be noted in

Chapters 4 and 5, some convenient algorithms for estimating parameters and fore-

forecasting are valid only if the invertible representation is used.
The value of e, associated with the invertible representation is sometimes

called the fundamental innovation for Y,. For the borderline case when \320\251
= 1,

the process is noninvertible, but the innovation e, for such a process will still be

described as the fundamental innovation for Y,.

Invertibility for the MA(q) Process

Consider now the MA(q) process,

(Y,
-

\321\206)
= A + exL + 62L2+ \342\226\240\342\226\240\342\226\240+

04L\302\253)e, [3.7.12]

\320\223\321\201\320\2632for t = \321\202

\342\200\242\342\200\242\342\200\242\342\226\240>
\342\226\240

{:
\320\225(\320\265'6\321\202'

\320\256 otherwise.

Provided that the roots of

A + e.z + e2z2 + \342\226\240\342\226\240\342\226\240+ eqz\")
= 0 [3.7.13]

lie outside the unit circle, [3.7.12] can be written as an AR(\342\204\242)simply by inverting
the MA operator,

A + \321\211\320\254+ r,2L2 + ViL3 + \342\200\242\342\200\242
-)(Y,

-
/i) = e,,

where

Where this is the case, the MA{q) representation [3.7.12] is invertible.

Factor the moving average operator as

A + %XL + 62L2 + \342\200\242\342\200\242\342\200\242+ eqLi)
= A - A^Xl -

X2L)
\342\200\242\342\200\242\342\200\242

A
- A,L). [3.7.14]

If |Aj < 1 for all i, then the roots of [3.7.13] are all outside the unit circle and the

representation [3.7.12] is invertible. If instead some of the A,- are outside (but not
on) the unit circle, Hansen and Sargent A981, p. 102) suggested the following
procedure for finding an invertible representation. The autocovariance-generating

function of Y, can be written

gy(z)
= a2 \342\226\240

{A
- Ax*)(l -

X2z)
\342\200\242\342\200\242\342\200\242

A
-

A,*)}
X {A

- Al2-i)(l -
A,*\021)

\342\200\242\342\200\242\342\200\242
A

-
A,*\021)}.

L \342\200\242\342\200\242J

Order the A's so that (Ab A2, . . . , An) are inside the unit circle and (An+1, A,,+2,
. . . , A?) are outside the unit circle. Suppose a2 in [3.7.15] is replaced by a2-

\342\200\242^\320\273+\320\223^\320\273+2'
'

*Aj; since complex A, appear as conjugate pairs, this is a positive
real number. Suppose further that (An + 1, An+2, . . . , A?) are replaced with their
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reciprocals,(A~^b k~l2, \342\200\242\342\200\242\342\200\242, V1). The resulting function would be

o^iA;*, \342\200\242\342\200\242\342\200\242
\320\220|{\320\237A

-
A,*)]f ft A

- \320\245

{,1-1 )[,l-n + l

xfft(i
-

V1)]! ft (l-Af1^1)]

= A ft A -
A,*)]{ft [(A,z-')A

- A,-*

X
f ft A \"

A,*\021)]! ft [(A,z)(l -
\320\245\320\2231'-1)]}

li-l J {.i-n + 1 J

=
<\321\2024ft A

-
Af*)]{ ft (A|Z-i -

1)]

X
f ft A -

A,*\021)]!
ft (\320\220,\320\263

-
1)

A -
^Ifft/1

-
\320\220'\320\263\021)}'

which is identical to [3.7.15].
The implication is as follows. Suppose a noninvertible representation for an

MA{q) process is written in the form

\320\243,
=

M + \320\237A
-

\320\220,\320\245)\321\221\342\200\236 [3.7.16]

where

|A,| < 1 for i = 1, 2, .... \320\270

|A,| > 1 fori = n + 1, n + 2, . . . , q

and

[\320\276-2 for* = \321\202

[O otherwise.

Then the invertible representation is given by

\320\243,
= /* +

[ft
A

-

A(L)J|fJ+i(l
-

Af'L)}e(,
[3.7.17]

where

, \342\200\242\342\200\242\342\200\242XI

( ~
\\0 otherwise.

Then [3.7.16] and [3.7.17] have the identical autocovariance-generating function,

though only [3.7.17] satisfies the invertibility condition.

From the structure of the preceding argument, it is clear that there are a

number of alternative MA(q) representations of the data Y, associated with all the

possible \"flips\" between A, and A,~1. Only one of these has all of the A,- on or inside
the unit circle. The innovations associated with this representation are said to be

the fundamental innovations for Y,.
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APPENDIX 3.A. ConvergenceResultsfor Infinite-Order Moving

Average Processes

This appendix proves the statements made in the text about convergence for the MA(<*>)
process [3.3.13].

First we show that absolute summability of the moving average coefficients implies square-
summability. Suppose that{i^}7_0 is absolutely summable. Then there exists an N < \302\273such
that |i^| < 1 for all / s N, implying \321\204)

<
\\\321\204,\\for all / a N. Then

2 \320\244]+ i h < s' \320\2441+ i i
/=-0 j=>N / = 0 j-N

But 2,jL~ol \320\244)is finite, since N is finite, and 2*_ \342\200\236|<//,| is finite, since {\321\204,}is absolutely summable.
Hence S;_o i/r2 < \302\260\302\260,establishing that [3.3.15] implies [3.3.14].

Next we show that square-summability does not imply absolute summability. For an

example of a series that is square-summable but not absolutely summable, consider <//,
=

1// for /=1,2,.... Notice that IIj > 1/x for all x > /, meaning that

[V+i
IIj > A/x) dx

and so

N (N-H
2 1// > A/x) \320\233:= Iog(N + 1) -

Iog(l)
= Iog(N + 1),

which diverges to <*>as N \342\200\224*<*>. Hence {i//,}JL, is not absolutely summable. It is, however,

square-summable, since Up < llx2 for all x < j, meaning that

Up < I (I/*2) dx

and so

y-i
I//2 < 1 + \320\223A/x2) dx = 1 + (-l/xJlJL, = 2 -

(\320\250),

which converges to 2 as Af \342\200\224>\302\273.Hence {1\320\220\320\2247-1's square-summable.
Next we show that square-summability of the moving average coefficients implies that

the \320\250(\302\273)representation in [3.3.13] generatesa mean square convergent random variable.

First recall what is meant by convergence of a deterministic sum such as SJ\302\260_O\"/ where \320\246}
is just a sequence of numbers. One criterion for determining whether S/l0 a, convergesto

some finite number as T \342\200\224*\302\260\302\260is the Cauchy criterion. The Cauchy criterion states that
SJL,,a. converges if and only if, for any e > 0, there exists a suitably large integer N such

that, for any integer M > N,

/-0
< e.

In words, once we have summed N terms, calculating the sum out to a larger number M
does not change the total by any more than an arbitrarily small number e.

For a stochastic process such as [3.3.13],the comparable question is whether

2/L,,\321\204/\320\225,.!converges in mean square to some random variable Y, as T\342\200\224*\302\273.In this case
the Cauchy criterion states that 2\"_0 \321\204,\320\265,.,converges if and only if, for any e > 0, there

exists a suitably large integer N such that for any integer M > N

In words, once N terms have been summed, the difference between that sum and the one
obtained from summing to M is a random variable whose mean and variance are both

arbitrarily close to zero.
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Now, the left side of [3.A.1]is simply

, + \342\226\240\342\226\240\342\226\240+ ^w+,e,.w_,]2
\342\226\240+ \320\244%+,)-<\320\2632

[\320\227\320\2202]
\320\234 N \320\233

2 \342\231\246?
- 2 *\320\235

1-0 1-0 J

But if 2\"_0 tyj converges as required by [3.3.14], then by the Cauchy criterion the right side

of [3.A.2] may be made as small as desired by choice of a suitably large N. Thus the infinite

series in [3.3.13] convergesin mean square provided that [3.3.14] is satisfied.
Finally, we show that absolutesummability of the moving average coefficients implies

that the processis ergodic for the mean. Write [3.3.18] as

\320\243,-
= tf2 2 \320\244/*\320\272\320\244\320\272-

Then

A key property of the absolutevalue operator is that

|fl + b + c\\
< M + |ft| + \\c\\.

Hence

\320\253
- a2 2 \\\320\244\321\206-\320\272\320\244\320\272\\

and

2 \320\253s^IE \\\320\244/*\320\272\320\244\320\272\\
- a2 2 2 \\\320\244\320\270-\320\272\\

\342\226\240
\\\320\244\320\272\\

= <r2 H 1**1 2 \\\320\244/*\320\272\\-

But there exists an M < \302\253>such that 2'.0 |i^| < JU, and therefore 2f,0 |i^+4| < M for fe

0, 1, 2, . . . , meaning that

Hence [3.1.15]holds and the process is ergodicfor the mean.

Chapter 3 Exercises

3.1. Is the following MAB) process covariance-stationary?

Y, = A + 2.4L + 0.8L2)\302\243,

fl for: = \321\202

[0 otherwise.

If so, calculate its autocovariances.

3.2. Is the following ARB) process covariance-stationary?

A
- 1.1L + 0.1812)\320\243,

= e,

E(\302\243\302\243)
= f1

f\302\260r'= T
v ' T/

[0 otherwise.

If so, calculate its autocovariances.
3.3. A covariance-stationary AR(p) process,

7fi Chnntpr ? I Starinnarv ARMA P \320\277\321\201.\320\265\320\260\321\207\320\265.



has an MA{<*>) representation given by

(Y,
-

\320\274)
=

with

or

[1 -
\321\204\321\205\320\254-\321\204\320\263\320\254\320\263\321\204\342\200\236\320\251[\321\2040+ \321\204,\320\254

In order for this equation to be true, the implied coefficient on L\" must be unity and the
coefficients on V, L2, L3, . . . must be zero. Write out these conditions explicitly and show
that they imply a recursive algorithm for generating the MA{*>) weights \321\204\320\260,\321\204\321\212. . . . Show

that this recursionis algebraically equivalent to setting i/r, equal to the A, 1)element of the
matrix F raised to the/th power as in equation [1.2.28].
3.4. Derive [3.4.21].

3.5. Verify [3.4.22].
3.6. Suggest a recursive algorithm for calculating the AR(<x>) weights,

A + rj,L + rj2t2 + \342\226\240\342\226\240
-){Y,

-
ij.)

= e,

associated with an invertible MA(q) process,

(\320\243,
-

\321\206)
= A + e.i + 62L2 + \342\226\240\342\226\240\342\226\240+ e,L\302\253)e,.

Give a closed-form expression for rjy as a function of the roots of

A + 0,z + 02z2+ \342\226\240\342\226\240\342\226\240+ 0,z\302\253)
= 0,

assuming that these roots are all distinct.

3.7. Repeat Exercise 3.6 for a noninvertible MA(q) process. (HINT: Recall equation
[3.7.17].)
3.8. Show that the MAB) processin Exercise 3.1 is not invertible. Find the invertible
representationfor the process. Calculate the autocovariancesof the invertible representation
using equation [3.3.12] and verify that these are the same as obtained in Exercise 3.1.
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Forecasting

This chapter discusses how to forecast time series. Section 4.1 reviews the theory
of forecasting and introduces the idea of a linear projection, which is a forecast
formed from a linear function of past observations. Section 4.2 describes the fore-

forecasts one would use for ARMA models if an infinite number of past observations
were available. These results are useful in theoretical manipulations and in under-

understanding the formulas in Section 4.3 for approximate optimal forecasts when only

a finite number of observations are available.

Section 4.4 describeshow to achieve a triangular factorization and Cholesky
factorization of a variance-covariance matrix. These results are used in that section
to calculate exact optimal forecasts basedon a finite number of observations. They

will also be used in Chapter 11 to interpret vector autoregressions, in Chapter 13
to derive the Kalman filter, and in a number of other theoretical calculations and

numerical methods appearing throughout the text. The triangular factorization is
used to derive a formula for updating a forecast in Section 4.5 and to establish in

Section 4.6 that for Gaussian processes the linear projection is better than any
nonlinear forecast.

Section 4.7 analyzes what kind of process results when two different ARMA

processes are added together. Section 4.8 states Wold's decomposition,which

provides a basis for using an MA(\302\260\302\260)representation to characterize the linear

forecast rule for any covariance-stationary process.The section also describes a

popular empirical approach for finding a reasonable approximation to this repre-
representation that was developed by Box and Jenkins A976).

4.1. Principles of Forecasting

ForecastsBased on Conditional Expectation

Suppose we are interested in forecasting the value of a variable Y,+1 based
on a set of variables X, observedat date t. For example, we might want to forecast

Yt+! based on its m most recent values. In this case, X, would consist of a constant

plus \320\243\342\200\236\320\243,-\321\214\342\200\242\342\200\242\342\200\242,andy,.m + 1.

Let
\320\243,*+1|,denote a forecast of \320\243,+1 based on X,. To evaluate the usefulness

of this forecast, we need to specify a loss function, or a summary of how concerned

we are if our forecast is off by a particular amount. Very convenient results are
obtained from assuming a quadratic loss function. A quadratic loss function means
choosing the forecast Yf+ ^ so as to minimize

E(Y,+l
-

\320\243;+1|,J. [4.1.1]
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Expression [4.1.1] is known as the mean squared error associatedwith the forecast

\320\243,*+1|\342\200\236denoted

The forecast with the smallest mean squared error turns out to be the ex-
expectation of \320\243,+1 conditional on X,:

17+ik =
E(Y,+ 1\\X,). [4.1.2]

To verify this claim, consider basing \320\243,'+1|,on any function g(X,) other than the

conditional expectation,

17+i|,= S(X,). [4.1.3]
For this candidate forecasting rule, the MSE would be

E[Y,+ l
- g(X,)]2 =

E[Yl+l
-

\302\243(\320\243,+1|\320\245,)+ \302\243(\320\243,+1|\320\245,)
-

g(X,)f

-\302\243(\320\243,+1|\320\245,)\320\240 [414]

2E{[Yl+l
-

\302\243(\320\243,+1|\320\245,)][\302\243(\320\243,+1|\320\245,)
-

g(X,)]}

Write the middle term on the right side of [4.1.4] as

2\302\243[r?,+1], [4.1.5]

where

Consider first the expectation of rj,+1 conditional on X,. Conditional on X,, the
terms \302\243(\320\243,+1|\320\245,)and g(X,) are known constants and can be factored out of this

expectation:1

\302\243k+i|X,]
= [E(Yl+l\\X,) -g(X,)] x E([Y,+ l

-
\302\243(\320\243,+1|\320\245,)]|\320\245,)

=
[\302\243(y,+1|X,)-g(X,)]x0

= 0.

By a straightforward application of the law of iterated expectations, equation [A.5.10],

it follows that

Substituting this back into [4.1.4] gives

E[Yl+l
-

g(X,)]2 =
E[Yl+l

-
\302\243(\320\243,+1|\320\245,)\320\240+ \302\243([\302\243(\320\243,+1|\320\245,)

- g(X,)f). [4.1.6]

The second term on the right side of [4.1.6]cannot be made smaller than zero,

and the first term does not depend on g(X,). The function g(X<) that makes the
mean squared error [4.1.6] as small as possibleis the function that sets the second
term in [4.1.6] to zero:

\302\243(y,+1|X,)
= g(X,). [4.1.7]

Thus the forecast g(X,) that minimizes the mean squared error is the conditional

expectation \302\243(\320\243,+1|\320\245,),as claimed.

The MSE of this optimal forecast is

- g(X,)f =
\302\243[\320\243,+1

-
\302\243(\320\243,+1|\320\245,)]2. [4.1.8]

\342\226\240Theconditional expectation \302\243(\320\2431\320\247.,|\320\245,)represents the conditional population moment of the ran-
randomvariable \320\243,+1 and is not a function of the random variable \320\243,+1itself. For example, if \320\243,+1|\320\245,

\342\200\224

N(a'X,, O), then \320\225(\320\243,+1|\320\245,)
= \302\253\"X,,which does not depend on \320\243,+1.
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Forecasts Basedon LinearProjection
We now restrict the class of forecastsconsideredby requiring the forecast

Y*+ y, to be a linear function of X,:

Y,%, = a'X,. [4.1.9]
Suppose we were to find a value for a such that the forecast error (Y[+1 - a'X,)
is uncorrelated with X,:

E[(Y,+1 - a'X,)X;]= 0'. [4.1.10]
If [4.1.10] holds, then the forecasta'X, is called the linear projection of Y,+ 1 on

X,.
The linear projection turns out to produce the smallest mean squared error

among the class of linear forecasting rules. The proof of this claim closely parallels

the demonstration of the optimality of the conditional expectation among the set

of all possible forecasts.Letg'X,denote any arbitrary linear forecasting rule. Note

that its MSE is

E[Y,+1 -g'X,]2
=

\302\243[Y,+1-a'X,+ a'X,-g'X,]2
= E[Y,+1 - a'X,]2+ 2\302\243{[Y,+1

- a'X,][a'X, - g'X,]} 14LHJ
+ \302\243[a'X,

- g'X,]2.

As in the case of [4.1.4], the middle term on the right side of [4.1.11]is zero:

\302\243([Y,+1
- a'X,] [a'X, - g'X,])= (\302\243[Y,+1

-
a'X,]X,')[a

- g] = 0'[a-
g],

by virtue of [4.1.10]. Thus [4.1.11]simplifies to

E[Y,+1
- g'X,]2 =

E[YI+1
-

a'X,]2 + \302\243[a'X,
- g'X,]2. [4.1.12]

The optimal linear forecast g'X, is the value that sets the second term in [4.1.12]

equal to zero:

g'X, = a'X,,
where a'X, satisfies [4.1.10].

For a'X, satisfying [4.1.10], we will use the notation

or sometimes simply

Fr+i|(
= a'X,,

to indicate the linear projection of Y,+ 1 on X,. Notice that

MSE[P(Yt+1\\X,)]2= MSE[E(Yt+1\\X,)],

since the conditional expectation offers the best possible forecast.
For most applications a constant term will be included in the projection. We

will use the symbol \320\201to indicate a linear projection on a vector of random variables
X, along with a constant term:

Properties of LinearProjection
It is straightforward to use [4.1.10]to calculate the projection coefficient a

in terms of the moments of Y,+1 and X,:

\302\243(Y,+1X,')
=

a'\302\243(X,X;),
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or

a' = E(Y,+ 1X;)[E(XX)]-\\ [4.1.13]
assuming that \302\243(X,X,') is a nonsingular matrix. When \302\243(X,X,') is singular, the
coefficient vectora is not uniquely determined by [4.1.10], though the product of

this vector with the explanatory variables, a'X,, is uniquely determined by [4.1.10].2
The MSE associatedwith a linear projection is given by

- a'X,J =
\302\243(Y,+1J

-
2\302\243(a'X,Y,+ 1) + \302\243(a'X,X,'a). [4.1.14]

Substituting [4.1.13] into [4.1.14]produces

[4\320\233\320\2335]

Notice that if X, includes a constant term, then the projection of (aY,+1+ b)
on X, (where a and b are deterministic constants) is equal to

To see this, observe that a-P(Y,+ l\\X,) + b is a linear function of X,. Moreover,
the forecast error,

[aY,+l+ b]
- [aP(Yl+1\\X,) + b] =

a[Yl+1
- P(Yl+l\\X,)],

is uncorrelated with X,, as required of a linear projection.

Linear Projection and Ordinary Least SquaresRegression
Linear projection is closely related to ordinary least squares regression. This

subsection discusses the relationship between the two concepts.
A linear regression modelrelates an observation on y,+1 to x,:

\320\243.+1-\320\255\320\247+ \320\270,. [4.1.16]

Given a sample of T observations on \321\203and x, the sample sum of squared residuals
is defined as

2 (y,+i - P'x,J- [4-1.17]
/=i

The value of p that minimizes [4.1.17],denoted b, is the ordinary least squares
(OLS) estimate of p. Theformula for b turns out to be

[4.1.18]

2If E(X,X,') is singular, there exists a nonzero vector \321\201such that c'-\302\243(X,X,')c
= E(c'X,J = 0, so

that some linear combination c'X, is equal to zero for all realizations. For example, if X, consists of

two random variables, the second variable must be a rescaled version of the first: \320\245-\321\206= c-Xv. One
could simply drop the redundant variables from such a system and calculate the linear projection of

\320\243,+,on X*, where XT* is a vector consisting of the nonredundant elements of X,. This linear projection
a*'X* can be uniquely calculated from [4.1.13] with X, in [4.1.13] replaced by X*. Any linear com-

combination of the original variables a'X, satisfying [4.1.10] represents this same random variable; that is,

a'X, - a\"X* for all values of a consistent with [4.1.10].
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which equivalently can be written

[i | [4.1.19]

Comparing the OLS coefficient estimate b in equation [4.1.19] with the linear

projection coefficient a in equation [4.1.13], we see that b is constructed from the

sample moments A/7J,^.!Xtxt' and A/\320\223J,711\321\205,\321\203,+1while a is constructed from

population moments \302\243(X,X/) and \302\243(X,Y,+1). Thus OLS regression is a summary

of the particular sample observations (x,, x2, . . . , xr) and (y2, y3, . . . , yr+1),
whereas linear projection is a summary of the population characteristics of the

stochastic process {X,, Yt+i}r_ _*.

Although linear projection describespopulation moments and ordinary least
squares describessample moments, there is a formal mathematical sense in which

the two operations are the same. Appendix 4. A to this chapter discusses this parallel
and shows how the formulas for an OLS regression can be viewed as a special case
of the formulas for a linear projection.

Notice that if the stochastic process {X,, Y,+ 1} is covariance-stationary and

ergodic for secondmoments, then the sample moments will converge to the pop-
population moments as the sample size Tgoesto infinity:

\320\223

implying

p
b-\302\273a. [4.1.20]

Thus OLS regression of y,+1 on x, yields a consistent estimate of the linear

projection coefficient. Note that this result requires only that the process be ergodic
for second moments. By contrast, structural econometric analysis requires much

stronger assumptions about the relation between X and Y. The difference arises

because structural analysis seeks the effect of X on Y. In structural analysis, changes
in X are associated with a particular structural event such as a change in Federal

Reserve policy, and the objectiveis to evaluate the consequences for Y. Where

that is the objective,it is very important to consider the nature of the correlation
between X and \320\243before relying on OLS estimates.In the case of linear projection,
however, the only concern is forecasting, for which it does not matter whether it
is X that causes Y or Y that causes X. Their observedhistorical comovements (as
summarized by \302\243(X,Y,+1)) are all that is needed for calculating a forecast. Result

[4.1.20] shows that ordinary least squares regression provides a sound basis for

forecasting under very mild assumptions.
One possible violation of these assumptions should nevertheless be noted.

Result [4.1.20] was derived by assuming a covariance-stationary, ergodic process.
However, the moments of the data may have changed over time in fundamental

ways, or the future environment may be different from that in the past. Where
this is the case, ordinary least squares may be undesirable, and better forecasts
can emerge from careful structural analysis.
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Forecasting Vectors

The preceding results can be extended to forecastan (\320\270\321\2051) vector Y,+ 1 on

the basis of a linear function of an (m x 1) vector X,:

P(Y,+ 1|X,)
= a'X, =

Y/+1|I. [4.1.21]

Then a' would denote an (w \321\205m) matrix of projection coefficients satisfying

\302\243[(Yf+1
- a'X,)X;] = 0; [4.1.22]

that is, each of the n elements of (Y,+ 1
- Y,+ 1|,)is uncorrelated with each of the

m elements of X,. Accordingly, the /th element of the vector Y,+ 1|, gives the
minimum MSE forecast of the scalar

YiJ+1. Moreover, to forecast any linear com-

combination of the elements of Y,+,, say, zt+1
= h'Y,+ \321\214the minimum MSE forecast

of z,+ 1 requires (z/+1
-

\302\243,+i\\,) to be uncorrelated with X,. But since each of the

elements of (Y,+ 1
- Y,+ 1|,)is uncorrelated with X,, clearly h'(Y,+j

-
Y/+1|,) is also

uncorrelated with X,. Thus when Y,+ 1|,satisfies [4.1.22], then h'Y,+ ,|, is the min-

minimum MSE forecast of h'Y,+ 1 for any value of h.
From [4.1.22],the matrix of projection coefficients is given by

a' =
[\302\243(Y,+1X;)]-[\302\243(X,X;)]-. [4.1.23]

The matrix generalization of the formula for the mean squared error [4.1.15] is

MSE(a'X,) -
\302\243{[Y,+,

- a'X J \342\200\242
[Y,+,

-
a'X,]'}

')] L J

4.2. Forecasts Based on an Infinite Number
of Observations

Forecasting Based on Lagged e's

Considera processwith an \320\250(\302\273)representation

(\320\243,
-

/u.)
=

\321\204(\320\254)\320\265, [4.2.1]

with e, white noise and

2\342\204\226J<\302\260\302\260- [4-2.2]

Suppose that we have an infinite number of observations on s through date t, {er,

e,_b e,_2, . . .}, and further know the values of /u. and {\321\204\320\270\321\2042,. . .}. Say we want

to forecast the value of Y,+i, that is, the value that \320\243will take on s periods from

now. Note that [4.2.1] implies

t+j M t+s l r+,-i ,-i6,+ i se,
[4.2.3]

The optimal linear forecast takes the form
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That is, the unknown future e's are set to their expected value of zero. Theerror

associated with this forecast is

Y,+s
-

\320\201[\320\243,+1\\\320\261\342\200\236\320\261,^,.. .] = e,+s + iMr+,-i+ ' \342\200\242\342\200\242+ ifc_iet+1. [4.2.5]

In order for [4.2.4] to be the optimal linear forecast, condition [4.1.10] re-
requires the forecast error to have mean zero and to be uncorrelated with e,, e,_1;
.... It is readily confirmed that the error in [4.2.5] has these properties, so [4.2.4]
must indeed be the linear projection, as claimed.Themean squared error associated
with this forecast is

\302\243(\320\243,+,
- E[Y,Je,,e,.lt. . .]J =

A + \321\204\\+ \321\204\\+\342\226\240\342\226\240\342\226\240+ \321\204].^2. [4.2.6]

For example, for an MA(q) process,

\321\204(\320\254)
= 1 + ^L + 62L2+ - \342\226\240- + 6qL\",

the optimal linear forecast is

,- b...] [4.2.7]
+ 6se, + \320\262,+1\320\265,_!+ \342\200\242\342\200\242\342\200\242+ 0,e,_,+i for s = 1, 2, .... q

for* = q + 1, q + 2, . . .
The MSE is

a2 fors = 1

A + \320\262\\+ 6l + \342\200\242\342\200\242\342\200\242+ e^-Oo-2 fors = 2,3,. . . , q

(l + e\\ + e\\ + \342\226\240\342\226\240\342\200\242

The MSE increases with the forecast horizon s up until s = q. If we try to

forecast an MA(q) farther than q periods into the future, the forecast is simply the

unconditional mean of the series (E(Y,) =
/u.) and the MSE is the unconditional

variance of the series (Var(Y,)
= A + 0\\ + 6\\ + \342\226\240\342\226\240\342\226\240+ \320\2622)<\321\2022).

These properties also characterize the MA(\302\260\302\260)case as the forecast horizon s

goes to infinity. It is straightforward to establish from [4.2.2] that as s ~* \302\260\302\260,the

forecast in [4.2.4] convergesin mean square to /u., the unconditional mean. The
MSE [4.2.6]likewise converges to a2 2*_oi^, which is the unconditional variance
of the MA(\302\260\302\260)process [4.2.1].

A compact lag operator expression for the forecast in [4.2.4] is sometimes
used. Considertaking the polynomial \321\204(\320\254)and dividing by Ls:

= L~s

The annihilation operator3 (indicated by [\342\200\242]+ ) replaces negative powers of L by
zero; for example,

\320\230?1 =*,+ \320\220+1*.1+ \320\220+2^+..-. [4-2.8]

Comparing [4.2.8]with [4.2.4], the optimal forecast could be written in lag operator
notation as

[^]e,
[4.2.9]

]This discussion of forecasting based on the annihilation operator is similar to that in Sargent A987).
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Forecasting Based on Lagged Y's
The previous forecasts were based on the assumption that er is observed

directly. In the usual forecasting situation, we actually have observations on lagged

y's, not lagged e's. Supposethat the process [4.2.1] has an \320\220\320\233(\302\260\302\260)representation

given by

4(L)(yf
-

/*)
= e,, [4.2.10]

where rj(L) =
SyLoifyL', \321\202?\321\214

= 1, and 2*_0|i7/|< \302\260\302\260.Suppose further that the AR

polynomial 7j(L) and the MA polynomial \321\204(\320\254)are related by

4(L) = WL)]-1. [4.2.11]
A covariance-stationary AR(p) model of the form

A
-

\321\204,\320\254
-

\321\2042\320\2541 4>pLp){Y,
-

/Lt)
= e,, [4.2.12]

or, more compactly,

<KL)(Y,
-

/*) = e,,

clearly satisfies these requirements, with tj(L)
=

\321\204(\320\254)and i/\302\273(L)
=

[\302\253^(L)]\021.An

MA(q) process

Y, -
/lc.

= A + %XL + 02L2 + \342\226\240\342\226\240\342\226\240+
\320\262\321\217\320\254\\320\265,")[4.2.13]

or

\320\243,
-

/u.
= e(L)ef

is also of this form, with \321\204(\320\254)
= S(L) and 7j(L) = [e(L)]~\\provided that [4.2.13]

is based on the invertible representation. With a noninvertible MA(q), the roots
must first be flipped as describedin Section 3.7 before applying the formulas given
in this section. An ARMA(p, q) alsosatisfies [4.2.10] and [4.2.11] with \321\204(\320\254)

=

\320\262(\320\254)/\321\204(\320\254),provided that the autoregressive operator <f>(L) satisfies the stationarity
condition (rootsof <f>(z)

= 0 lie outside the unit circle) and that the moving average
operator 0(L) satisfies the invertibility condition (roots of 0(z) = 0 lie outside the

unit circle).
Where the restrictions associated with [4.2.10] and [4.2.11] are satisfied, ob-

observations on {\320\243\342\200\236\320\243,_1,. . .} will be sufficient to construct {e,, e,-u . . .}. For

example, for an ARA) process [4.2.10] would be

A
-

\321\204\320\254)(\320\245,
-

/u.)
= e,.- [4.2.14]

Thus, given \321\204and /u. and observation of \320\243,and \320\243,_1,the value of e, can be
constructed from

\320\265,=(\320\243,-,*)-\321\204(\320\243,_1-,*).

For an MAA) process written in invertible form, [4.2.10] would be

(l + eL)-1(Y,-ix) = e!.
Given an infinite number of observations on \320\243,we could construct e from

\302\253,
= (X, -ix)- \320\262(\321\203,_!-/*) + \320\2652(\320\243,_2

-
/*)

l4215J

Under these conditions, [4.2.10]can be substituted into [4.2.9] to obtain the

forecast of Y,+s as a function of lagged y's:
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or, using [4.2.11],

(X,
- m). [4.2.16]

Equation [4.2.16] is known as the Wiener-Kolmogorov prediction formula. Several
examplesof using this forecasting rule follow.

Forecasting an ARA) Process
For the covariance-stationary AR(l) process [4.2.14],we have

\321\204\320\251
= 1/A

-
\321\204\320\254)

= 1 + \321\204\320\254+ tfL2 + \321\204*\320\2543+ \342\226\240\342\226\240\342\226\240
[4.2.17]

and

\320\223\320\242\320\242\320\247
=

\320\244*+ 4>*+lLl + \321\204*+2\320\2542+ \342\226\240\342\226\240\342\226\240=
\321\204\302\260/A

-
\321\204\320\254).[4.2.18]

L ^ J +

Substituting [4.2.18] into [4.2.16] yields the optimal linear s-period-ahead forecast
for a stationary ARQ.) process:

E[Y,+S\\Y,, \320\243,.,,. . .] =
\342\200\236+

^ A

= p + ^(\320\243,
-

/Lt).

The forecast decays geometrically from (\320\243,
-

/u.) toward /u. as the forecast horizon
s increases.From [4.2.17], the moving average weight \321\2041

is given by \321\2041,so from

[4.2.6], the mean squared s-period-ahead forecast error is

[1 + \321\2042+ \321\204*+ \342\226\240\342\226\240\342\226\240+ \321\204^-^\320\2763.

Notice that this grows with s and asymptotically approaches cr2/(l
-

\321\2042),the

unconditional variance of \320\243.

Forecasting an AR(p) Process

Next consider forecasting the stationary AR(p) process[4.2.12].The Wiener-

Kolmogorov formula in [4.2.16] essentially expresses the value of (Y[+s
-

/u.) in

terms of initial values {(\320\243,
-

/u.), (\320\243,_1
-

/u.), . . .} and subsequent values of {e,+1,
t't+2. \342\200\242\342\200\242\342\200\242. e,+s} and then drops the terms involving future e's. An expression of
this form was provided by equation [1.2.26], which described the value of a variable

subject to a pth-order difference equation in terms of initial conditions and sub-

subsequent shocks:

Y,+s
-

\320\246
= MY,

-
At) + MY,^ -/*) + \342\200\242\342\200\242\342\200\242+f$(Y,.p + l

-
/u.)

+ e,+s + \321\2041\320\265,+1_1+ \321\2042\320\265,+:-2+ \342\226\240\342\200\242\342\200\242+ \321\2041_1\320\2651+1,

[4.2.20]

where

\320\244,
= /i?- [4-2.21]
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Recall that/ft' denotes the A, 1) elementof F',/'^' denotes the A, 2) element of
F', and so on, where F is the following (p x p) matrix:

\320\244\320\263

1

0

\320\244\320\263

0

1

\320\244\321\212
\342\226\240\342\200\242\342\226\240

0

0 \342\200\242\342\200\242\342\200\242

\320\244\321\200-!

0

0

\321\204\321\200

0

0

.0 \320\236\320\236\342\200\242\342\200\242\342\200\2421

The optimal s-period-ahead forecast is thus

[4.2.22]

Notice that for any forecast horizon s the optimal forecast is a constant plus a linear

function of {\320\243\342\200\236\320\243,_\321\214. . . , y,_p + i}. The associated forecast error is

Y,+s
~

Y,+s\\,
= e,+i + tyiti+s-i + \"Mr+s-2 + \342\200\242\342\226\240\342\200\242+ ifc_A+i- [4.2.23]

The easiest way to calculate the forecast in [4.2.22] is through a simple re-
recursion. This recursion can be deducedindependently from a principle known as
the law of iterated projections, which will be proved formally in Section 4.5. Suppose
that at date t we wanted to make a one-period-ahead forecastof Yl+1. The optimal
forecast is clearly

-
/\320\236

=
<\302\253\320\243,

-

\320\243,_,+1
-

/*)\342\226\240
[4.2.24]

Consider next a two-period-ahead forecast.Supposethat at date [ + 1 we were
to make a one-period-ahead forecast of Y,+2- Replacing t with t + 1 in [4.2.24]

gives the optimal forecast as

-\"\342\226\240\342\200\242\342\226\240\342\200\242\342\200\242\342\200\242
[4.2.25]

T
VpK^i-p + l

~
H-J-

The law of iterated projections asserts that if this date t + 1 forecast of \320\243,+2is

projected on date t information, the result is the date t forecast of Yt+1. At date

f the values \320\243\342\200\236\320\243,_1;. . . , \320\243,_\321\200+2in [4.2.25] are known. Thus,

[4.2.26]
\"\342\200\242\"<PpKI!-p+2

~
I\321\205)-

Substituting [4.2.24] into [4.2.26] then yields the two-period-ahead forecast for an

AR(p) process:

, -
At)

+
\321\204\320\224\320\243,-\321\200+2

-
At)

y,-i
-

At) + \342\200\242\342\200\242\342\200\242

+
(\302\253,\302\253,_!

+
\321\204\320\224\320\243,_\321\200+2

-
At) +

\320\24410\321\200(\320\243,-\321\200+ 1
-

At)-

The s-period-ahead forecasts of an AR(p) process can be obtained by iterating

\320\243,+\320\273,
-

At)
=

^i(y,+/-i|,
-

At) .+/-2|,
-

At)
[4.2.27]
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for/ = 1, 2, . . . , s where

YA,
=

\320\243\321\202for \321\202< t.

Forecasting an MA G) Process

Next consider an invertible MAA) representation,

\320\243,
- /it = A + 0L)e, [4.2.28]

with \\\320\262\\< 1. Replacing i/^L) in the Wiener-Kolmogorov formula [4.2.16] with

A + 0L) gives

To forecastan MAA) process one period into the future (s = 1),

and so

\320\264

^\342\226\240\"
= ^ +

\320\223\320\242^1(\320\243\"^ [4.2.30]
=

/U. + \320\262(\320\243,
-

/U.)
-

\320\262^\320\243,.!
-

/Lt) + \320\2623(\320\243,.2
-

/Lt)

It is sometimes useful to write [4.2.28] as

and view e, as the outcome of an infinite recursion,

i, = (Y, -
/a)

-
\320\262\321\221,-!. [4.2.31]

The one-period-ahead forecast [4.2.30]could then be written as

y,+ 1|,
= ^ + \320\262\321\221,. [4.2.32]

Equation [4.2.31] is in fact an exact characterization of e,, deducedfrom

simple rearrangement of [4.2.28]. The \"hat\" notation (I,) is introduced at this point
in anticipation of the approximations to e, that will be introduced in the following
section and substituted into [4.2.31] and [4.2.32].

To forecast an MAA) process for s = 2, 3, ... periods into the future,

= 0 for s = 2, 3, . . . ;

and so, from [4.2.29],

y,+i|, =
/u. for s = 2, 3, . . . . [4.2.33]

Forecasting an MA(q) Process

For an invertible MA(q) process,

(\320\243,
-

ix) = A + BXL + \320\262\320\263\320\254\320\263+ \342\226\240\342\226\240\342\226\240+ 64L\en
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the forecast [4.2.16] becomes

\021 + StL + 62L2

1 + 6yL + 02L2 + \342\226\240\342\226\240\342\226\240+ eqL\"

Now

|~1
+ fltL + 62L2 + \342\200\242\342\226\240\342\200\242+ 6q

[4.2.34]

(Y, - ,).

_ (\320\262,+ 6s+lL + es+2L2 + \342\226\240\342\226\240\342\226\240+ eqL\"-s fors = 1, 2, . . . , q
[0 fors = q + 1, q + 2, . . . .

Thus, for horizons of s = 1, 2, . . . , q, the forecast is given by

Yl+S],
= ix + FS+ ds+lL + 6S+2L2 + \342\226\240\342\226\240\342\226\240+ \320\262\321\217\320\270-')\321\221\342\200\236[4.2.35]

where i, can be characterized by the recursion

e, =
(\320\243,

-
/u.)

- M,-i -
\320\253,-\320\263

~
\320\262\321\217\321\221,-\321\207.[4-2.36]

A forecast farther than q periods into the future is simply the unconditional
mean /u..

Forecasting an ARMAG, I) Process

For an ARMA{\\, 1) process

A -
<t>L)(Y,

-
/u.)

= A + \320\262\320\254)\320\265,

that is stationary (\\\321\204\\< 1) and invertible (|0| < 1),

Here

\320\2231 + \320\262\320\2541

[(I
- 4>L)L'\\+

<f>L + \321\2042\321\2142
]

J
[4.2.38]

\321\204*+1\320\2542+ \342\226\240\342\226\240
\342\226\240)

=
(\321\204*+ 6\321\204*-1)A + \321\204\320\254+ tfL2 + \342\226\240\342\226\240

\342\226\240)

\\-\321\204\320\254

'

Substituting [4.2.38] into [4.2.37] gives

[42-39]
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Note that for s = 2, 3, . . . , the forecast [4.2.39] obeys the recursion

Thus, beyond one period, the forecast decays geometrically at the rate \321\204toward

the unconditional mean /u.. The one-period-ahead forecast (s \342\200\224
1) is given by

Y,+m,
=

\302\273+
f~~ (Y, -

\342\200\236). [4.2.40]

This can equivalently be written

(*\342\231\246*
- .) = ^ +

7++\320\265\321\203-^)(\320\243,

- ,) -
\320\244{\321\203,

- ,) + \320\265\320\265,[4.2.41]

where

or

e, =
(Y,

-
/u.)

-
\321\204(\320\243,.1

-
/Lt)

-
\320\262\320\265,_,

=
\320\243,

-
\320\243\321\204.!. [4.2.42]

Forecasting an ARMA(p, q) Process

Finally, consider forecasting a stationary and invertible ARMA(p, q) process:

A
-

\321\204\320\263\320\254
-

\321\2042\320\2542 \320\244\321\200\320\254\321\200){\320\243,
-

/it) = A + BrL + 02L2 + \342\226\240\342\226\240\342\226\240+ eqL\302\253)e,.

The natural generalizations of [4.2.41]and [4.2.42] are

(\320\243,+1|,
-

/u.)
= b(Y,

-
/u.) + \321\2042(\320\243,.1

-
/u.) + \342\200\242\342\200\242\342\200\242

14 z 431
+

\321\204\321\200(\321\2031.\321\200+1
-

/it) + \320\265,\321\221,+ e2e,-i + \342\200\242\342\200\242\342\200\242+
\320\265,\321\221,.,+1,

L \342\226\240\342\226\240J

with {\302\243,}generated recursively from

\320\262,
=

\320\243,
-

Vi- t4-2-44]

The i-period-aheadforecasts would be

(y,+i|,
-

/Lt) [4.2.45]

^+i-2|,
-

/Lt) + \342\200\242\342\200\242\342\200\242+
\321\204\321\200(\320\243,\342\200\236-\321\200|,

-
/Lt)

\342\200\242+ e,e,+i_, fors = I, 2, . . . , q

-2\\, -!>.) + \342\226\240\342\226\240\342\226\240+
\320\244\342\200\236{\320\243,+,-\321\200\\,

-
^)

tor s = q + \\, q + 2, . . . ,

where

Thus for a forecast horizon s greater than the moving average order q, the forecasts

follow a pth-order difference equation governed solely by the autoregressive
parameters.
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4.3. Forecasts Based on a Finite Number
of Observations

The formulas in the preceding section assumed that we had an infinite number of

past observations on Y, {Y,, \320\243,_\321\214. . .}, and knew with certainty population pa-
parameters such as ix, \321\204,and \320\262.This section continues to assumethat population

parameters are known with certainty, but develops forecasts based on a finite

number of observations {\320\243\342\200\236\320\243,_1;. . . , Y,_m + 1}.
For forecasting an AR{p) process, an optimal s-period-aheadlinear forecast

based on an infinite number of observations {\320\243\342\200\236\320\243,_1,. . .} in fact makes use of
only the p most recent values {\320\243\342\200\236\320\243,_1;. . . , \320\243,_\321\200+1}.

For an MA or ARMA

process, however, we would in principle require all of the historical values of \320\243in

order to implement the formulas of the preceding section.

Approximations to Optimal Forecasts

One approach to forecasting based on a finite number of observations is to
act as if presample e's were all equal to zero. The idea is thus to use the approx-
approximation

Y^Y,.,,.. .)

[4.3.1]
yj,.,,. . .,y,_m+1,e,_m

=
0,\302\243,.\342\200\236_!

= 0,. . .).

For example, consider forecasting an MA{q) process. The recursion [4.2.36] can

be started by setting

e,-m = e,-m-i = \342\200\242\342\200\242\342\200\242=
e^m_,+ 1 - 0 [4.3.2]

and then iterating on [4.2.36] to generate e,_m + 1,e<_m + 2, . . . , i,. These calcu-
calculations produce

\321\221,-\321\202+ 3
=

(\320\243,-\342\200\236,+3-I\321\205)- Mi-\302\273,*:
-

\320\2622\321\221,-\321\202+\320\270

and so on. The resulting values for (\321\221\342\200\236\321\221,-\320\270. . . , e,_,+i) are then substituted

directly into [4.2.35] to produce the forecast [4.3.1]. For example, fors =q \342\200\2241,

the forecast would be

-^)
L \342\200\242\342\226\240J

which is to be used as an approximation to the \320\220\320\271(\320\270)forecast,

ILt + \320\262(\320\243,
-

/u.)
-

e\\Y,_,
-

/u.) + 63(\320\243,_2-,\321\205) . [4.3.4]

For m large and |\320\261|small, this clearly gives an excellent approximation. For

|\320\261|closer to unity\302\273the approximation may be poorer. Note that if the moving
average operator is noninvertible, the forecast [4.3.1] is inappropriate and should

not be used.
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Exact Finite-Sample Forecasts

An alternative approach is to calculate the exact projection of \320\243,+1on its m
most recent values. Let

1

Y,

We thus seek a linear forecastof the form

[4.3.5]

The coefficient relating \320\243,+1 to Y, in a projection of \320\243,+1on the m most recent
values of Y is denoted a'/*1'in [4.3.5]. This will in general be different from the

coefficient relating \320\243<+1to Y, in a projection of Yl+1 on the m + 1 most recent
values of \320\243;the latter coefficient would be denoted \320\260*\320\240+1).

If \320\243,is covariance-stationary, then \302\243(\320\243,\320\243,_;)
=

yt + /u.2. Setting X, = A, Y,,

\320\243,_1;. . . , \320\243,_,\342\200\236+ 1)' in [4.1.13] implies

1

G2

/u.

\320\243\321\202-2+V?

[4.3.6

When a constant term is included in X,, it is more convenient to express
variables in deviations from the mean. Then we could calculate the projection of
(\320\243,+1

-
/u.) oh X, =

[(\320\243,
-

/u.), (y,_x
-

/Lt), . . . , (\320\243,_\321\202+1
-

,*)]':

\320\243,-!
-

/u.) [4.3.7]

For this definition of X, the coefficients can be calculated directly from [4.1.13] to
be

\320\233\321\202)

\320\223\320\276

To

\320\243\321\202-1\320\243\321\202-2
' ' '

\320\243\321\202-

\320\243\321\202-

7\320\276

1

2

-1
7i

72
[4.3.8]

We will demonstrate in Section 4.5 that the coefficients (\320\260(\342\204\242\\\320\260(\342\204\242\\. . . ,

a^) in equations [4.3.8]and [4.3.6] are identical. This is analogous to a familiar
result for ordinary least squares regression\342\200\224slope coefficients would be unchanged
if all variables are expressed in deviations from their sample meansand the constant

term is dropped from the regression.

86 Chapter 4 \\ Forecasting



To generate an s-period-ahead forecast Yt+S\\t, we would use

where

To

To

\320\243\321\202-\320\263

\320\243\321\202-1

\320\243\321\202-\320\263

\320\242\320\276

\320\243:

\320\243,+ \321\202

1
[4.3.9]

Using expressions such as [4.3.8] requires inverting an (m x m) matrix.

Several algorithms can be used to evaluate [4.3.8] using relatively simple calcula-

calculations.One approach is based on the Kalman filter discussed in Chapter 13, which
can generate exact finite-sample forecasts for a broad class of processesincluding

any ARMA specification. A second approach is based on triangular factorization

of the matrix in [4.3.8]. This second approach is developedin the next two sections.
This approach will prove helpful for the immediate question of calculating finite-

sample forecasts and is also a useful device for establishing a number of later
results.

4.4. The Triangular Factorization of a Positive Definite
SymmetricMatrix

Any positive definite symmetric (n x n) matrix \320\236has a unique representation of
the form

[4.4.1]

where A is a lower triangular matrix with Is along the principal diagonal,
'

1 0 0 \342\200\242\342\200\242\342\200\2420:

e21 1 0 \342\200\242\342\200\242\342\200\2420

A = a31 a32 1 \342\200\242\342\200\242\342\200\2420

and D is a diagonal matrix,

D =

0 0 0

where du > 0 for all i. This is known as the triangular factorization of O.
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To see how the triangular factorization can be calculated, consider

\"ftu ft12 ft13 \342\200\242\342\200\242\342\200\242
ftln\"

ft21 ft^ \320\237\321\206
\342\200\242\342\200\242\342\200\242

\320\277\321\214,

ft31 ft32 ft33 ft,

ft_

[4.4.2]

We assume that \320\236is positive definite, meaning that x'Ox > 0 for any nonzero

(n x 1) vector x. We also assume that Cl is symmetric, so that ft,7
=

fty;.
The matrix \320\236can be transformed into a matrix with zero in the B,1) position

by multiplying the first row of \320\236by ftjiftu1 and subtracting the resulting row from
the second.A zero can be put in the C, 1) position by multiplying the first row

by ft31ft{\0211 and subtracting the resulting row from the third. We proceed in this

fashion down the first column. This set of operations can be summarized as pre-
multiplying ft by the following matrix:

[4.4.3]

This matrix always exists, provided that ftu \320\2440. This is ensured in the present
case, because ftu is equal to \320\265[\320\2411\320\2651\321\203where e[ = [1 0 0 \342\200\242\342\200\242\342\200\242

0]. Since \320\236is positive
definite, e[ile1 must be greater than zero.

When \320\236is premultiplied by E, and postmultiplied by E[ the result is

1

-ft^ftfl1
-\320\237\320\267\320\220-,1

0

l

0

0

0
0
1

0

... \320\276

... \320\276

... \320\276

\342\200\242\342\200\242\342\200\2421

i = H, [4.4.4]

where

H =

\320\276\320\276

[4.4.5]

\320\276 \320\27722
-

\320\276 n32
-

'II \021

\320\23733- V,'n13

- O.AVn,,

We next proceed in exactly the sameway with the second column of H. The
approach now will be to multiply the second row of H by \320\23332\320\233221an^ subtract the
result from the third row. Similarly, we multiply the second row of H by hij^
and subtract the result from the fourth row, and so on down through the second
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column of H. These operations can be represented as premultiplying H by the

following matrix:

~1 0 0 \342\200\242\342\200\242\342\200\2420\"

0 1 0 \342\200\242\342\200\242\342\200\2420

0 -I

0 - 0

0

1

[4.4.6]

This matrix always exists provided that h22 =\302\2430. But hn can be calculated as

h22 = e2He2,where e^
= [0 1 0 \342\200\242\342\200\242\342\200\242

0]. Moreover, H = E^Ei, where \320\236is

positive definite and Ej is given by [4.4.3]. Since Ei is lower triangular, its deter-
determinant is the product of terms along the principal diagonal, which are all unity.
Thus Ei is nonsingular, meaning that H = EiOEJ is positive definite and so h22 =

e2He2 must be strictly positive. Thus the matrix in [4.4.6] can always be calculated.

If H is premultiplied by the matrix in [4.4.6] and postmultiplied by the trans-

transpose, the result is

where

\320\232=

0

0

0

h22

0

E2HE2 = K,

0
0

0 hn3
-

hm,
-

h,,2h22lh2n

Again, since H is positive definite and since E2 is nonsingular, \320\232is positive
definite and in particular k33 is positive. Proceedingthrough each of the columns
with the same approach, we see that for any positive definite symmetric matrix \320\236

there exist matrices Ej, Ej \320\225\342\200\236_,such that

\320\2252\320\2251\320\237\320\225(\320\2252;_! = D, [4.4.7]

where

D =

111

0 ft22-

0

0

\320\237\320\263\320\220\"!1

0

ft12

h33

0

0

-
hyjT^h-n

\342\226\240\342\226\240\342\226\240

0

0

0

0 0 0

with all the diagonal entries of D strictly positive. The matrices Ex and E2 in [4.4.7]
are given by [4.4.3] and [4.4.6]. In general, Ey is a matrix with nonzero values in
the /th column below the principal diagonal, Is along the principal diagonal, and
zeros everywhere else.

Thus each Ey is lower triangular with unit determinant. Hence E;-1 exists,
and the following matrix exists:

A = E-_V [4.4.8]
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If [4.4.7]is premultiplied by A and postmultiplied by A', the result is

\320\237= ADA'. [4.4.9]

Recall that Ex represents the operation of multiplying the first row of Cl by

certain numbers and subtracting the results from each of the subsequent rows. Its
inverse Efl undoes this operation, which would be achieved by multiplying the

first row by these same numbers and adding the results to the subsequent rows.

Thus

1 \320\276\320\276

1 \320\236

\320\2361

\320\276\320\276 1

[4.4.10]

as may be verified directly by multiplying [4.4.3] by [4.4.10] to obtain the identity

matrix. Similarly,

1

0

0

0
1

\320\23332\320\2332!1

0

0

1

\342\200\242\342\200\242\342\200\2420

\342\200\242\342\200\242\342\200\2420

... \320\276

\320\276 te1 \320\276

and so on. Because of this special structure, the series of multiplications in [4.4.8]
turns out to be trivial to carry out:

A =

1

\320\237\320\267\320\220\"!1

\320\257.\320\220\"\",1

[4.4.11]

That is, the /th column of A is just the /th column of
Ej~\\

We should emphasize that the simplicity of carrying out these matrix multi-

multiplications is due not just to the special structure of the
\320\221,\021

matrices but also to
the order in which they are multiplied. For example, A\021 = En_!En_2

\342\200\242\342\200\242\342\200\242
Et

cannot be calculated simply by using the /th column of
E;-

for the /th column of
A\021.

Since the matrix A in [4.4.11] is lower triangular with Is along the principal

diagonal, expression [4.4.9] is the triangular factorization of O.
For illustration, the triangular factorization \320\236= ADA' of a B x 2) matrix

is

[\302\253\320\270\320\23712]
_ [

1 01

lAi O22J lAAl1 lj
\320\276 1

[1
ar/nJ

- flaAVnd L0 1 J'

[4.4.12]

\320\233\320\233*~,t



while that of a C x 3) matrix is

n1

ft3, \320\237\320\267

ft23

\320\276

\320\276

where h12 =
(\320\23722

~

\320\236

\320\23322

\320\236

1

\320\220\"!1

\320\23333-

0

1

h32h22l

\320\236

\320\236

h32h22lh

\320\236

\320\236

1
\342\200\242

23

1

\320\276

\320\276

), \320\233\302\273
=

(\320\237\320\267\320\267
-

[4.4.13]

1

and /1,3
=

\320\27132
=

Uniqueness of the Triangular Factorization

We next establish that the triangular factorization is unique. Suppose that

\320\237= AAA1 = A2D2A2, [4.4.14]
where AL and A2 are both lower triangular with Is along the principal diagonal and

DL and D2 are both diagonal with positive entries along the principal diagonal.
Then all the matrices have inverses. Premultiplying [4.4.14] by Df *Af l and post-

multiplying by [A2]\"l yields

AitA,]\021 = Dr'Af^D,. [4.4.15]
Since A2 is upper triangular with Is along the principal diagonal, [A2]-1 must

likewise be upper triangular with Is along the principal diagonal. Since A[ is also
of this form, the left side of [4.4.15]is upper triangular with Is along the principal

diagonal. By similar reasoning, the right side of [4.4.15]must be lower triangular.
The only way an upper triangular matrix can equal a lower triangular matrix is if

all the off-diagonal terms are zero. Moreover,since the diagonal entries on the
left side of [4.4.15] are all unity, this matrix must be the identity matrix:

AtfAy-1 =
1\342\200\236.

Postmultiplication by A2 establishes that A[
= A2. Premultiplying [4.4.14] by A\021

and postmultiplying by [A']\021 then yields Dr = D2.

The CholeskyFactorization

A closely related factorization of a symmetric positive definite matrix \320\236is

obtained as follows. Define D1/2 to be the (n x n) diagonal matrix whose diagonal
entries are the square roots of the corresponding elementsof the matrix D in the
triangular factorization:

D1/2 =

\320\236

\320\236

\320\236

\320\276 \320\276

3^ 0

0 VdT3

0 0

\320\236

\320\236

\320\276

V2I

Since the matrix D is unique and has strictly positive diagonal entries, the matrix
D1/2 exists and is unique. Then the triangular factorization can be written

\320\237= AD1/2D1/2A' = AD1/2(AD1/2)'
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or

where

\320\237= PP', [4.4.16]

P = AD1/2

\"

1 0 0

\302\253211 0

\302\25331\302\253321

\302\253\342\200\2361\302\253\342\200\2362\302\253\342\200\2363

0

0

0

Expression [4.4.16]is known as the Cholesky factorization of O. Note that P, like

A, is lower triangular, though whereas A has Is along the principal diagonal, the
Choleskyfactor has the square roots of the elements of D along the principal

diagonal.

4.5. Updating a Linear Projection

Triangular Factorization of a Second-Moment Matrix
and LinearProjection
Let Y = (Yj, \320\2432,.. . , Yn)' be an (n x 1) vector of random variables whose

second-moment matrix is given by

\320\237= E(YY'). [4.5.1]

Let \320\236= ADA' be the triangular factorization of O, and define

Y^A-^Y. [4.5.2]

The second-momentmatrix of these transformed variables is given by

E(YY') = ECA-'YY'tA']\021) = \\-lE(YY')[\\']-1- [4-5.3]

Substituting [4.5.1] into [4.5.3], the second-moment matrix of Y is seen to be

diagonal:

E(YY') = A-^tA']\021 =
A\021ADA'[A']-1

= D. [4.5.4]

That is,

\\du for i = j
for i \320\244j.

Thus the y's form a series of random variables that are uncorrelated with
one another.4 To see the implication of this, premultiply [4.5.2] by A:

AY = Y. [4.5.6]

[4.5.5]

4Wc \302\253illuse \"Y, and Yt arc uncorrelated\" to mean \"E(YiY])
- 0.\" The terminology will be correct

if Y, and Y/ have zero means or if a constant term is included in the linear projection.
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0

0

0

1

~Y~

\320\243\320\267=

~y.

\320\243\320\267

Expression [4.4.11] can be used to write out [4.5.6] explicitly as

1 0 0

1 0
1 \342\200\242\342\200\242\342\200\2420 Y, = Y, [4.5.7]

Thefirst equation in [4.5.7] states that

Y, = Yit [4.5.8]

so the first elements of the vectors Y and Y represent the same random variable.

The second equation in [4.5.7] asserts that

\320\237\320\270\320\237\320\2771?!+ \320\2432
= Y2,

or, using [4.5.8],

Y2=Y2- ft^ftn1^ -
\320\2432

- aYu [4.5.9]

where we have defined a = fljAl1- The fact that \320\2432is uncorrelated with \320\243,

implies

\302\243(\320\2432\320\2431>
=

\302\243[(\320\2432
-

\302\253yi)yj
= 0. [4.5.10]

But, recalling [4.1.10], the value of a that satisfies [4.5.10] is defined as the coef-

coefficient of the linear projection of \320\2432on yt. Thus the triangular factorization of \320\236

can be used to infer that the coefficient of a linear projection of \320\2432on Yy is given
by a =

\320\237\320\263A'i1. confirming the earlier result [4.1.13]. In general, the row i, column

1 entry of A is fljAi'i which is the coefficient from a linear projection of Y, on

yi-
Since \320\2432has the interpretation as the residual from a projection of \320\2432on \320\243\321\214

from [4.5.5] (in gives the MSE of this projection:

\320\225(\320\237)
=

<*22
= ^22

- flsAVftu.
This confirms the formula for the MSE of a linear projection derived earlier (equa-
(equation[4.1.15]).

The third equation in [4.5.7] states that

[4-5.11]

OjAl1?! + *\321\217*\320\2711\321\203*+ f3 =
\320\243\320\267-

Substituting in from [4.5.8] and [4.5.9] and rearranging,

\320\243\320\267
=

\320\243\320\267
-

\320\237\320\267\320\220\320\223\320\243!
-

h32h\302\243(Y2
-

\320\237\320\263\320\220\"!1^)-

Thus \320\2433is the residual from subtracting a particular linear combination of Y^ and

\320\2432from \320\2433.From [4.5.5], this residual is uncorrelated with either Yl or \320\2432:

E[Y3
-

\320\237\320\267\320\220'/\320\243!
- h32h^(Y2 -

\320\236\320\270\320\277\320\277^\320\251
= 0 for/ = 1 or 2.

Thus this residual is uncorrelated with either Y^ or \320\2432,meaning that \320\2433has the

1\320\2771\320\265\321\204\320\263\320\2651\320\260\320\271\320\276\320\277as the residual from a linear projection of \320\2433on yt and \320\2432.According

to [4.5.11], the linear projection is given by

P(Y3\\Y2,Y0
= n3ln^Y, + h32h^{Y2

- fWi1^)- [4-5.12]

The MSEof the linear projection is the variance of \320\2433,which from [4.5:5] is given

by d33:

E[Y3
-

P{Y3\\Y2,Yv)f
=

A33
-

\320\233\320\270^\320\271\320\262- [4-5.13]
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Expression [4.5.12] gives a convenient formula for updating a linear projec-
projection.Suppose we are interested in forecasting the value of \320\2433.Let Y^ be some
initial information on which this forecast might be based. A forecast of \320\2433on the

basis of Yi alone takes the form

Let Y2 represent some new information with which we could update this forecast.

If we were asked to guess the magnitude of this second variable on the basis of Y^

alone, the answer would be

P(y2\\yj
=

Equation [4.5.12] states that

P(Y3\\Y2,Y,)
= P(Y3\\YJ + h32h22\\Y2

-
P{Y2\\Y,)\\. [4.5.14]

Wecan thus optimally update the initial forecast P{Yl\\Yl) by adding to it a multiple

(\320\233\320\267\320\263\320\233\320\2711)of the unanticipated component of the new information [Y2
-

\302\243(Y2|^i)]-
This multiple (\320\23332\320\233221)can als\302\260be interpreted as the coefficient on Y2 in a linear

projection of \320\2433on Y2 and Yv

To understand the nature of the multiplier (h32h^), define the (n x 1)vector

Y(l) by

Y(l) s E^, [4.5.15]
where EL is the matrix given in [4.4.3]. Notice that the second-momentmatrix of

Y(l) is given by

\302\243{YA)[YA)]'}
=

\302\243{E1YY'E[}
= E^EI.

But from [4.4.4]this is just the matrix H. Thus H has the interpretation as the

second-moment matrix of Y(l). Substituting [4.4.3]into [4.5.15],

Y2
- ft2AV^

Y3
-

\320\237\320\267\320\220-1%

The first element of Y(l) is thus just Yx itself, while the ith element of Y(l) for
i = 2, 3, . . . , n is the residual from a projection of Y,- on Y^ The matrix H is
thus the second-moment matrix of the residuals from projections of each of the

variables on Y^ In particular, h22 is the MSE from a projection of Y2 on Y{.

h^ =
\302\243[Y2

- P(Y2\\Y,}]2,

while h32 is the expected product of this error with the error from a projection of
Y3 on Y{.

Thus equation [4.5.14]states that a linear projection can be updated using the

following formula:

{\302\243[\320\2433
-

x {\302\243[\320\2432
-

P(Y2\\Yi)]}
1 x [Y2

-
[4.5.16]
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For example, suppose that yL is a constant term, so that \302\243(\320\2432|\320\243,)is just /u.2, the

mean of \320\2432,while PiY^Y,} =
\320\224\320\267.Equation [4.5.16] then states that

P(Y3\\Y2,l)
=

\320\264\320\267+ Cov(Y3, y2)-[V

The MSEassociatedwith this updated linear projection can also be calculated
from the triangular factorization. From [4.5.5], the MSE from a linear projection
of \320\2433on Y2 and yL can be calculated from

E[Y3
-

P(Y3\\Y2,Y,)]2 =
E{Y\\)

= h33
-

In general, for i > 2, the coefficient on Y2 in a linear projection of \320\243,on Y2
and yL is given by the ith element of the second column of the matrix A. For any

i > j, the coefficients on \320\243}in a linear projection of \320\243,on
\320\243;-,\320\243\321\203_1;

. . . , Y^ is

given by the row i, column / element of A. The magnitude dtt gives the MSE for
a linear projection of Y, on \320\243,_1;\320\243,_2,. . . , \320\243^

Application: Exact Finite-Sample Forecasts for an MAA)
Process
As an example of applying these results, suppose that \320\243,follows an MA{\\)

process:

Y,= /\320\273+ e,+ ee,_1;

where e, is a white noise process with variance cr2 and \320\262is unrestricted. Suppose
we want to forecast the value of \320\243\342\200\236on the basis of the previous n - 1 values (\320\2431;

\320\2432,. . . , Y,,.J. Let

Y'-\320\232\320\243!-,*) (\320\2432-/*)
\342\226\240\342\200\242\342\200\242

(\320\243.-1-/*) (\320\243\342\200\236-/*)],

and let \320\236denote the (n x n) variance-covariance matrix of Y:

\"l + \320\2622 \320\262 0 \342\200\242\342\200\242\342\200\242\320\236

\320\262 1 + \320\2622 \320\262 \342\226\240\342\226\240\342\226\240\320\236

ft = E(YY') = \320\276-2 \320\236 \320\262 1 + \320\2622 \320\236 . [4.5.17]

\320\236 0 0 \342\200\242\342\200\242\342\200\2421 + \320\2622

Appendix 4.B to this chapter shows that the triangular factorization of \320\236is

A =

1 + \320\2622

0

1

6A + \320\2622)

1 + \320\2622+ \320\2624

[4.5.18]

\320\276'

\320\236

\320\236

e[i + \320\2622+ \320\2624+ \342\226\240\342\226\240\342\200\242+ e2t\"-2>]

l + \320\2622+ \320\2624+ \342\226\240\342\226\240\342\226\240+ \320\2652'\"-1'
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D = [4.5.19]
'l + \320\262\320\263\320\236

1 + \320\2622+

1 + \320\2622

\320\236

\320\236

\320\236

1 + \320\2622+ \320\262*+

1 + 92 + 9\"

1 + \320\2621+ \320\262*+

l + \320\2622+ \320\262*+ \342\226\240\342\226\240\342\226\240+ \320\265*\"-1

\320\242\320\276use the triangular factorization to calculate exact finite-sample forecasts,
recall that \320\243,,the jth element of Y = A-'Y, has the interpretation as the residual
from a linear projection of \320\243,-on a constant and its previous values:

?, =
\321\203,- \320\265\320\264\321\203^.\321\203,-\302\273,...,^).

The system of equations AY = Y can be written out explicitly as

\320\243i
=

\320\2431
-

V-

fl[l + \320\2622+ \320\2624

1 + \320\2622+ e4 + \342\226\240\342\200\242\342\226\240+ e2(n

Solving the last equation for \320\243\342\200\236,

\320\243\320\237-\302\243(\320\243\342\200\236|\320\243\342\200\236_1,\320\243\342\200\236_2,...,\320\2431)=\320\243\320\270

02A-4]

?\342\200\236_!+ \320\243\342\200\236
=

\320\243\342\200\236
-

/Lt.

1

implying

+
i

+ \320\2622-

,\320\243.-2

+ \320\2652

+ \302\2532

f e4

> \342\200\242\342\200\242\342\200\242

+ \320\262*

+ \321\2174

+ \342\200\242\342\200\242\342\200\242

+ \342\200\242\342\226\240\342\200\242

+ \342\226\240\342\200\242\342\200\242

+

+

J2(\302\253-1)

02A-2)]

02A-0

[4.5.20]

The MSE of this forecast is given by d

+ e2 + + \320\2622

020,-1)-
[4.5.21]

It is interesting to note the behavior of this optimal forecast as the number
of observations (n) becomes large. First, suppose that the moving average repre-
representation is invertible (|e| < 1). In this case, as n -\302\273\302\253;the coefficient in [4.5.20]
tends to \320\262:

g[l + \320\2622+ \320\2614+ \342\226\240\342\200\242\342\226\240+ g2t\"-2>]

1 + \320\2622+ e4 + \342\200\242\342\200\242\342\200\242+ e2^-1'
~* '

while the MSE [4.5.21] tends to a2, the variance of the fundamental innovation.

Thus the optimal forecast for a finite number of observations [4.5.20] eventually
tends toward the forecast rule used for an infinite number of observations [4.2.32].
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Alternatively, the calculations that produced [4.5.20] are equally valid for a

noninvertible representation with |6| > 1. In this case the coefficient in [4.5.20]
tends toward \320\262\021:

g[l + \320\2622+ \320\262*+ \342\226\240\342\226\240\342\226\240+ g2t\"-2>]

i + \320\2622+ \320\262*+ \342\226\240\342\226\240\342\226\240+ \320\2652(\"-\302\253

e[i
- \320\2622<-\"'1

(i
- e2\/!

\320\264\342\200\224In1

)]/(i
- e2)

(i -
\320\2622)

-1

= \320\262-1.

Thus, the coefficient in [4.5.20] tends to \320\261\021in this case, which is the moving
average coefficient associated with the invertible representation. The MSE[4.5.21]
tends to cP-Q2:tends to

which will be recognized from [3.7.7]as the variance of the innovation associated
with the fundamental representation.

This observation explains the use of the expression \"fundamental\" in this
context. The fundamental innovation e, has the property that

Y,
-

\302\243(\320\243,|\320\243,_1;\320\243,_2,.. . , \320\243,_J m-i e, [4.5.22]
m.J.

as m \342\200\224*\321\201\320\276where -* denotes mean square convergence. Thus when |6| > 1, the

coefficient \320\262in the approximation in [4.3.3] should be replaced by \320\262\021.When this
is done, expression [4.3.3]will approach the correct forecast asm-\302\273\302\273.

It is also instructive to consider the borderline case 6 = 1. The optimal finite-

sample forecast for an MA{\\) process with \320\262= 1 is seen from [4.5.20]to be given by

,n2, ,J / [\321\217

which, after recursive substitution, becomes

=
/* +

^- (\320\243-i
-

/*)
- 'L:~

(\320\243\342\200\236-2
~

^) [4.5.23]

+ 5-^ (\320\243\342\200\236_\320\267
-

\321\206) +
(-lYj;(Yl-n).

The MSE of this forecast is given by [4.5.21]:

cr2(n + \\)ln -* a2.

Thus the variance of the forecast error again tends toward that of e,. Hencethe

innovation e, is again fundamental for this case in the sense of [4.5.22].Note the

contrast between the optimal forecast [4.5.23] and a forecast based on a naive

application of [4.3.3],

/* + (\320\223.-i
-

**)
-

(\320\243-2
~

/*) + (\320\243-\320\267
~

H) [4 5 24l

The approximation [4.3.3] was derived under the assumption that the moving average

representation was invertible, and the borderlinecase \320\262= 1 is not invertible. For this
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reason [4.5.24] does not converge to the optimal forecast [4.5.23] as n grows large.
When \320\262= 1, Y, =

/x + e, + e,_! and [4.5.24] can be written as

ix + (\302\243\342\200\236_!+ \320\265\342\200\236_2)
-

(\320\265\342\200\236_2+ \320\265\342\200\236_3)+ (\320\265\342\200\236_3+ \320\265\342\200\236_4)

- \342\200\242\342\200\242\342\200\242+ (-l)\"(ei + e0) =
ix + \320\262\342\200\236_1+ (-1)%.

The difference between this and \320\243,\342\200\236the value being forecast, is en
- (- l)\"e0,

which has MSE 2a2 for all n. Thus, whereas [4.5.23] convergesto the optimal
forecast as n -* <*>, [4.5.24] does not.

Block Triangular Factorization

Suppose we have observations on two sets of variables. The first set of var-
variables is collected in an (nl x 1) vector Yi and the second set in an (n2 x 1) vector
Y2. Their second-moment matrix can be written in partitioned form as

[\302\243(\302\245!\302\245()ECY^J)] = \320\223\320\277\320\270
Ou]

L\302\243(Y2Y[) \302\243(Y2Y2)J L\302\2532i \302\25322J'

where Ou is an (n^ x n^ matrix, O22 is an (n2 x n2) matrix, and the (n^ x n?)
matrix O12 is the transpose of the (n2 x nj matrix O21.

We can put zeros in the lower left (n2 x n^) block of \320\236by premultiplying
\320\236by the following matrix:

If 11 is premultiplied by E! and postmultiplied by E[, the result is

in,
\320\2761 \320\223\320\260\320\270a12l

|\"in,
-ar/a^l

-a^an1 inj L\302\2532i ^JLo i\302\253, J
[4525]

[~au
\320\276

L \302\260̂ 22
-

\320\260\320\267^\320\2771!]

Define

\320\242-\320\201-1-A-Ei -

If [4.5.25] is premultiplied by A and postmultiplied by A', the result is

\320\223\320\260\320\270
\320\26012]=

\320\223
in,

\320\2761

La21 a^J 1.\320\23621\320\237\320\2371inj

\302\260

1\320\240 nflinl [4 5 261

= ADA'.

This is similar to the triangular factorization a =
ADA', except that D is a block-

diagonal matrix rather than a truly diagonal matrix:

D = I\"\0211
#

1.
L 0 ft^

-
\320\237\320\270\320\237\320\263^\320\237\321\206]
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As in the earlier case,D can be interpreted as the second-moment matrix of

the vector Y = A^Y,

o y

that is, Yi =
Yi and Y2 =

Y2
-

n^ilf/Y^ The jth element of Y2 is given by Y^
minus a linear combination of the elements of Y^ The block-diagonality of

D implies that the product of any element of Y2 with any element of YL has

expectation zero. Thus O^Of/ gives the matrix of coefficients associated with the

linear projection of the vector Y2 on the vector Y^

P(Y2\\YV)
= [4.5.27]

as claimed in [4.1.23]. The MSE matrix associated with this linear projection is

\302\243{[Y2
-

P{Y2\\YV\342\204\2262
-

P(Y2\\Y,)]'} =
\302\243(Y2Y2)

= D22 [4.5.28]
= n22 -

\320\260^\320\260^\320\277\320\270,

as claimed in [4.1.24].
The calculations for a C x 3) matrix similarly extend to a C x 3) block

matrix without complications. Let Y^ Y2, and Y3 be (wx x 1), (/^ x 1), and (n3 x 1)
vectors. A block-triangular factorization of their second-moment matrix is obtained

from a simple generalization of equation [4.4.13]:

\302\25311

\302\25321

\302\25331

\302\25312

\302\25322

\302\25332

\302\25313

\302\25323

\302\25333.

=2

in \320\276

\302\253\302\253\302\253\320\263,1\321\207

\320\237\320\236
- 1 IT \320\230~1

, 31**11 \0232\0222

[4.5.29]

\320\223\302\253\320\277\320\276

\320\276\320\27522

\320\276 \320\276

1\342\200\2362

\320\276

), \320\23533
=

(\302\253\320\267\320\267
~

\320\270),and H23 =
\320\2512where \320\23522

=
(\320\237\320\2632

=
(\302\25323

-
\302\25321\302\253\320\2231'\302\25313)-

This allows us to generalize the earlier result [4.5.12] on updating a linear

projection. The optimal forecast of Y3 conditional on Y2 and Yx can be read off

the last block row of A:

x) + H32H2V[Y2
- [4.5.30]

where

=
\302\243{[Y2

-

H32 =

The MSEof this forecast is the matrix generalization of [4.5.13],

\302\243{[Y3
-

P(Y3\\Y2,Yr)][Y3
-

PCYjIYj.Yx)]'}
= H33

-
\320\235\321\217\320\235^'\320\235\302\273,[4.5.31]

4.5. Updating a Linear Projection 99



where

H33 =
E{[Y3

-
P(YjYJ]\\Y3

-

Law of IteratedProjections
Another useful result, the law of iterated projections, can be inferred im-

immediately from [4.5.30]. What happens if the projection P(Y3\\Y2,Y1) is itself

projected on \320\243\320\263?The law of iterated projections says that this projection is equal

to the simple projection of Y3 on Yr:

WOMYj.YOIYJ = PiYjYJ. [4.5.32]
To verify this claim, we need to show that the difference between P(Y3\\Y2,Y1)
and P(Y3\\Yl) is uncorrelated with Yv But from [4.5.30],this difference is given
by

t,YJ
-

P(Y3\\YJ
=

which indeed is uncorrelated with Yi by the definition of the linear projection

P(Y2\\Yr).

4.6. Optimal Forecasts for GaussianProcesses
The forecasting rules developed in this chapter are optimal within the class of linear
functions of the variables on which the forecast is based. For Gaussian processes,
we can make the stronger claim that as long as a constant term is included among
the variables on which the forecast is based, the optimal unrestricted forecast turns
out to have a linear form and thus is given by the linear projection.

To verify this, let Y! be an (\320\277\320\263\321\2051) vector with mean (%, and Y2 an (\320\277?\321\2051)
vector with mean p^, where the variance-covariance matrix is given by

- Hi)' \302\243(Yj
-

(Ai)(Y2
-

1*2)' _ [flu flw

lE(Y2 -
\320\246\320\260\320\245*!

- D)' E(Y2 -
|*2)(Y2

-
(A.2)'J [il21 ftjj

If Yx and Y2 are Gaussian, then the joint probability density is
-1/2

i. \320\2432)

1 flu \320\237u \320\23712

\320\23721 [4.6.1]

The inverse of \320\236is readily found by inverting [4.5.26]:

\320\237\021= [ADA']\021

1\342\200\236,
-

1\320\237\320\263

Likewise, the determinant of \320\233can be found by taking the determinant of [4.5.26]:

1\320\250
= |A|

\342\200\242
|D|

\342\200\242
|A'|.
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But A is a lower triangular matrix. Its determinant is therefore given by the product
of terms along the principal diagonal, all of which are unity. Hence |A| = 1 and
|\320\237| |D|*

at

\320\2372

\320\276

\320\276\320\27722
-

Substituting [4.6.2] and [4.6.3] into [4.6.1], the joint density can be written

\320\2431,\320\2432)

[4,6.3]

~2 [(\320\2431
~

Hi)' (\320\2432
~

\320\230\320\263)']
\"' \"

X

L \320\236 (\320\23722
-

\320\237^\320\237\320\2771^,)-1]1-\320\27721\320\277\320\277\320\263I,J Ly2
~

x
expj

--
[(yi

-
\321\211)'(y2

- m)'] [4.6.4]

\321\205\320\223\320\260\320\264
\320\276

1^-^11

=
B7r)(!,+n2V2

I\302\253ll|-M
'

l\302\27322
-

\302\253\302\253\320\237\320\2371\"\302\273!\021'2

f 1
x

expj
--

(yi
-

(\320\264.\320\263)V(\321\203!
- (aJ

-
2 (\320\2432

-
\320\2301)'(\320\23722

~
\302\253\320\263^\320\223^\320\263\320\223\320\247\320\243\320\263

~

m)|,

where

[4.6.5]

The conditional density of Y2 given Yx is found by dividing the joint density

[4.6.4] by the marginal density:

3Write fln in Jordan form as M, J,Mf', where J, is upper triangular with eigenvalues of flu along

the principal diagonal. Write Oa -
IV^Of.'O.j as M^Mf1. Then \320\233= MJM\"', where

M [M, 0] [J, 0]

Thus fl has the same determinant as J. Because J is upper triangular, its determinant is the product

of terms along the principal diagonal, or |J| = |J,| \342\226\240
|J2|. Hence |H| = |fi,,| -

HI22
~

^21^\320\2231'\320\23312|.
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The result of this division is

where

H =
\342\202\254l-n

- ih.-Lilrfilv. [4.6.6]

In other words,

Y2|Y, ~ N{m, H)

[4.6.7]
, [\302\25322

-

i^lftfl^lJj-

We saw in Section 4.1 that the optimal unrestricted forecast is given by the

conditional expectation. For a Gaussian process, the optimal forecast is thus

E(Y2\\Yr)
= li2 + \320\236\320\263\320\263\320\237\320\263\320\233\320\243\320\263

- 14)-

On the other hand, for any distribution, the linear projection of the vector Y2 on

a vector \320\243\320\263and a constant term is given by

=
V-2 + \320\236\320\270\320\236\320\271\320\247\321\203,

- |ix).

Hence, for a Gaussian process, the linear projection gives the unrestricted optimal

forecast.

4.7. Sums of ARMA Processes
This section explores the nature of series that result from adding two different
ARMA processestogether, beginning with an instructive example.

Sum of an MAA) ProcessPlus White Noise

Suppose that a series X, follows a zero-mean MA{\\) process:

X, = u, + Su,_lt [4.7.1]

where u, is white noise:

- I*7\"
f\302\260r''

= \302\260

' '~'
[0 otherwise.

The autocovariances of X, are thus

f(l
+ S2)o^ for/

= 0

\320\225(\320\222\320\224_\320\243)
= < So^ for/ = \302\2611 [4.7.2]

LO otherwise.

Let v, indicate a separate white noise series:

[0 otherwise. L \342\200\242\342\200\242J
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Suppose, furthermore, that v and \320\270\320\263\320\260\320\265uncorrelated at all leads and lags:

\302\243(m,v,_;)
= 0 for all;',

implying

E{X,v,_^
= 0 for all/. [4.7.4]

Let an observed series Y, represent the sum of the MAA) and the white noise

process:

\320\243<
- * + *<

[4.7.5]= U, + SMt_!+ V,.

The question now posed is, What are the time series properties of \320\243?

Clearly, \320\243,has mean zero, and its autocovariances can be deduced from [4.7.2]

through [4.7.4]:

o* for/ = 0 [4-7.6]

= < Sai for/ = \302\2611

Lo otherwise.

Thus, the sum X, + v, is covariance-stationary, and its autocovariances are zero
beyond one lag, as are those for an MA{\\). We might naturally then ask whether
there exists a zero-mean MA(l) representation for \320\243,

\320\243,
= e, + \320\262\320\265,.\320\270 [4.7.7]

with

IV for/ = 0
\302\243(e'e'-'}

~

lo otherwise,

whose autocovariances match those implied by [4.7.6]. The autocovariances of
[4.7.7]would be given by

\320\223A+ e2)o-2 for; = 0

EiY.Y,.,)= < \320\262\320\2762 for;
= \302\2611

LO otherwise.

In order to be consistent with [4.7.6], it would have to be the case that

A + (F)cP-= A + S2)oi + <r? [4.7.8]

and

6<r2 = So-2. [4.7.9]

Equation [4.7.9]can be solved for cr2,

a2 = So-2/e, [4.7.10]

and then substituted into [4.7.8] to deduce

A + 62)S =
[A + S2) + (\320\276?/\320\2762)]\320\262

-
[A + S2)+ (o*loi)]6+ 8 = 0. [4.7.11]

4.7. Sums of ARMA Processes 103



For given values of S, o-2, and o-2,, two values of \320\262that satisfy [4.7.11] can be found

from the quadratic formula:

[A + S2)
\342\226\240

\320\262
82)

- 482

28 [4.7.12]

If cr2, were equal to zero, the quadratic equation in [4.7.11] would just be

se2 - (i + 82)e + 8 = s(e - s)(e- s-1)= o, [4.7.13]

whose solutions are \320\262= 8 and \320\262= S~\\ the moving average parameter for X, from

the invertible and noninvertible representations, respectively. Figure 4.1 graphs
equations [4.7.11] and [4.7.13] as functions of \320\262assuming positive autocorrelation
for X, (S > 0). For \320\262> 0 and <r? > 0, equation [4.7.11] is everywhere lower than

[4.7.13] by the amount (\321\201\320\263?/\321\201\320\263^)\320\261,implying that [4.7.11] has two real solutions for

\320\262,an invertible solution \320\262*satisfying

0 < |e*| < |S|, [4.7.14]
and a noninvertible solution \320\262*characterized by

Taking the values associatedwith the invertible representation (\320\262*,\320\276-*2),let

us consider whether [4.7.7]could indeed characterize the data {YJ generated by

[4.7.5]. This would require

A + 6*L)e, = A + 8L)u, + v,, [4.7.15]

or

e, =
A + B*L)-1 [A + 8L)u, + v,]

+ S(M,_!
- 64-2 + 0*2\320\230,_\320\267

- 0*4-4 + ' \342\200\242
0

[4.7.16]

The series e, defined in [4.7.16] is a distributed lag on past values of \320\270and v, so
it might seem to possess a rich autocorrelation structure. In fact, it turns out to be

[4.7.13]

[4.7.11]

HGURE 4.1 Graphs of equations [4.7.13] and [4.7.11].
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white noise! To see this, note from [4.7.6] that the autocovariance-generating

function of \320\243can be written

gY(z) =
A + Sz)<r2(l + S*\021) + <r2, [4.7.17]

so that the autocovariance-generating function of e, =
A + \320\261*/,)\021^ is

A + teKfl + 8z-') + o*

8A)
A + e*z)(l + e*z~1)

\342\226\240 [ '\342\226\240J

But \320\262*and cr*2 were chosen so as to make the autocovariance-generating function
of A + 6*L)en namely,

A + 6*z)ct*2A + e*z~l),

identical to the right side of [4.7.17]. Thus, [4.7.18]is simply equal to

a white noise series.
To summarize, adding an MA{\\) process to a white noise series with which

it is uncorrelated at all leads and lags producesa new MA(l) process characterized

by [4.7.7].
Note that the series e, in [4.7.16] could not be forecast as a linear function

of lagged e or of lagged \320\243.Clearly, e could be forecast, however, on the basis of
lagged \320\270or lagged v. The histories {\302\253,}and {v,} contain more information than {e,}
or {Y,}.The optimal forecast of Y,+ 1 on the basis of {\320\243\342\200\236\320\243,_\321\214. . .} would be

with associated mean squared error cr*2.By contrast, the optimal linear forecast
of \320\243,+1 on the basis of {\302\253\342\200\236\320\270,_\321\212. . . , v,, v,_i, . . .}would be

\302\243(\320\243,+1|\320\270\342\200\236\320\274,_! v,, v,_!, . . .) = 8u,

with associated mean squared error ai + cr2,. Recalling from [4.7.14] that |6*| <
|S|,it appears from [4.7.9] that F*2)cr*2 < SV2., meaning from [4.7.8] that a-2 >

cr2 + cr2,. In other words, past values of \320\243contain less information than past values
of \320\270and v.

This example can be useful for thinking about the consequencesof differing

information sets. One can always make a sensible forecast on the basis of what
one knows, {\320\243\342\200\236\320\243,_\321\214. . .}, though usually there is other information that could

have helped more. An important feature of such settings is that even though e,,
\320\270\342\200\236and v, are all white noise, there are complicatedcorrelations between these

white noise series.
Another point worth noting is that all that can be estimated on the basis of

{\320\243,}are the two parameters \320\262*and cr*2, whereas the true \"structural\" model [4.7.5]
has three parameters (S, ai, and cr2,). Thus the parameters of the structural model

are unidentified in the sense in which econometricians use this term\342\200\224there exists

a family of alternative configurations of S, cri, and cr2, with \\S\\ < 1 that would

produce the identical value for the likelihood function of the observed data {\320\243,}.

The processes that were added together for this example both had mean zero.

Adding constant terms to the processes will not change the results in any interesting

way\342\200\224ifX, is an MAA) processwith mean \321\206\321\205and if vi1S white noise plus a constant

liy, then X, + v, will be an MAA) process with mean given by iix + /av. Thus,

nothing is lost by restricting the subsequent discussionto sums of zero-mean processes.
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Adding Two Moving Average Processes

Suppose next that X, is a zero-mean MA(qr) process:

X,
= A + 8\320\263\320\254+ 82L2 + \342\200\242\342\200\242\342\200\242+

S?|L\302\253>)\",
= S(L)m,,

with

; for / = 0
E(u,u,_,) ' ' 0 otherwise.

Let W, be a zero-mean MA(#2) process:

with

for/
= 0

\302\243(V'V'-')=-0 otherwise.

Thus, X has autocovariances y$, yf,. . . , y* of the form of [3.3.12] while IV has

autocovariances y$, yf, . . . , \321\203%\320\263
of the same basic structure. Assume that X and

W are uncorrelated with each other at all leads and lags:

E(X,W,_j) = 0 for all/;

and suppose we observe

Y,
= X,+ Wt.

Define q to be the larger of qx or q2.

q = max{^i,q2).

Then the /th autocovariance of Y is given by

EiY.Y,.,)
=

E{X, + W,)(Xl4 + Wt.j)
=

E{X,X,_D
+ E(W,W,_,)

{yf

+ yf for/= \"> \302\2611>\302\2612>\342\200\242\342\200\242\342\200\242> \302\261\321\207

0 otherwise.

Thus the autocovariances are zero beyond q lags, suggesting that Y, might be

represented as an MA(q) process.
What more would we need to show to be fully convinced that Y, is indeed

an MA(q) process? This question can be posed in terms of autocovariance-gen-
autocovariance-generatingfunctions. Since

yf = yf +
yf>

it follows that

\302\243jll *\342\200\242/-I 11 *\342\200\242T /-I li *\342\200\242\342\200\242

/--\302\253 ;'--\" ;'--\"

But these are just the definitions of the respective autocovariance-generating func-

functions,

grW
= gA-W + gw(z)- [4.7.19]

Equation [4.7.19] is a quite general result\342\200\224ifone adds together two covariance-
stationary processes that are uncorrelated with each other at all leads and lags, the
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autocovariance-generating function of the sum is the sum of the autocovariance-
generating functions of the individual series.

If Y, is to be expressed as an MA(q) process,

Y,
= A + e,L + 62L2 + \342\226\240\342\226\240\342\226\240+

e?L\302\253)e,
=

\320\262{\320\254)\320\265,

with

(a2 for/=0
\302\243(e'e'-'}

=

(o otherwise,

then its autocovariance-generating function would be

gY{z) = e(*)e(z-V-
The question is thus whether there always exist values of (\320\262\320\263,\320\2622,. . . , Bq, a-2) such

that [4.7.19] is satisfied:

e(zN(z-V
= S(*)S(z\"Vu + \320\244\320\230\320\263\021)^. [4.7.20]

It turns out that there do. Thus, the conjecture turns out to be correct that if two

moving average processesthat are uncorrelated with each other at all leads and
lags are added together, the result is a new moving averageprocesswhose order

is the larger of the order of the original two series:

MA(qi) + MA(q2)
= MA(max{qu q2}). [4.7.21]

A proof of this assertion, along with a constructive algorithm for achieving the
factorization in [4.7.20], will be provided in Chapter 13.

Adding Two Autoregressive Processes

Suppose now that X, and W, are two ARQ.) processes:

A
-

\321\202\320\263\320\246\320\245,
=

\320\270, [4.7.22]

A
- pL)W,= v,, [4.7.23]

where u, and v, are each white noise with u, uncorrelated with vT for all ( and \321\202.

Again suppose that we observe

Y,
= X, + W,

and want to forecast Y,+1 on the basis of its own lagged values.

If, by chance, X and W share the same autoregressive parameter, or

ir = P.
then [4.7.22] could simply be added directly to [4.7.23] to deduce

A
-

ttL)X, + A
-

TrL)Wt = u, + v,

or

A
-

\321\202\321\202\320\251\320\245,+ Wt) = u, + v,
But the sum u, + v, is white noise (as a specialcaseof result [4.7.21]), meaning
that Y, has an AR(l) representation

A
-

ttL)Y,
= e,.

In the more likely case that the autoregressive parameters it and p are dif-

different, then [4.7.22] can be multiplied by A
- pL):

A
-

pL)(l
-

ttL)X,
= A

-
pL)u,\\ [4.7.24]
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and similarly, [4.7.23] could be multiplied by A
- irL):

A
-

ttL)A
-

pL)Wt
= A

- ttL)v,. [4.7.25]

Adding [4.7.24] to [4.7.25] produces

A
- PL)A -

ttL)(X, + Wt) = A -
PL)u, + A

- ttL)v,. [4.7.26]
From [4.7.21], the right side of [4.7.26]has an MAQ.) representation. Thus, we

could write

A
-

\321\204\321\205\320\254
-

<f>2L2)Y,
= A + eL)et,

where

A
-

\321\204\320\263\320\254
-

\321\2042\320\2542)
= A

- pL)(l -
\342\226\240uL)

and

A + 6L)e, =
A

-
pL)u, + A

- ttL)v,.

In other words,

AR{\\) + AR{\\) =
ARMAB, 1). [4.7.27]

In general, adding an AR(pl) process

Tr(L)Xt =
\302\253\342\200\236

to an AR{p2) process with which it is uncorrelated at all leads and lags,

P(L)W,= v,,

produces an ARMA(px + p2, max{pu p2})process,

where

0(L)
= tt(L)P(L)

and

e, = p(L)u,+ tt(L)v,.

4.8. Wold's Decomposition and the Box-Jenkins
Modeling Philosophy

Wold's Decomposition

All of the covariance-stationaiy processesconsideredin Chapter 3 can be
written in the form

Y, =
M + 2 ^\320\265,_\320\273 [4.8.1]

/-\320\276

where e, is the white noise error one would make in forecasting Y, as a linear
function of lagged \320\243and where SJLoiA/ < \302\260\302\260wi{h <\320\224\320\276

= !\342\200\242

One might think that we were able to write all these processes in the form

of [4.8.1] because the discussion was restricted to a convenient class of models.

However, the following result establishes that the representation [4.8.1] is in fact

fundamental for any covariance-stationary time series.
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Proposition 4.1: (Wold's decomposition). Any zero-mean covariance-stationary

process \320\243,can be represented in the form

Y, = S \320\244,-\320\265,-,+ \"., [4.8.2]
/-\320\276

where \321\2040
= 1 and 2\"_0^? < \302\260\302\260.\320\223\320\271\320\265term e, is wftite noise and represents the error

made in forecasting Y, on the basis of a linear function of lagged Y:

e, -
Y,

-
\302\243(yjy,_1; \320\243,_2,. . .). [4.8.3]

The value of \320\272,is uncorrelated with
\302\243,_,for any j, though \320\272,can be predicted

arbitrarily well from a linear function of past values of Y:

\320\272,
=

\302\243\342\204\226_!,\320\243,_2,. . .).

The term \320\272,is called the linearly deterministic component of \320\243\342\200\236while 2\"_oi/fy\302\243,_y

is called the linearly indeterministic component. If \320\272,
= \320\236,then the process is called

purely linearly indeterministic.

This proposition was first proved by Wold A938).6 The proposition relies on

stable second moments of \320\243but makes no use of higher moments. It thus describes

only optimal linear forecasts of \320\243.

Finding the Wold representation in principle requires fitting an infinite num-

numberof parameters (i/^, \321\2042,. . .) to the data. With a finite number of observations

on (Ylt \320\2432,.. . , \320\243\320\263),this will never be possible.As a practical matter, we therefore
need to make some additional assumptions about the nature of (i/^, \321\2042<. . .). A

typical assumption in Chapter 3 was that \321\204(\320\254)can be expressed as the ratio of two

finite-order polynomials:

\321\204'\321\214
=

W)= 1 - w -
\321\214* w

[4'8'4]

Another approach, based on the presumed \"smoothness\" of the population spec-
spectrum, will be explored in Chapter 6.

The Box-Jenkins Modeling Philosophy
Many forecasters are persuaded of the benefits of parsimony, or using as few

parameters as possible.Boxand Jenkins A976) have been influential advocates of

this view. They noted that in practice, analysts end up replacing the true operators

6(L) and \321\204(\320\254)with estimates e(L) and <j>(L) based on the data. The more param-

parametersto estimate, the more room there is to go wrong.
Although complicated motiels can track the data very well over the historical

period for which parameters are estimated, they often perform poorly when used for

out-of-sample forecasting. For example, the 1960s saw the development of a number

of large macroeconometric models purporting to describe the economy using hundreds

of macroeconomic variables and equations. Part of the disillusionment with such efforts
was the discovery that univariate ARMA models with small values of p or q often

produced better forecasts than the big models (see for example Nelson, 1972).7 As
we shall see in later chapters, large size alone was hardly the only liability of these
large-scalemacroeconometricmodels.Even so, the claim that simpler models provide
more robust forecasts has a great many believers across disciplines.

\302\253SeeSargent A987, pp. 286-90) for a nice sketch of the intuition behind this result.

Tor more recent pessimistic evidence about current large-scale models, see Ashley A988).
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The approach to forecasting advocated by Box and Jenkins can be broken

down into four steps:

A) Transform the data, if necessary, so that the assumption of covariance-

stationarity is a reasonableone.
B) Make an initial guess of small values for p and q for an ARMA(p, q) model

that might describe the transformed series.
C) Estimate the parameters in <j>(L) and 6(L).

D) Perform diagnostic analysis to confirm that the model is indeed consistent

with the observed features of the data.

The first step, selecting a suitable transformation of the data, is discussedin

Chapter 15. For now we merely remark that for economic series that grow over
time, many researchers use the change in the natural logarithm of the raw data.

For example, if X, is the level of real GNP in year t, then

Y, = log AT,- log*,., [4.8.5]
might be the variable that an ARMA model purports to describe.

The third and fourth steps, estimation and diagnostic testing, will be discussed

in Chapters 5 and 14. Analysis of seasonal dynamics can also be an important part
of step 2 of the procedure; this is briefly discussed in Section 6.4. The remainder

of this section is devoted to an exposition of the second step in the Box-Jenkins

procedure on nonseasonal data, namely, selecting candidate values for p and q.s

Sample Autocorrelations

An important part of this selection procedure is to form an estimate
pt

of the

population autocorrelation pf. Recall that
pt-

was defined as

Pi
-

where

y,
= E{Y, -

M)(Y,_,
-

pulation

P,
=

\342\226\240\321\203/

A natural estimate of the population autocorrelation pf is provided by the

corresponding samplemoments:

where

\\ 2 (\320\233
-

\320\226\320\243.-j
-

\320\243) for/=0,1,2 \320\223-1 [4.8.6]
1 \320\223/+1

\320\243/\\ 21 \320\223-/+1

[4.8.7]

Note that even though only T - / observations are used to construct fy,
the

denominator in [4.8.6] is \320\223rather than T - /. Thus, for large /, expression [4.8.6]
shrinks the estimates toward zero, as indeed the population autocovariances go to
zero as / \342\200\224*\302\253,assuming covariance-stationarity. Also, the full sample of obser-
observations is used to construct y.

\"Box and Jenkins refer to this step as \"identification\" of the appropriate model. We avoid Box and
Jenkins's terminology, because \"identification\" has a quite different meaning for econometricians.
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Recall that if the data really follow an MA(q) process, then p, will be zero
for / > q. By contrast, if the data follow an AR(p) process,then p; will gradually
decay toward zero as a mixture of exponentials or damped sinusoids. One guide
for distinguishing between MA and AR representations, then, would be the decay
properties of pr Often, we are interested in a quick assessment of whether p,-

= 0

for/ = q + \\,q + 2 If the data were really generated by a Gaussian MA(q)
process, then the variance of the estimate pt could be approximated by9

^
11 + 2

J,
A for/ =

q + 1, q + 2, [4.8.8]

Thus, in particular, if we suspect that the data were generated by Gaussian white

noise, then p; for any / \320\2440 should lie between \302\2612/vT about 95% of the time.
In general, if there is autocorrelation in the process that generated the original

data {\320\243,},then the estimate pj will be correlated with p, for i \320\244j.10 Thus patterns
in the estimated

fa may represent sampling error rather than patterns in the true
p/.

Partial Autocorrelation

Another useful measure is the partial autocorrelation. The mth population

partial autocorrelation (denoted a\302\243\302\260)is defined as the last coefficient in a linear

projection of \320\243on its m most recent values (equation [4.3.7]):

?,+ 1|,
-

M
= \302\253<\"\302\260(\320\243,

-
M) + \302\253P(\320\243,-1

-
M) + \342\226\240\342\200\242\342\226\240+ \302\253\302\243\302\260(r.-\302\253+i

-
M).

We saw in equation [4.3.8] that the vector a(m)can be calculated from

f'~

Ti

Ti

To

Tm-l

Tm-2

To _

-1
~Ti

T2

_Tm__ Tm-1 Tm-2 '

Recall that if the data were really generated by an AR(p) process,only the p most
recent values of \320\243would be useful for forecasting. In this case, the projection
coefficients on y's more than p periods in the past are equal to zero:

a\302\243\"
= 0 for m = p + 1,p + 2,

By contrast, if the data really were generated by an MA(q) processwith gal,
then the partial autocorrelation aj^0 asymptotically approaches zero instead of

cutting off abruptly.
A natural estimate of the mth partial autocorrelation is the last coefficient in

an OLS regression of \321\203on a constant and its m most recent values:

where i, denotes the OLS regression residual. If the data were really generated by
an AR(p) process, then the sample estimate (aj^0) would have a variance around
the true value @) that could be approximated by11

Var(<*<*>) as 1/\320\223 for m = p + 1,p + 2

'See Box and Jenkins A976, p. 35).

10Again, see Box and Jenkins A976, p. 35).

\"Box and Jenkins A976, p. 65),
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Moreover,if the data were really generated by an AR(p) process, then af> and

&\320\2431
would be asymptotically independent for i, j > p.

Example 4.1
We illustrate the Box-Jenkins approach with seasonally adjusted quarterly data
on U.S. real GNP from 1947through 1988. The raw data (x,)were converted

to log changes (yt) as in [4.8.5]. Panel (a) of Figure 4.2 plots the sample
autocorrelations of \321\203(p,- for / = 0, 1, . . . , 20), while panel (b) displays the

sample partial autocorrelations (dj\342\204\2421for m = 0, 1, . . . , 20). Ninety-five

percent confidence bands (\302\2612/\\/\320\223)are plotted on both panels; for panel (a),
these are appropriate under the null hypothesis that the data are really white

noise, whereas for panel (b) these are appropriate if the data are really gen-

generated by an AR(p) process for p less than m.

1.2

-

-

11 - _ \320\274\342\226\240_ _
\342\226\240I\302\273 \342\226\240\342\226\240\342\226\240\342\226\240\342\226\240\342\226\240

10 20

(a) Sample autocorrelations

1.2

-1.2

I \342\226\240 - . _ _ \342\226\240

10
Lag (m)

20

(b) Samplepartial autocorrelations

FIGURE 4.2 Sample autocorrelations and partial autocorrelations for U.S. quar-

quarterly real GNP growth, 1947:11to 1988:IV. Ninety-five percent confidence intervals

are plotted as \302\2612/VT.
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The first two autocorrelations appear nonzero, suggesting that q = 2
would be needed to describe these data as coming from a moving average
process.On the other hand, the pattern of autocorrelations appears consistent

with the simple geometricdecayof an ARA) process,

Pi
=

\320\244'

with \321\204s 0.4. The partial autocorrelation could also be viewed as dying out
after one lag, also consistent with the ARA) hypothesis. Thus, one's initial

guess for a parsimonious model might be that GNP growth follows an ARA)
process, with MAB) as another possibility to be considered.

APPENDIX 4.A. Parallel BetweenOLSRegression
andLinearProjection
This appendix discusses the parallel between ordinary least squaresregression and linear

projection. Thisparallel is developed by introducing an artificial random variable specifically
constructed soas to have population moments identical to the sample moments of a particular

sample. Say that in some particular sample on which we intend to perform OLS we have

observed \320\223particular values for the explanatory vector, denoted x,, x2 xT. Consider
an artificial discrete-valued random variable ij that can take on only one of these particular

rvalues, each with probability A/\320\223):

P{g = x,} = 1/\320\223

P{| =
X2}

= 1/\320\223

P{g
=

xT}
= 1/\320\223.

Thus | is. an artificially constructed random variable whose population probability distri-
distribution is given by the empirical distribution function of x,. The population mean of the
random variable \\ is

\320\251)
=

\302\243\320\266,-\320\240\320\231
= x,} =

\\ \302\243x,.

Thus, the population mean of % equals the observed sample mean of the true random variable

X,. The population second moment of g is

if \320\266,\320\266,\\
i
if \320\266,\320\266,\\ [4.\320\220.1]
i f-i

which is the sample second moment of (x,, x2, . . . , xT).
We can similarly construct a second artificial variable \321\210that can take on one of the

discrete values (\321\203\320\263,y3, . . . , >v+i). Suppose that the joint distribution of \321\210and | is given

by

P{g =
\321\205\342\200\236\321\210= y,^} = 1/\320\223 for t = 1, 2, \320\223.

Then

fiwrt!. [4.A.2]

The coefficient for a linear projectionof \321\210on ^ is the value of \320\276that minimizes

\302\243(\"
-

<*'ZJ =
\\t (JW, -

\320\270'*,J. [4.\320\220.\320\227]

This is algebraically the same problem as choosing P so as to minimize [4.1.17]. Thus,
ordinary least squares regression (choosingP so as to minimize [4.1.17]) can be viewed as

a special caseof linear projection (choosing \320\276so as to minimize [4.A.3]). The value of a
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that minimizes [4.A.3] can be found from substituting the expressionsfor the population
moments of the artificial random variables (equations [4.A.1]and [4.A.2]) into the formula

for a linear projection(equation [4.1.13]):

Thus the formula for the OLS estimate b in [4.1.18] can be obtained as a special case of
the formula for the linear projection coefficient \320\276in [4.1.13].

Because linear projections and OLS regressionsshare the same mathematical struc-
structure, statements about one have a parallel in the other. This can be a useful device for
remembering resultsor confirming algebra. For example, the statement about population

moments,

[E(Y)f, [4.A.4]

has the sampleanalog

ityf'itiy, -\320\243\320\243+ GJ [4.\320\220.5]
7 i-i i i~i

with 7 ()\320\223\342\200\236\320\233
As a second example,suppose that we estimate a seriesof n OLS regressions, with

y,, the dependent variable for the ith regressionand x, \320\260[\320\272x 1) vector of explanatory

variables common to each regression. Let y, =
(yw y2l, . . . , \321\203\342\200\236,)'and write the regression

model as

\321\203,
=

\320\237'\321\205,+ u,

for \320\237'an (n x k) matrix of regression coefficients. Then the sample variance-covariance
matrix of the OLS residuals can be inferred from [4.1.24]:

\"\320\263!
\320\234-'

-
[i?,\302\253;]

-
[i| yx][i| x,x;]\"'[i| x,y;],

[4.A.6,

where fl,
=

\321\203,
-

\320\231'\321\205,and the ith row of \320\231'is given by

APPENDIX 4.B. Triangular Factorization
of the CovarianceMatrix for an MAA) Process

This appendix establishes that the triangular factorization of ft in [4.5.17] is given by [4.5.18]
and [4.5.19].

The magnitude a2 is simply a constant term that will end up multiplying every term
in the D matrix. Recognizing this, we can initially solve the factorization assuming that
a2 = 1, and then multiply the resulting D matrix by a2 to obtain the result for the general
case. The A, 1) element of D (ignoring the factor a2) is given by the A, 1) element of ft:
d\\\\

= A + 92).To put a zero in the B, 1) position of ft, we multiply the first row of ft
by 9/A + \320\2622)and subtract the result from the second; hence, a21

= 9/A + \320\2622).This

operation changes the B, 2) element of ft to

To put a zero in the C,2) element of ft, the secondrow of the new matrix must be multiplied
by 6/CI22 and then subtracted from the third row; hence,

\342\200\236,, 8A + \320\2622)
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This changes the C, 3) element to

9\")
~

1 + \320\2622+ \320\2624

A + 82 + 8\") + 82A + 92 + 9\")
-

92A + 92)
1 + \320\2622+ \320\262*

1 + \320\2622+ \320\2624+ \320\2626
=

1 + \320\2622+ \320\262*
'

In general, for the ith row,

+ \320\2622+ \320\2624+
\302\253\342\200\242\342\200\236=

l + \320\2622+ \320\2624+ \342\200\242\342\226\240\342\226\240+ \320\2622\"-1'

\320\242\320\276put a zero in the (i + 1, \320\2631)position, multiply by

8[1 + \320\2622+ \320\2624+ \342\226\240\342\200\242\342\226\240+_

and subtract from the (i1 + l)th row, producing

d n + m \022[i + \022 + *4 +

(i + \320\2622+ 8\" + \342\200\242\342\200\242\342\226\240+ a2-) + 82(i + e2 + e4 + \342\200\242\342\226\240\342\226\240+ e2i)
l + \320\2622+ \320\262*+ \342\226\240\342\226\240\342\226\240+ \320\26221

_ 92[1 + 82 + 8\" + \342\226\240\342\226\240\342\226\240+ \320\2621\"-1']

1 + \320\2622+ \320\2624+ \342\200\242\342\200\242\342\200\242+ \320\26221

1 + 8\320\263+ g\" + \342\226\240\342\226\240\342\226\240+ 8\320\263\321\214>1)

1 + \320\2622+ \320\262\"+ \342\200\242\342\200\242\342\200\242+ \320\26221'
'

Chapter 4 Exercises

4.1. Use formula [4.3.6] to show that for a covariance-stationary process,the projection
of \320\243,\321\2021on a constant and Y, is given by

where /i.
=

\302\243(\320\243,)and p, =
71/70-

(a) Show that for the ARA) process,this reproduces equation [4.2.19] for s = 1.
(b) Show that for the MA(l) process, this reproduces equation [4.5.20] for n = 2.

(c) Show that for an ARB) process,the implied forecast is

/t + [\321\204,/A
-

\302\253\320\236\320\232\320\243,
-

/\302\273)\342\226\240

Is the error associatedwith this forecast correlated with Y,1 Is it correlatedwith \320\243,_,?

4.2. Verify equation [4.3.3].
4.3. Find the triangular factorization of the following matrix:

\021-2 31
-2 6 -4 .

. 3 -4 12 J

4.4. Can the coefficient on Y2 from a linear projectionof \320\2434on Y,, Y2, and Yl be found
from the D, 2) element of the matrix A from the triangular factorization of ft =

\302\243(YY')?

4.5. Suppose that X, follows an AR(j>) process and v, is a white noise process that is

uncorrelated with X,.,- for ally. Show that the sum

\320\243,
= X, + v,

follows an ARMA(p, p) process.
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4.6. Generalize Exercise 4.5 to deduce that if one adds together an AR(p) process with
an MA(q) process and if these two processes are uncorrelated with each other at all leads
and lags, then the result is an ARMA(j>, p + q) process.
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Maximum Likelihood

Estimation

5.1. Introduction
Consider an ARMA model of the form

Y,= \321\201+ 0,Y,_, + <kY,_2 + \342\200\242\342\226\240\342\200\242+
\321\204\321\200\320\243,_\321\200

+ e, + 0,e,_, [5\320\233\320\233]

+ e2e,_2 + \342\200\242\342\200\242\342\200\242+
\320\262\321\207\320\265,.\321\207,

with e, white noise:

E(e,) = 0 [5.1.2]

\320\240 / p.i.3]
1.0 otherwise. L J

The previous chapters assumed that the population parameters (\321\201,\321\204\321\205 \321\204\321\200,

\320\262\321\212. . . , \320\261,,\320\276-2)were known and showed how population moments such as E(Y,Y,_;)

and linear forecasts E{Yl+s\\Yn Y,_lt . . .) could be calculated as functions of these

population parameters.This chapter explores how to estimate the values of (\321\201,\321\204\320\270

. . . , \321\204\321\200,\320\262\320\273,. . . , \320\262\321\207,a2) on the basis of observations on Y.

The primary principle on which estimation will be basedis maximum likeli-

likelihood. Let \320\262=
(\321\201,\321\204\321\205 \321\204\321\200,\320\262\321\205,. . . , \320\262\321\207,\321\201\320\2632)'denote the vector of population

parameters. Suppose we have observed a sample of size T (ylt y2, \342\200\242\342\200\242\342\226\240, \320\243\321\202)-The

approach will be to calculate the probability density

frr.Yr-, \320\263,(\320\243\321\202,\320\243\321\202-i \320\243\302\273\320\262), [5.1.4]

which might loosely be viewed as the probability of having observed this particular
sample. The maximum likelihood estimate (MLE) of \320\262is the value for which this

sample is most likely to have been observed; that is, it is the value of \320\262that

maximizes [5.1.4].
This approach requires specifying a particular distribution for the white noise

process e,. Typically we will assume that e, is Gaussian white noise:

e, ~ i.i.d. N@, a2). [5.1.5]

Although this assumption is strong, the estimates of \320\262that result from it will often

turn out to be sensiblefor non-Gaussian processes as well.

Finding maximum likelihood estimates conceptually involves two steps. First,
the likelihood function [5.1.4] must be calculated.Second,values of \320\262must be

found that maximize this function. This chapter is organized around these two

steps. Sections5.2 through 5.6 show how to calculate the likelihood function for

different Gaussian ARMA specifications, while subsequent sections review general

techniques for numerical optimization.
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5.2. The Likelihood Functionfor a Gaussian
ARA) Process

Evaluating the Likelihood Function
A Gaussian ARA) process takes the form

Y, = \321\201+ 0\320\243,_, + \320\265\342\200\236 , [5.2.1]

with e, ~ i.i.d. N@, cr2). For this case, the vector of population parameters to be

estimated consists of \320\262=
(\321\201,\321\204,cr2)'.

Consider the probability distribution of Yu the first observation in the sample.
From equations [3.4.3]and [3.4.4] this is a random variable with mean

E(Y,) =
M

= c/(l
-

\321\204)

and variance

\320\225(\320\243,
- /aJ =

<\320\2632/A
-

\320\2442).

Since {ejr. _\302\253is Gaussian, \320\2431is also Gaussian. Hence, the density of the first
observation takes the form

/\342\204\226\320\262)
=

/\342\204\226\321\201,0, \320\276-2)

[
l [5.2.2]

l -
\320\2442) y[ 2<\321\2022/A

-
\321\2042)

Next consider the distribution of the second observation Y2 conditional on observing

Yx = yx. From [5.2.1],

\320\2432
= \321\201+ \321\204Yl+ \320\265\320\263. [5.2.3]

Conditioning on \320\243\320\263
= yx means treating the random variable \320\243,as if it were the

deterministic constant yx. For this case, [5.2.3]gives Y2 as the constant (\321\201+ \321\204\321\203^

plus the N@, cr2)variable e2. Hence,

\342\204\226i
=

\320\243\320\264
~

\320\251\321\201+ \321\204\320\2431),cr2),

meaning

[5-2.4]

The joint density of observations 1 and 2 is then just the product of [5.2.4]and [5.2.2]:

\320\233\321\213.\320\236'\320\260,\320\243\320\271\320\262)
=

\320\223\321\203^\320\253\320\243\321\205;\320\262)-/\321\203,(\321\203,;\320\262).

Similarly, the distribution of the third observation conditional on the first two is

from which

/\321\203\342\200\236\321\2032.\321\203,\320\241\320\243\320\267>\320\243\320\263.\320\243\321\214\320\262)
=

/\321\203\320\2671\321\2031.\321\2031(\320\243\320\267|\320\243\320\263,\320\243\321\214\320\262)-/\321\2032,\321\203,(\321\2032.\320\243\320\270\320\262)-

In general, the values of Ylt Y2 Y,_i matter for Y, only through the
value of \320\243,_!,and the density of observation (conditional on the preceding ( - 1
observations is given by

VHro* y\\_
Icr2
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The joint density of the first tobservations is then

,,,^ ,
=

/y,|y,_,Cy,l;y,-i; 9)-fYl_,.Y,.2 Y,(y,-u \320\243,-\320\263 \320\243i,\320\262)-

The likelihood of the complete sample can thus be calculated as

[5.2.6]

fvr.Yr-1 \321\203,(\320\243\321\202,\320\243\321\202-\320\263\320\243\320\277\320\262)
=

fyfr; \320\262)-\320\237\320\233\321\207\321\203,.,\320\253\320\233-1;\302\273)\342\200\242[5-2.7]

The log likelihood function (denoted \302\243\302\243(\320\262))can be found by taking logs of [5.2.7]:

2(8) = log/y.Ou \320\262)+ S log/y,|y,.I0'Jy,-i; \302\273)\342\200\242[5.2.8]

Clearly, the value of \320\262that maximizes [5.2.8] is identical to the value that
maximizes [5.2.7].However, Section 5.8 presents a number of useful results that

can be calculated as a by-product of the maximization if one always poses the

problem as maximization of the log likelihood function [5.2.8] rather than the
likelihood function [5.2.7].

Substituting [5.2.2] and [5.2.5] into [5.2.8], the log likelihood for a sample
of size T from a Gaussian ARA) process is seen to be

2F) = -JlogBir) -

{\321\203,
-

[c/(l
-

\321\204)]}2

2<\321\2022/A
-

\321\2042)

-
\321\2042\321\2042)]

logBir) [5.2.9]

An Alternative Expression for the Likelihood Function

A different description of the likelihood function for a sample of size \320\223from

a Gaussian ARA) processis sometimes useful. Collect the full set of observations
in \320\260(\320\223x 1) vector,

\320\243
s

(\320\2431.\320\2432.\342\200\242\342\200\242\342\200\242,\320\243\321\202)'-
\321\201\302\273\321\207

This vector could be viewed as a single realization from a \320\223-dimensional Gaussian

distribution. The mean of this (\320\223\321\2051) vector is

[5.2.10]

where, as before, \321\206
= c/(l

-
\321\204).In vector form, [5.2.10] could be written

E(Y) =
\320\246,

where |\320\273denotes the (\320\223\321\2051) vector on the right side of [5.2.10]. The variance-
covariance matrix of Y is given by

( C
-

\321\206)']
= \320\237, [5.2.11]
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\302\243(\320\2432
-

\302\243(\320\2432
-

\302\243(\320\2432
-

where

a

[5.2.12]
The elements of this matrix correspond to autocovariances of Y. Recall that the

/th autocovariance for an ARA) process is given by

E(Y,
- ii){Y,-, -

fi)
=

<\321\202\320\263\321\2044{\\
-

\321\204\320\263). [5.2.13]

Hence, [5.2.12] can be written as

\320\236= o-2V, [5.2.14]

where

1 \321\204 \321\2042
\342\200\242\342\226\240\342\226\240

\321\204\321\202

V = r-^\342\200\224, \320\2442 \320\244 1 \342\200\242\342\200\242\342\200\242
\320\244\320\223~3. [5.2.15]

L07\"-1 \321\204\321\202~2\321\204\321\202~3
\342\226\240\342\226\240\342\226\2401 _

Viewing the observed sample \321\203as a single draw from a N(p,, fl) distribution,

the sample likelihood could be written down immediately from the formula for the

multivariate Gaussian density:

\320\234\320\223,\320\262)
= Bir)-ra Ifl-'l\022 exp[4(y

-
\320\234.)'\320\237-\320\247\320\243

-
V-)], [5-2.16]

with log likelihood

2(8) = (- 272) logBir) + \\ 1\320\276\321\221|\320\237\"\320\247
- \\{j - v.L\\-\\y -

\321\206). [5.2.17]

Evidently, [5.2.17] and [5.2.9]must represent the identical function of (yvy2, \342\226\240\342\226\240\342\226\240,

yT). To verify that this is indeed the case, define

1 -
\321\204* 0 0 \342\200\242\342\200\242\342\200\2420 0'

-\321\204 1 0 \342\200\242\342\200\242\342\200\2420 0

0 -\321\204 \\ ... \320\2760L =
{TXT)

0

It is straightforward to show that1

0 0 -A lJ

L'L = V1,

[5.2.18]

[5.2.19]
'By direct multiplication, one calculates

VI -
\320\2442*V1 -

\320\2442

0 A -
\321\2042)

LV = \342\200\224\342\200\2240
1 -

\321\2042)

A
-

\321\2042)

A
-

and premultiplying this by L' produces the (T x T) identity matrix. Thus, L'LV - IT, confirming

[5.2.19].
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implying from [5.2.14] that

ft1 = <r-2L'L.

Substituting [5.2.20] into [5.2.17] results in

<g@)
= (- \320\223/2)logBir) + Hog|o--2L'L|

-
*(y

Define the (\320\223\321\2051) vector \321\203to be

\321\203
= L(y

- ja)

VI -
\321\204\320\2630 0

-\321\204 1

[5.2.20]

[5.2.21]

0
0

-\321\204 1

0

0

0

-\320\244

0

0

0

!_

~
)>,

\320\243\320\263

\320\243\321\212

-
\320\274

-
\320\274

-
\320\274

-
\320\274- [5.2.22]

Substituting /a = c/(l -
\321\204),this becomes

\320\243\320\263
~ c ~

\320\244\320\2431

\320\243\321\212~\321\201-\320\244\320\243\320\263

\321\203\321\202
- \321\201-

\321\204\321\203\321\202_1

The last term in [5.2.21] can thus be written

-
\321\204*)[\320\2431

-
c/(l

- [5.2.23]

The middle term in [5.2.21] is similarly

i loglo-^L'Ll = I log{o-\302\253-
\342\200\242

|L'L|}

= -\\ log <r2T + i log|L'L| [5.2.24]
= (-272)logo-2+ log|L|,

where use has been made of equations [A.4.8], [A.4.9], and [A.4.11] in the Math-

Mathematical Review (Appendix A) at the end of the book. Moreover, since L is lower

triangular, its determinant is given by the product of the terms along the principal
diagonal: |L|

= \320\273/1
~

\320\2442-Thus, [5.2.24] states that

i log|o--2L'L|= (-272)log a2 + I log(l
-

\321\2042). [5.2.25]

Substituting [5.2.23] and [5.2.25] into [5,2.21] reproduces [5.2.9]. Thus, equations

[5.2.17] and [5.2.9] are just two different expressions for the same magnitude, as
claimed. Either expression accurately describes the log likelihood function.
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Expression [5.2.17] requires inverting \320\260(\320\223\321\205\320\242)matrix, whereas [5.2.9] does
not. Thus, expression [5.2.9] is clearly to be preferred for computations. It avoids

inverting \320\260(\320\223\321\205\320\223)matrix by writing Y, as the sum of a forecast (c + <j>Y,_^ and

a forecast error (e,). Theforecast error is independent from previous observations

by construction, so the log of its density is simply added to the log likelihood of

the preceding observations. This approach is known as a prediction-error decom-
decomposition of the likelihood function.

Exact Maximum Likelihood Estimatesfor the Gaussian

ARG) Process

The MLE \320\262is the value for which [5.2.9] is maximized. In principle, this

requires differentiating [5.2.9] and setting the result equal to zero. In practice,
when an attempt is made to carry this out, the result is a system of nonlinear

equations in \320\262and (yu y2, . . . , yr) for which there is no simple solution for \320\262in

terms of (ylt y2 yr)- Maximization of [5.2.9] thus requires iterative or nu-
numerical procedures described in Section 5.7.

Conditional Maximum Likelihood Estimates

An alternative to numerical maximization of the exact likelihood function is
to regard the value of >>, as deterministic and maximize the likelihood conditioned
on the first observation,

r

/\321\203\321\202\321\207\320\243,-..,\321\2032|\321\203,\320\241\320\243\320\263,\320\243\321\202-i,\342\226\240\342\226\240\342\226\240, \320\243\320\263\\\320\243\320\270\320\262)
=

\320\237\320\233\320\274\321\203.-.\320\234\320\233-\321\214\320\262). [5.2.26]
(=2

the objective then being to maximize

'Og/y^.y,.., \321\2032\\\321\203\302\243\320\243\321\202,\320\243\321\202-i,\342\226\240\342\226\240\342\226\240,\320\243\320\263\\\320\243\320\270\320\262)

=
-[(\320\223

- 1)/2] logBw) -
[(\320\223

-
1)/2] logCcr2) [5.2.27]

_ \321\203
\320\223(\320\243,

~ \321\201-
0\320\243,-\302\273)']

AL \320\253 \320\243

Maximization of [5.2.27] with respect to \321\201and \321\204is equivalent to minimization

of

r

2 (\320\233
- \321\201-

\321\204\321\203.-\320\263J, [5.2.28]
i-\320\263

which is achieved by an ordinary least squares (OLS) regression of y, on a constant
and its own lagged value. The conditional maximum likelihood estimates of \321\201and

\321\204are therefore given by

~T - 1 2v,

where 2 denotes summation over t = 2, 3, . . . , \320\223.

The conditional maximum likelihood estimate of the innovation variance is
found by differentiating [5.2.27] with respect to a2 and setting the result equal to
zero:

T~i\342\200\224
+ 2

\342\200\224
71\342\200\224tzl-

= 0,
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or

&2 = \320\243,-\320\263J

T - 1

In other words, the conditional MLE is the average squared residual from the OLS

regression [5.2.28].
In contrast to exact maximum likelihood estimates, the conditional maximum

likelihood estimates are thus trivial to compute. Moreover, if the sample size \320\223is

sufficiently large, the first observation makes a negligible contribution to the total

likelihood. The exactMLEand conditional MLE turn out to have the same large-
sample distribution, provided that \\\321\204\\< 1. And when \\\321\204\\> 1, the conditional MLE
continues to provide consistent estimates, whereas maximization of [5.2.9] does
not. This is because [5.2.9] is derived from [5.2.2], which does not accurately

describe the density of Yx when \\\321\204\\> 1. For these reasons, in most applications
the parameters of an autoregression are estimated by OLS (conditional maximum

likelihood) rather than exact maximum likelihood.

5.3. The Likelihood Functionfor a Gaussian
AR(p)Process
This section discusses a Gaussian AR(p) process,

\320\243,
= \321\201+ 0,\320\243,_, + &Y,_2 + \342\200\242\342\200\242\342\200\242+

\321\204\321\200\320\243,_\321\200
+ \320\265\342\200\236[5.3.1]

with e, ~ i.i.d. N@, a2). In this case, the vector of population parameters to be

estimated is \320\262=
(\321\201,\321\204\320\270<hi \342\226\240\342\200\242\342\200\242, \320\244\320\240,\320\2763)'-

Evaluating the Likelihood Function

A combination of the two methods described for the AR{\\) case is used to
calculate the likelihood function for a sampleof size T for an AR(p) process.The
first p observations in the sample (vb v2,. . . ,yp)

are collected in a (p x 1)vector
yp, which is viewed as the realization of a p-dimensional Gaussian variable. The

mean of this vector is
\321\206.\321\200,which denotes a (p x 1) vectoreachof whose elements

is given by

=
c/(l

-
\321\204,

-
\321\204\320\263 \321\204\321\200).

Let \320\265\321\2022\\\321\200denote the (p x p) variance-covariance matrix of (Yu Y2, .

Ai)
\342\226\240\342\226\240\342\200\242

E(Yl
-

\342\226\240\342\200\242\342\200\242
E(Y2

-

[5.3.2]
. , Yp):

E(Y2
-

E(Y2
-

E(Yp
-

\320\2201)(\320\243,
-

aO E(Yp
-

fL)(Y2
-

fi)
\342\200\242\342\200\242\342\200\242

E(YP
-

[5.3.3]
For example,for a first-order autoregression (p = 1),Vp is the scalar 1/A -

\321\2042).

For a general pth-order autoregression,

To \320\243\\ 72 \320\243\321\200-i'

\320\243\\ 7\320\276 \320\243\\ \320\243\321\200-2

\321\201\321\2022\\\321\200
= 72 \320\243\\ 7\320\276

\342\200\242\342\200\242\342\200\242
7\321\200-\320\267

_\320\243\320\240-1\320\243\321\200-2\320\243\321\200-\320\267
- - \342\226\240

7\320\276_
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where ys, the /th autocovariance for an AR{p) process, can be calculatedusing the

methods in Chapter 3. The density of the first p observations is then that of a

N(fJip, \320\2602\\\321\200)variable:

frp.Yp., \320\223,(\320\243\321\200,\320\243\321\200-1,
\342\226\240\342\226\240\342\226\240.W\302\253)

=
B*)-*V-*V,-4ie

exp[ -^(y,
- ^)'V;i(y, -

l*

where use has been madeof result [A.4.8].
For the remaining observations in the sample, (yp+1, yp+2, \342\226\240\342\226\240\342\226\240, yT), the

prediction-error decomposition can be used.Conditional on the first t - 1 obser-
observations, the rth observation is Gaussian with mean

\321\201+ 0i>,_i + fay ,-2 + \342\226\240\342\226\240\342\200\242+
\321\204\321\200\321\203,_\321\200

and variance a2. Only the p most recent observations matter for this distribution.
Hence, for t > p,

=
/\321\203\320\233\320\243,_1.\320\243,_2,...,\320\243,.,\320\253?\320\263-1.?,-2> \342\226\240\342\226\240\342\226\240- \320\233-,!\320\262)

1 [-(\320\243,
- \321\201- fry,-, - (fey,-2 - \342\200\242\342\200\242\342\226\240-

(ft,?,.,J]=
vi^expL 2? J-

The likelihood function for the complete sampleis then

/yr,yr.,,...,yl(>r. >r-i\302\273\342\226\240\342\226\240\342\200\242. \320\243\\>\320\262)

=
/\321\203,.\320\243,-1.....\320\2431(\320\243\321\200>\320\243\321\200-\320\237...,\320\243\321\205\\\320\222)

[5 3
\342\200\236

\320\263
I \342\226\240\342\226\240J

\321\205\320\237/yjy,.,,y,-,,....y,.,(>J>r-i. \321\203,-\320\263,\342\226\240\342\226\240\342\226\240,\321\203,-\320\240;\320\262),
t-p+1

and the log

2F)

likelihood is

= log fy \321\203

P |\320\273\342\200\236/'- ~
2 g^

1

T- p
2

- t-

therefore

y (\320\243\321\202*\320\243\321\202\342\200\224

2ir) \342\200\224lofffrr'

,
-

^)'v-(y,

\320\243\320\277\320\260\320\241\320\243\321\202\320\220
lOg^ZTTJ

(\320\243.-\320\241-fay,

ft . '|.) + -10

-
P

2

'.;\320\262)

_
Sl p I

^;

\320\243,-2
~ \342\200\242\342\200\242\342\200\242~

\320\244\321\200\320\243,-\321\200\320\243
\342\200\242\321\203

2
= - i

logBff)
- - log(o3) + -

loglV\021!

V (\320\243>~c
-

\320\244\320\263\320\243'-i
~

<\320\254\320\243'-2
-----

\320\244\320\240\320\243,-\320\240J

Evaluation of [5.3.6] requires inverting the (p x p) matrix Vp. Denote the
row i, column/ elementof V^1 by v*'(p). Galbraith and Galbraith A974, equation
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16, p. 70) showed that

\320\223'^1 \"\302\245*'' 1= E 0*0*+/-/
~ 2j \320\244\320\272\320\244\320\272+j-t

\\_k-0 k-p + l-i J
[5.3.7]

where \321\2040
s \342\200\2241. Values of v'J(p) for i > j can be inferred from the fact that V\021

is symmetric (v*(p) =
\321\203*'(\321\200)).For example, for an ARA) process,V\021 is a scalar

whose value is found by taking i = j = p = 1:

'\342\226\240\320\247.:
0*0*

~ 2 =
@2o

-
0?) =

A
-

02).

Thus o^Vj
=

\302\243\320\2632/A
-

\321\2042),which indeed reproduces the formula for the variance
of anAi?(l) process.Forp = 2, equation [5.3.7] implies

= \320\223

L -@i

from which one readily calculates

and

(y2 -

-
\320\244\\\\

-
1*2)

X {A
-

The exact log likelihood for a Gaussian \320\233\320\233B)process is thus given by

=
-|logBir)

-
^ \321\2042\320\243[A

-
4tf

-
\321\204\\)}

x {A
-

-
fi)(y2

-
[5.3.8]

2a2

where /u,
= c/(l

- 0t -
0\320\267)-

Conditional Maximum Likelihood Estimates

Maximization of the exact log likelihood for an AR(p) process [5.3.6]must

be accomplished numerically. In contrast, the log of the likelihood conditional on

the first p observations assumes the simple form

^-i i>*,|i> \320\263,(\320\243\321\202<\320\243\321\202-i,\342\226\240\342\226\240\342\226\240,

rp rp

\342\200\224\\ogBir)
\342\200\224

log(o-2)

P, \342\226\240\342\226\240\342\226\240,\320\2431,\320\262)

\321\203

i-p+1

~ c ~
\320\2431-2

-----
\320\244\320\240\321\203,-\320\240J

2a2
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The values of c, fa, fa, \342\200\242\342\226\240\342\226\240, \321\204\321\200
that maximize [5.3.9] are the same as those that

minimize

2 (\320\243.-\320\241-\321\204\321\205\320\243.-x
~

fay,-2 \320\244\320\240\320\243,-\320\240\320\243.[5.3.10]
\320\223-/7+ 1

Thus, the conditional maximum likelihood estimates of these parameters can be
obtained from an OLS regression ofy, on a constant and p of its own lagged values.
The conditional maximum likelihood estimate of a2 turns out to be the average
squared residual from this regression:

1 T

&\342\226\240=
~\342\200\224 2 (\321\203,- \320\263-fay.-i

- fay,-2 - \342\200\242\342\200\242\342\200\242-
\321\204\321\200\321\203,-\321\200J.l \342\200\224

p fP+i

The exact maximum likelihood estimates and the conditional maximum likelihood

estimates again have the same large-sample distribution.

Maximum Likelihood Estimation for Non-Gaussian Time

Series

We noted in Chapter 4 that an OLS regression of a variable on a constant

and p of its lags would yield a consistent estimate of the coefficients of the linear

projection,

\302\243Y,_b \320\243,_2,

provided that the process is ergodicfor second moments. This OLS regression also
maximizes the Gaussian conditional log likelihood [5.3.9].Thus, even if the process
is non-Gaussian, if we mistakenly form a Gaussian log likelihood function and
maximize it, the resulting estimates F, fa, fa, . . . , \321\204\321\200)will provide consistent
estimates of the population parameters in [5.3.1].

An estimate that maximizes a misspecified likelihood function (for example,
an MLE calculated under the assumption of a Gaussian process when the true data

are non-Gaussian) is known as a quasi-maximum likelihood estimate. Sometimes,
as turns out to be the case here, quasi-maximum likelihood estimation provides
consistent estimates of the population parameters of interest. However, standard

errors for the estimated coefficients that are calculated under the Gaussianity

assumption need not be correct if the true data are non-Gaussian.2

Alternatively, if the raw data are non-Gaussian, sometimes a simple trans-
transformation such as taking logs will produce a Gaussian time series. For a positive

random variable Y,, Box and Cox A964) proposed the general classof transfor-

transformations

b-r-- for \320\220\320\2440

(

r
A

log Y, for A = 0.

One approach is to pick a particular value of A and maximize the likelihood function

for \320\243;\320\220)under the assumption that Y^A) is a Gaussian ARMA process.Thevalue

of A that is associated with the highest value of the maximized likelihood is taken
as the best transformation. However, Nelson and Granger A979) reported dis-
discouraging results from this method in practice.

2These points were first raised by White A982) and are discussed further in Sections 5.8 and 14.4.
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Li and McLeod A988) and Janacek and Swift A990) describedapproaches
to maximum likelihood estimation for somenon-Gaussian ARMA models. Martin

A981) discussed robust time series estimation for contaminated data.

5.4. The Likelihood Function for a Gaussian
MAA) Process

Conditional Likelihood Function

Calculation of the likelihood function for an autoregression turned out to be
much simpler if we conditioned on initial values for the Y's. Similarly, calculation

of the likelihood function for a moving average processis simpler if we condition
on initial values for the e's.

Considerthe Gaussian MAA) process

Y, =
\321\206+ e, + \320\265\320\265,.! [5.4.1]

with e, ~ i.i.d. N@, a2). Let \320\262= (/u, \320\262,a2)' denote the population parameters to
be estimated. If the value of \302\243,_!were known with certainty, then

or

/\302\273,.\342\204\226-i; \320\262)
=

Suppose that we knew for certain that e0 = 0. Then

(Yj\302\253b
- 0) ~

Moreover,given observation of yu the value of ex is then known with certainty as

well:

\302\243i
=

\320\243\321\205
~

allowing application of [5.4.2]again:

n, H -
ft \302\253)

'']\342\226\240

Since ex is known with certainty, e2 can be calculated from

e2 =
\320\243\320\263

~
/\"

-
Sex-

Proceeding in this fashion, it is clear that given knowledge that e0
= 0, the full

sequence {eu e2,. . . , eT}can be calculated from {yv y2, . . . , yT] by iterating on

e, = y,- \320\246-\320\262\320\265,_! [5.4.3]

for t = 1, 2, . . . , T, starting from e0 = 0. The conditional density of the rth

observation can then be calculated from [5.4.2] as

/\321\203,|\321\203,-\342\200\236\321\203,-2\321\203\342\200\236.\320\276-\320\276\320\253>\302\273-1,\320\243,-\320\263,\342\226\240\342\226\240\342\226\240,\320\2431,\320\265\320\276
= 0; \320\262)

=
/\321\203^\320\253\320\265,-!-,\320\262) [5.4.4]
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The sample likelihood would then be the product of these individual densities:

)\320\237
(-2

\302\273-i.>\302\273-2.-\342\226\240\342\226\240,\320\243\320\270\302\243o
= 0;6).

The conditional log likelihood is

\302\2436F)
= log fy^Yr-i \321\203,|.\342\200\236-\320\276(>\320\263,\320\243\321\202-\321\212\342\200\242\342\200\242\342\200\242, >i|e0 = 0; 6) [545]

For a particular numerical value of 6, we thus calculate the sequence of e's
implied by the data from [5.4.3].Theconditional log likelihood [5.4.5] is then a

function of the sum of squares of these e's. Although it is simple to program this

iteration by computer, the log likelihood is a fairly complicated nonlinear function

of /u, and \320\262,so that an analytical expression for the maximum likelihood estimates
of /u, and \320\262is not readily calculated. Hence, even the conditional maximum like-
likelihood estimates for an MAA) processmust be found by numerical optimization.

Iteration on [5.4.3] from an arbitrary starting value of e0 will result in

If |\320\262|is substantially less than unity, the effect of imposing e0
= 0 will quickly die

out and the conditional likelihood [5.4.4] will give a good approximation to the

unconditional likelihood for a reasonably large sample size. By contrast, if |0| > 1,
the consequencesof imposing e0

= 0 accumulate over time. The conditional ap-

approach is not reasonable in such a case. If numerical optimization of [5.4.5] results
in a value of \320\262that exceeds 1 in absolute value, the results must be discarded.The
numerical optimization should be attempted again with the reciprocal of \320\262used as

a starting value for the numerical search procedure.

Exact LikelihoodFunction
Two convenient algorithms are available for calculating the exact likelihood

function for a Gaussian MA(\\) process. One approach is to use the Kalman filter

discussed in Chapter 13. A second approach uses the triangular factorization of

the variance-covariance matrix. The second approach is describedhere:
As in Section 5.2, the observations on \321\203can be collected in a (T x 1) vector

\320\243
=

{\321\203\320\270\320\243\320\263,\342\226\240\342\226\240\342\226\240. \320\243\321\202\320\243witn mean (a
= (/u, /u, . , , , /u)' and (T x T) variance-

covariance matrix

ft =
\302\243(Y

-
n)(Y

- ,*)'.
The variance-covariance matrix for T consecutive draws from an MAA) processis

\"

A + \320\2622) \320\262 0 \342\200\242\342\200\242\342\200\2420

\320\262 A + \320\2622) \320\262 \342\226\240\342\226\240\342\226\2400

ft = \320\2602 0 \320\262 A + \320\2622)
\342\226\240\342\226\240\342\226\2400

0 0 0

The likelihood function is then

/\321\203(\321\203;\320\262)
= B7r)-ra|ft|-1/2 exp[-i(y

-
V
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A prediction-error decomposition of the likelihood is provided from the tri-

triangular factorization of ft,
ft =

ADA', [5.4.7]

where A is the lower triangular matrix given in [4.5.18] and D is the diagonal matrix
in [4.5.19]. Substituting [5.4.7] into [5.4.6] gives

1'2

[5.4.8]
x \320\265\321\205\321\200[\320\247(\321\203

-
(^'[\320\220\320\223\320\247^\320\220-\320\247\320\243

_
\321\206)].

But A is a lower triangular matrix with Is along the principal diagonal. Hence,
|A| = 1 and

|ADA'|
= |A|-|D|.|A'| = |D|.

Further defining

\321\203
=

\320\220\"\320\247\321\203
-

\320\246), [5.4.9]

the likelihood [5.4.8] can be written

/y(y, \320\262)
=

B\321\202\320\263)-\321\202\320\276IDI\021'2 exp[-*y'D-iy]. [5.4.10]

Notice that [5.4.9] implies

Ay =
\321\203

- (i,

The first row of this system states that yx =
yx

-
/u,, while the rth row implies that

0[1 + \320\2622+ \320\2624+ \342\200\242\342\200\242\342\200\242+ \320\2612\"-2']. ....\342\200\236
\320\243'

=
\320\243'

~
\302\273

~

1 + \320\2622+ P + \342\226\240\342\226\240\342\200\242+ 92\"-\320\246
*-'\342\226\240 [5-4\320\2331]

The vector \321\203can thus be calculated by iterating on [5.4.11] for f = 2, 3, . . . , T
starting from yy =\342\226\240yl

-
\320\264.The variable y, has the interpretation as the residual

from a linear projection ofy, on a constant and y,_u >,_2, . . . , yit while the rth

diagonal elementof D gives the MSE of this linear projection:

SinceDis diagonal, its determinant is the product of the terms along the principal

diagonal,

|D| =
\320\237du. [5.4.13]

while the inverse of D is obtained by taking reciprocals of the terms along the

principal diagonal. Hence,

\320\243'!)\021*-Sj- [5.4.14]1=1a,,

Substituting [5.4.13] and [5.4.14] into [5.4.10],the likelihood function is

My, \320\262)
=

B\302\273\320\263)-\320\263\320\260[\320\277d\302\253] exp[ ~\\
2

!]\342\200\242
\320\2235-4-15!

The exact log likelihood for a Gaussian MA{\\) process is therefore

2F) = log/Y(y; 6) = -f logB\302\273)
-

\\ 2 log(d,,)
-

\\ f yf. [5.4.16]2 2,-i 2 (=i d,t

Given numerical values for /u, 9, and a2, the sequence y, is calculated by iterating
on [5.4.11] starting with yx

=
yx

- ix, while d,, is given by [5.4.12].
In contrast to the conditional log likelihood function [5.4.5], expression [5.4.16]

will be valid regardless of whether \320\262is associated with an invertible MAA) rep-
representation. The value of [5.4.16] at \320\262= 6, a2 = &2 will be identical to its value

at \320\262= \320\262~\\\320\2602=
\320\2622\320\2602;see Exercise 5.1.
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5.5. The LikelihoodFunctionfora Gaussian

MA(q) Process

Conditional Likelihood Function

For the MA(q) process,

Y, =
\321\206+ e, + flie,_i + 02e,_2 + \342\200\242\342\226\240\342\226\240+

0\342\200\236\320\265,_\342\200\236,[5.5.1]

a simple approach is to condition on the assumption that the first q values for e
were all zero:

eo= e_! = e_,+l = 0.

From these starting values we can iterate on

[5.5.2].

[5.5.3]

for t = 1, 2, . . . , T. Let e0 denote the (q x 1) vector (e0,e_u . . . , \320\265_\342\200\236-\321\206)'.

The conditional log likelihood is then

\302\243\302\243F)
=

log/yr,yJ._1,.,.,y1|,0_e(?r,?r_i, . . . ,>i|e0
= 0; 6)

[5,5.4]

where \320\262=
(/u,, \320\262\320\27062, \342\226\240\342\226\240\342\226\240, \320\262,,,a2)'. Again, expression [5.5.4] is useful only if all

values of z for which

1 + fli z + 62z2 + \342\226\240\342\226\240\342\226\240+ eqzq
= 0

lie outside the unit circle.

Exact Likelihood Function
The exact likelihood function is given by

/Y(y; \320\262)
=

B\321\202\320\263)-\342\204\242|\320\237|-1'2exp[-i(y
-

\321\206)'\320\237-*(\321\203
-

|*)], [5.5.5]
where as before \321\203

= (yi,y2, \342\226\240. \342\226\240,yr)' and \321\206
=

(\321\206,\321\206,...,\321\206\321\203.Here ft represents
the variance-covariance matrix of T consecutive draws from an MA(q) process:

\320\276

ft = [5.5.6]

130 Chapter 5 | Maximum Likelihood Estimation



The row /', column j element of ft is given by \320\243\\/-\321\206,
where yk is the kth autocovari-

ance of an MA(q) process:

\321\201\321\2022(\320\262\320\272+ 0^0! + \320\2624+2\320\262\320\263+ \342\200\242\342\226\240\342\226\240+ eqeq.k) for \320\272= 0, 1, . . . , q
0 for \320\272> q,

[5.5.7]

where 60
= 1. Again, the exact likelihood function [5.5.5] can be evaluated using

either the Kalman filter of Chapter 13 or the triangular factorization of ft,

=

ft =
ADA', [5.5.8]

where A is the lower triangular matrix given by [4.4.11] and D is the diagonal

matrix given by [4.4.7]. Note that the band structure of ft in [5.5.6] makesA and

D simple to calculate.After the first (q + 1) rows, all the subsequent entries in

the first column of ft are already zero, so no multiple of the first row need be
added to make these zero. Hence, aa = 0 for i > q + 1. Similarly, beyond the

first (q + 2) rows of the second column, no multiple of the second row need be
added to make these entries zero, meaning that al2 = Ofori>q + 2. Thus A is

a lower triangular band matrix with a,y
= 0 for i > q + j;

A =

1

\302\25321

\302\25331

0

1

\302\25332

0

0

1

\"<j+i.i

0

\302\253

0

9+2,3

0

0

0

0

0
0

0

0

0

0

0

\302\253r.r-i

A computer can be programmed to calculate these matrices quickly for a given
numerical value for \320\262.

Substituting [5.5.8] into [5.5.5], the exact likelihood function for a Gaussian
MA(q) processcan be written as in [5.4.10]:

/Y(y;8) =

where

Ay
=

\321\203
-

(\320\273. [5.5.9]

The elements of y can be calculated recursively by working down the rows of

[5,5.9]:

\320\243\\
=

\320\243\\~V

\320\243\320\227
=

(\320\243\320\227
~

\320\230)
~

\302\25332>2
-

\320\243,
=

(\320\243>
~

\320\274)
~

\320\260\320\270-\\\320\243,-\\
~

\320\260\320\270-2\321\203,-2
- \342\226\240\342\226\240\342\226\240-

au-qy,-q.

The exact log likelihood function can then be calculated as in [5.4.16];

2(8) = log/Y(y; \320\262)
=

-\\ logB7r) -if log(d,,)
-

\\ \302\243y-f. [5.5.10]2 I r-i 2 r-i a,,
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5.6. The LikelihoodFunctionfor a Gaussian

ARMA(p, q) Process

Conditional Likelihood Function

A Gaussian ARMA(p, q) process takes the form

Y, = \321\201+ 0iY,_! + \321\2042\320\243,_2+ \342\200\242\342\200\242\342\200\242+
\321\204\321\200\320\243,_\321\200

+ \320\265,

+ 9,6,-! + 02e,_2 + \342\200\242\342\226\240\342\200\242+ eqe,-q,

where e, ~ i.i.d.N@, a2). The goal is to estimate the vector of population param-
parameters6 =

(\321\201,\321\204\320\270\321\2042,..., \321\204\342\200\236,\320\2621?\320\2622,. . . , \320\262\342\200\236,\321\201\320\2632)'.

The approximation to the likelihood function for an autoregression condi-
conditioned on initial values of the y's. The approximation to the likelihood function

for a moving average processconditioned on initial values of the e's. A common

approximation to the likelihood function for an ARMA(p, q) processconditions

on both y's and e's.
Taking initial values for y0 =

{\321\203\320\276,\320\243-\\,\342\226\240\342\226\240\342\226\240
,\320\243-\320\240+ {)' and e0 = (e0,e_l5 . . . ,

e-q+iY as given, the sequence{ex,e2, . . . , er}can be calculated from \\yu y2,

\342\226\240\342\226\240\342\226\240, \320\243\321\202\\by iterating on

e, =
\320\243,-\321\201-

\321\204\321\205\321\203,-1
-

\320\244\320\263\320\243,-2
- \342\200\242\342\200\242\342\200\242-

\321\204\321\200\321\203,-\321\200
g

\342\200\224
0i e, _! \342\200\224

62\320\265,_2
\342\200\224\342\226\240\342\200\242\342\200\242\342\200\224

eqe,-q

for f = 1, 2, . . . , \320\242.The conditional log likelihood is then

\302\2436F)
= \\og fYr.Yr., \321\203,|\321\203\342\200\236,\302\253\342\200\236(>\320\263,>\320\263-1.

\342\200\242\342\200\242\342\226\240\302\273>ilyo, e0; \320\262)

One option is to set initial /s and e's equal to their expected values. That

is, set ys = c/(l -
\321\2041

-
</>2

- \342\200\242\342\200\242\342\200\242-
\321\204\321\200)

for s = 0, -1, . . . , \342\200\224p+ 1 and set

es = 0 for s = 0, - 1,. . . , -
q + 1, and then proceedwith the iteration in [5.6.2]

for t = 1, 2,. . . , T. Alternatively, Box and Jenkins A976, p. 211)recommended

setting e's to zero but /s equal to their actual values. Thus, iteration on [5.6.2]is
started at date f = p + 1 with yu y2, . . . , yp set to the observed values and

ep
= e,-i = \342\200\242\342\200\242\342\200\242=

\320\265\342\200\236_\342\200\236+1
= \320\236.

Then the conditional likelihood calculated is

log/(>!> \342\226\240\342\226\240\342\226\240. yP + i\\yP. \342\226\240\342\226\240\342\226\240,?!,ep
= 0, . . . , e,_, + 1

= 0)

As in the case for the moving average processes,these approximations should

be used only if all values of z satisfying

1 + 6iz + B2z2 + \342\226\240\342\226\240\342\226\240+ eqz\"
= 0

lie outside the unit circle.

Alternative Algorithms
Thesimplest approach to calculating the exact likelihood function for a Gaus-

GaussianARM A process is to use the Kalman filter described in Chapter 13. For more
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details on exact and approximate maximum likelihood estimation of ARMA models,
see Galbraith and Galbraith A974), Box and Jenkins A976, Chapter 6), Hannan

and Rissanen A982), and Koreisha and Pukkila A989).

5.7. Numerical Optimization
Previous sections of this chapter have shown how to calculate the log likelihood

function

2(8) =
logfYr,Yr.l.....Yl(yT, \320\243\321\202-i.---,\320\243\320\271\320\262) [5.7.1]

for various specifications of the process thought to have generated the observed

data yu y7, . . \342\226\240, >r. Given the observed data, the formulas given could be used
to calculate the value of \320\271(\320\262)for any given numerical value of \320\262.

This section discusses how to find the value of \320\262that maximizes ^F) given
no more knowledge than this ability to calculate the value of S\302\243(Q)for any particular
value of \320\262.The general approach is to write a procedure that enables a computer
to calculate the numerical value of i\302\243F)for any particular numerical values for \320\262

and the observed data yu y2, . . . , yT. We can think of this procedure as a \"black

box\" that enables us to guess some value of \320\262and see what the resulting value of

would be:

Input Procedure

values of

\320\243\320\270\320\243\320\263,-\342\226\240\342\226\240

and \320\262

\320\243\321\202

Output

The idea will be to make a series of different guesses for 8, compare the value of

\342\200\242S\302\243(8)for each guess, and try to infer from these values for ^(8) the value \320\262for

which i\302\243(8)is largest. Such methods are describedas numerical maximization.

Grid Search

The simplest approach to numerical maximization is known as the grid search

method. To illustrate this approach, suppose we have data generated by an ARA)
process, for which the log likelihood was seen to be given by [5.2.9]. To keep the
example very simple, it is assumed to be known that the mean of the process is

zero (c = 0) and that the innovations have unit variance (a2 = 1). Thus the only
unknown parameter is the autoregressive coefficient \321\204,and [5.2.9] simplifies to

--1\320\276\321\221B\321\202\320\263)+ -log(l
-

\321\2042)

-
J(i

-
\320\2442)\321\203\\-\\i{y,- \320\244\321\203,-if-

2 2 ,=2

[5.7.2]

Supposethat the observed sample consists of the following T = 5 observations:

yx
= 0.8 y2 = 0.2 y, = -1.2 y, = -0.4 ys

= 0.0.

If we make an arbitrary guess as to the value of \321\204,say, \321\204
= 0.0, and plug this

guess into expression [5.7.2], we calculate that 2(\321\204)
= - 5.73 at \321\204

= .0.0. Trying
another guess (\321\204

= 0.1), we calculate %(\321\204)
= -5.71 at<\302\243

= 0.1\342\200\224thelog likelihood

is higher at \321\204
= 0.1 than at \321\204

= 0.0. Continuing in this fashion, we could calculate
the value of 2(<\302\243)for every value of \321\204between -0.9 and +0.9 in increments of
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0.1. The results are reported in Figure 5.1. It appears from these calculations that
the log likelihood function \320\250.{\321\204)is nicely behaved with a unique maximum at some
value of \321\204between 0.1 and 0.3. We could then focus on this subregion of the

parameter space and evaluate &{\321\204)at a finer grid, calculating the value of &(\321\204)

for all values of \321\204between 0.1 and 0.3 in increments of 0.02. Proceeding in this

fashion, it should bepossibleto get arbitrarily close to the value of \321\204that maximizes

&(\321\204)by making the grid finer and finer.

Note that this procedure does not find the exact MLE \321\204,but instead ap-

approximates it with any accuracy desired. In general, this will be the case with any
numerical maximization algorithm. To use these algorithms we therefore have to
specify a convergence criterion, or some way of deciding when we are closeenough

to the true maximum. For example, supposewe want an estimate \321\204that differs

from the true MLE by no more than \302\2610.0001. Then we would continue refining

the grid until the increments are in steps of 0.0001,and the best estimate among
the elements of that grid would be the numerical MLE of \321\204.

For the simple ARA) example in Figure 5.1, the log likelihood function is

unimodal\342\200\224there is a unique value \320\262for which \320\255^(\320\262)/\320\255\320\262
= 0. For a general

numerical maximization problem, this need not be the case. For example,suppose
that we are interested in estimating a scalar parameter \320\262for which the log likelihood

function is as displayed in Figure 5.2. The value \320\262= -0.6 is a local maximum,

meaning that the likelihood function is higher there than for any other \320\261in a

neighborhood around \320\262= -0.6. However, the global maximum occurs around
\320\262= 0.2. The grid search method should work well for a unimodal likelihood as
long as i\302\243(e)is continuous. When there are multiple local maxima, the grid must

be sufficiently fine to reveal all of the local \"hills\" on the likelihood surface.

Steepest Ascent

Grid search can be a very good method when there is a single unknown

parameter to estimate. However, it quickly becomes intractable when the number

of elements of \320\262becomes large. An alternative numerical method that often suc-

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-5 \342\226\240

5.5 -

-6 \342\226\240

6.5 \342\226\240

-7 \342\226\240

7.5 \342\226\240

-8 -

1 1 1

\321\210

\321\210

\321\210

\321\210

\320\235 1 1 1 1 1 1

\320\270 \320\270
\321\210

\321\210

\321\210

\321\210

FIGURE S.I Log likelihood for an ARA) process for various guesses of \321\204.

134 Chapter 5 | Maximum Likelihood Estimation
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-6 \342\226\240
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\342\226\240
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FIGURE 5.2 Bimodal log likelihood function.

ceeds in maximizing a continuously differentiable function of a large number of
parameters is known as steepest ascent.

To understand this approach, let us temporarily disregard the \"black box\"
nature of the investigation and instead examine how we would proceed analytically

with a particular maximization problem.Supposewe have an initial estimate of
the parameter vector, denoted 6@), and wish to come up with a better estimate
6A). Imagine that we are constrained to choose 6A) so that the squared distance
between \320\262@)and 6A) is some fixed number k:

{9(D
_

e<\302\260>}'{eA>
-

e<\302\260>}
= k.

The optimal value to choosefor 6A) would then be the solution to the following
constrained maximization problem:

max ^(\320\265'1') subject to {6<l>
-

\320\265<0)}'{\320\262\321\210
-

e<0)}
= k.

0D

To characterize the solution to this problem,3 form the Lagrangean,

/(e<1J) = 2(e<!>) + A[jt
-

{e<1J
-

\320\265'^\320\275\320\265'11
-

e<\302\260>}], [5.7.3]

where A denotes a Lagrange multiplier. Differentiating [5.7.3] with respect to 6A)

and setting the result equal to zero yields

-
BA){6W

-
\320\262<\302\260>}

= 0. [5.7.4]
\302\260\"e=e(l)

Let gF) denote the gradient vector of the log likelihood function:

If there are a elements of 6, then gF) is an (a x 1) vector whose ith element

represents the derivative of the log likelihood with respect to the ith element of 6.

3SeeChiang A974) for an introduction to the use of Lagrange multipliers for solving a constrained

optimization problem.

5.7. Numerical Optimization 135



Using this notation, expression [5.7.4] can be written as

9(i) - em =
[i/BA)]

\342\200\242
g(ew). [5.7.5]

Expression [5.7.5] asserts that if we are allowed to change \320\262by only a fixed

amount, the biggest increase in the log likelihood function will be achievedif the

change in \320\262(the magnitude 9A) -
8@)) is chosen to be a constant 1/B\320\233)times the

gradient vector g(8A))-If we are contemplating a very small step (so that \320\272is near

zero), the value g(8A)) will approach g(8@)). In other words, the gradient vector
g(8@))gives the direction in which the log likelihood function increases most steeply
from e<\302\260>.

For illustration, suppose that a = 2 and let the log likelihood be

2(8) = -1.561?- 20|. [5.7.6]

We can easily see analytically for this example that the MLE is given by \320\262=

@,0)'. Let us nevertheless use this example to illustrate how the method of steepest
ascentworks. The elements of the gradient vector are

Supposethat the initial guess is 6@) = (-1, 1)'. Then

32(8) = 3 = -4.

An increase in 0\320\245would increase the likelihood, while an increase in \320\2622would

decrease the likelihood. The gradient vector evaluated at 8@) is

so that the optimal step 8A) - 8@) should be proportional to C, -4)'. For example,
with \320\272= 1 we would choose

e<\302\273-\342\226\240e<\302\260>= I

that is, the new guesses would be 6^> = -0.4 and \320\261\302\243*
= 0.2. To increase the

likelihood by the greatest amount, we want to increase 0X and decrease \320\262\320\263relative

to their values at the initial guess 8@).Sincea one-unit change in 02 has a bigger
effect on 2(8) than would a one-unit change in 6U the change in \320\262\320\263is larger in
absolute value than the change in 6V

Let us now return to the black box perspective, where the only capability we
have is to calculate the value of 2(8) for a specifiednumerical value of 8. We
might start with an arbitrary initial guess for the value of 8, denoted8@). Suppose
we then calculate the value of the gradient vector at 8@):

g(9<o)) = 32F)
[5.7.8]

This gradient could in principle be calculated analytically, by differentiating the
general expression for 2(8) with respect to \320\262and writing a computer procedure
to calculate each element of g(8) given the data and a numerical value for 8. For

example, expression [5.7.7] could be usedto calculate g(8) for any particular value

of 8. Alternatively, if it is too hard to differentiate 2(8) analytically, we can always
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get a numerical approximation to the gradient by seeing how i\302\243F)changes for a

small change in each element of \320\262.In particular, the ith element of g(e<0)) might
be approximated by

ef,..., ejU'i. \320\262<0>+ \320\264,C\\, \320\241 \342\200\242\342\200\242\342\200\242.W)
[5 7 9]

ef>, ..., e?2v ef\\ ej?!, e,<\302\260+'2,...<'

where \320\224represents some arbitrarily chosen small scalar such as \320\224= 10 ~6. By
numerically calculating the value of i\302\243F)at 6@) and at a different values of \320\262

corresponding to small changes in each of the individual elements of 6@), an es-

estimate of the full vector gF@))can be uncovered.

Result [5.7.5] suggests that we should change the value of \320\262in the direction
of the gradient, choosing

for some positive scalars. A suitable choice for 5 could be found by an adaptation
of the grid search method. For example,we might calculate the value of i\302\243{e@)+

\342\226\240s-gF@))}for 5 =
\321\202\320\265,I, i, i, 1, 2, 4, 8, and 16 and choose as the new estimate \320\262A)

the value of 6@) + j-gF@)) for which i\302\243F)is largest. Smaller or larger values of

5 could also be exploredif the maximum appears to be at one of the extremes. If
none of the values of 5 improves the likelihood, then a very small value for 5 such
as the value \320\224= 10 ~6 used to approximate the derivative should be tried.

We can then repeat the process, taking \320\262A)= 6@> + s-g(e@)) as the starting

point, evaluating the gradient at the new location gF(I)), and generating a new
estimate 6B)according to

9B) = \320\262A)+ 5.g(9(D)

for the best choiceof s. The process is iterated, calculating

0(<\321\217
+ 1) = 0(m) + 5.g(9(m))

for m = 0,1,2, ... until some convergence criterion is satisfied, such as that the
gradient vector gF(\"\302\260)is within some specified tolerance of zero, the distance

between 9(m
+ 1) and 6(\"\302\260is less than some specifiedthreshold, or the change be-

between <\302\243(e(m
+

I>) and <\302\243(e(m))is smaller than some desired amount.

Figure 5.3 illustrates the method of steepest ascent when \320\262contains a = 2
elements.The figure displays contour lines for the log likelihood i\302\243F);along a

given contour, the log likelihood i\302\243F)is constant. If the iteration is started at the

initial guess \320\262@),the gradient gF@)) describes the direction of steepest ascent.
Finding the optimal step in that direction produces the new estimate 6A). The

gradient at that point gF(I)) then determines a new search direction on which a

new estimate \320\262B)is based, until the top of the hill is reached.
Figure 5.3 also illustrates a multivariate generalization of the problem with

multiple local maxima seen earlier in Figure 5.2. The procedure should converge

to a local maximum, which in this case is different from the global maximum \320\262*.

In Figure 5.3, it appears that if 6@)* were used to begin the iteration in place of
\320\262@),the procedure would converge to the true global maximum \320\262*.In practice,
the only way to ensure that a global maximum is found is to begin the iteration

from a number of different starting values for \320\262<0)and to continue the sequence
from each starting value until the top of the hill associated with that starting value

is discovered.
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\302\2531

FIGURE 5.3 Likelihood contours and maximization by steepest ascent.

Newton-Raphson
One drawback to the steepest-ascent method is that it may require a very

large number of iterations to closein on the local maximum. An alternative method

known as Newton-Raphson often converges more quickly provided that A) second

derivatives of the log likelihood function %(&)exist and B) the function i\302\243F)is

concave, meaning that -1 times the matrix of second derivatives is everywhere

positive definite.

Suppose that \320\262is an (a x 1) vector of parameters to be estimated. Let gF@))
denote the gradient vector of the log likelihood function at \320\262@):

g(e@>)
=

(a xl)

and let \320\235(\320\262@))denote -1 times the matrix of second derivatives of the log like-

likelihood function:

(ox\320\276) 0\320\2300O

Consider approximating i\302\243F)with a second-order Taylor series around 6@):

2?F) =
i\302\243F@))+ [gF<\302\260>)]'[6

-
\320\262@)]

-
i[9

-
6@>]'HF@))[6

-
\320\262@']. [5.7.10]

The idea behind the Newton-Raphson method is to choose \320\262so as to maximize
[5.7.10].Setting the derivative of [5.7.10] with respect to 6 equal to zero results

in

= o. [5.7.11]
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Let 6@) denote an initial guess as to the value of \320\262.One can calculate the
derivative of the log likelihood at that initial guess (g(e@))) either analytically, as
in [5.7.7], or numerically, as in [5.7.9]. One can also use analytical or numerical

methods to calculate the negative of the matrix of secondderivatives at the initial

guess (HF@))).Expression [5.7.11] suggests that an improved estimate of \320\262(de-
(denoted \320\262A))would satisfy

9(i) - em =
[\320\275(\320\265<\302\260>)]-^(\320\265<\302\260>). [5.7.12]

One could next calculate the gradient and Hessian at 6A) and use these to find a

new estimate 6B) and continue iterating in this fashion. The wth step in the iteration
updates the estimate of \320\262by using the formula

ec\"+D = 9\"\"> + [\320\275(\320\265\"\">)]-^(\320\265('\">). [5.7.13]

If the log likelihood function happens to be a perfect quadratic function, then

[5.7.10] holds exactly and [5.7.12] will generate the exact MLE in a single step:
e(I> =

If the quadratic approximation is reasonably good, Newton-Raphson should con-

converge to the local maximum more quickly than the steepest-ascentmethod. How-

However, if the likelihood function is not concave, Newton-Raphson behaves quite

poorly. Thus, steepest ascent is often slower to converge but sometimes proves to
be more robust compared with Newton-Raphson.

Since [5.7.10]is usually only an approximation to the true log likelihood

function, the iteration on [5.7.13] is often modified as follows. Expression [5.7.13]
is taken to suggest the search direction. The value of the log likelihood function

at several points in that direction is then calculated, and the best value determines
the length of the step. This strategy calls for replacing [5.7.13] by

9<m+1) = 9<m) + 5[\320\275(9<\321\202\302\273)]-^(\320\262<\321\202'), [5.7.14]

where 5 is a scalar controlling the step length. One calculates 6<\021+1> and the

associated value for the log likelihood i\302\243F(m+1)) for various values of 5 in [5.7.14]
and chooses as the estimate 9(m+1) the value that produces the biggest value for

the log likelihood.

Davidon-Fletcher-Powell

If \320\262contains a unknown parameters, then the symmetric matrix \320\235(\320\262)has

a(a + l)/2 separateelements.Calculating all these elements can be extremely time-

consuming if a is large. An alternative approach reasons as follows. The matrix of

second derivatives (- \320\235(\320\262))corresponds to the first derivatives of the gradient

vector (g(8)), which tell us how gF) changes as \320\262changes. We get some inde-

independent information about this by comparing gFA))
- gF@))with \320\262A)

-
\320\262@).

This is not enough information by itself to estimate HF), but it is information that
could be usedto update an initial guess about the value of \320\235(\320\262).Thus, rather than
evaluate \320\235(\320\262)directly at each iteration, the idea will be to start with an initial

guess about \320\235(\320\262)and update the guess solely on the basis of how much gF) changes
between iterations, given the magnitude of the change in \320\262.Such methods are
sometimes describedas modified Newton-Raphson.

One of the most popular modified Newton-Raphson methods was proposed
by Davidon A959) and Fletcher and Powell A963). Since it is H\021 rather than H
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itself that appears in the updating formula [5.7.14], the Davidon-Fletcher-Powell

algorithm updates an estimate of H\021 at each step on the basis of the size of the

change in gF) relative to the change in 6. Specifically, let 6(m) denote an estimate
of \320\262that has been calculated at the wth iteration, and let A(m> denote an estimate
of [\320\251\320\265'\021')]-1.The new estimate \320\262(\320\2701+1>is given by

0<m
+ i) _

0(in) + 5A(\"''g(e(m') [5.7.15]

for 5 the positive scalar that maximizes i\302\243{e(\"\302\260+ 5A(m)g(e(m))}. Once 6(m+1)and

the gradient at 6(m+ 1) have been calculated, a new estimate A(m + 1) is found from

= a<\"\" -

4)
[5.7.16]

where

In what sense should A(\021
+ 1) as calculated from [5.7.16]be regarded as an

estimate of the inverse of HF(\"'
+

1))? Consider first the case when \320\262is a scalar

(a = 1).Then [5.7.16] simplifies to

In this case,

which is the natural discrete approximation to

'
\320\265\320\2652

More generally (for a > 1), an estimate of the derivative of g(-) should be

related to the observedchange in g(-) according to

ae'

That is,

- e(m)]

or

Hence an estimate A(m + 1> of [HCe'\0214\021')]-1should satisfy

A(m + 1)
\320\224\321\206(\321\202

+ 1) _
\342\200\224\320\2240(\321\202

+
\320\246_
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Postmultiplication of [5.7.16] by Ag<m+1> confirms that [5.7.17] is indeed satisfied

by the Davidon-Fletcher-Powell estimate A(m
+ 1):

= A(m) Ag<m
+ 1> - A(m) Ag<m

+ 1) - \320\2240(\"\342\226\240+ \302\273)

= -\320\224\320\262('\"
+ )).

Thus, calculation of [5.7.16]producesan estimate of [HF(m +\">)]-1that is consistent

with the magnitude of the observed change between gF(m +
1)) and gF('\"') given

the size of the change between 6(m
+ 1' and 6(m'.

The following proposition (proved in Appendix 5.A at the end of the chapter)

establishes some further useful properties of the updating formula [5.7.16].

Proposition 5.1: (Fletcher and Powell A963)). Consider 2(9), where

<\302\243:\342\204\226-\302\273U1 has continuous first derivatives denoted

(\302\253XI) \320\262-\320\262\320\241\

Suppose that some element of gF(m') is nonzero, and let A(m> be a positive definite
symmetric {a X a) matrix. Then the following hold.

(a) There exists a scalar s>0 such that <\302\243(e(m
+

x>) > <\302\243(e<m>)for

e<m + D = go\302\273)+ 5A<m'g(e(m'). [5.7.18]

(b) Ifs in [5.7.18] is chosen so as to maximize i\302\243(e(m
+

1)), then the first-order
conditions for an interior maximum imply that

[g(e(\"i+1>)]'[e<m+1>
-

e<m>]
= o. [5.7.19]

(c) Provided that [5.7.19] holds and that some element of gF('\"
+

1))
-

gF(m>) is nonzero, then A('\"+1) described by [5.7.76] is a positive definite

symmetric matrix.

Result (a) establishes that as long as we are not already at an optimum
(gF(m)) \320\2440), there exists a step in the direction suggested by the algorithm that
will increase the likelihood further, provided that A(m> is a positive definite matrix.
Result (c) establishes that provided that the iteration is begun with A@) a positive
definite matrix, then the sequence of matrices {A(m)}j;=1 should all be positive
definite, meaning that each step of the iteration should increase the likelihood
function. A standard procedure is to start the iteration with A@) = Io, the (a x a)
identity matrix.

If the function i\302\243F)is exactly quadratic, so that

<\302\243(e)
=

i\302\243(e<0>)+ g'[e
-

e<\302\260>]
-

1[\320\262
-

\320\265<\302\260>]'\320\275[\320\265
-

\320\265<\302\260>],

with H positive definite, then Fletcher and Powell A963) showed that iteration on

[5.7.15] and [5.7.16] will converge to the true global maximum in a steps:

e(o> = BMLE = e<\302\260>+ H-!g;

and the weighting matrix will converge to the inverse of -1 times the matrix of

second derivatives:

A<\"> = H1.
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More generally, if 2?F) is well approximated by a quadratic function, then the

Davidon-Fletcher-Powell search procedure should approach the global maximum

more quickly than the steepest-ascentmethod,

for large N, while A'\021' should converge to the negative of the matrix of second
derivatives of the log likelihood function;

1 . [5.7.20]
\321\215\320\265\321\215\320\265'\320\262= Guile J

In practice, however, the approximation in [5.7.20] can be somewhat poor, and it
is better to evaluate the matrix of second derivatives numerically for purposes of

calculating standard errors, as discussed in Section 5.8.

If the function i\302\243F)is not globally concave or if the starting value 6@>is far

from the true maximum, the Davidon-Fletcher-Powell procedure can do very badly.

If problems are encountered, it often helps to try a different starting value 6@),to
rescale the data or parameters so that the elements of \320\262are in comparable units,
or to rescalethe initial matrix A<\302\260>\342\200\224forexample, by setting

A'0' =
A x 10 -\!\342\200\236.

Other Numerical Optimization Methods

A variety of other modified Newton-Raphson methods are available, which

use alternative techniques for updating an estimate of \320\235(\320\262(\321\202))or its inverse. Two
of the more popular methods are those of Broyden A965,1967) and Berndt, Hall,
Hall, and Hausman A974). Surveys of these and a variety of other approaches are

provided by Judge, Griffiths, Hill, and Lee A980, pp. 719-72) and Quandt A983).
Obviously, these same methods can be usedto minimize a function 2F) with

respect to \320\262.We simply multiply the objectivefunction by -1 and then maximize

the function -6F).

5.8. Statistical Inference with Maximum Likelihood
Estimation
The previous section discussed ways to find the maximum likelihood estimate \320\231

given only the numerical ability to evaluate the log likelihood function i\302\243F).This

section summarizes general approachesthat can be used to test a hypothesis about
\320\262.The section merely summarizes a number of useful results without providing
any proofs. We will return to these issues in more depth in Chapter 14, where the

statistical foundation behind many of these claims will be developed.
Before detailing these results, however, it is worth calling attention to two

of the key assumptions behind the formulas presented in this section. First, it is

assumed that the observeddata are strictly stationary. Second, it is assumed that
neither the estimate \320\231nor the true value 60 falls on a boundary of the allowable

parameter space. For example,supposethat the first element of \320\262is a parameter
corresponding to the probability of a particular event, which must be between 0
and 1. If the event did not occur in the sample, the maximum likelihood estimate
of the probability might be zero. Ibis is an example where the estimate \320\231falls on

the boundary of the allowable parameter space, in which case the formulas pre-
presented in this section will not be valid.
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Asymptotic Standard Errors for Maximum Likelihood
Estimates

If the sample size Tis sufficiently large, it often turns out that the distribution
of the maximum likelihood estimate \320\262can be well approximated by the following
distribution:

ft~JV(e0, \320\223-1.?-1), [5.8.1]

where 60 denotes the true parameter vector. The matrix $ is known as the infor-
information matrix and can be estimated in either of two ways.

The second-derivative estimate of the information matrix is

_ \320\263-,
\320\265\320\265\320\265\320\265'

Here i\302\243F)denotes the log likelihood:

[5.8.2]

and %, denotes the history of observations on \321\203obtained through date t. The matrix

of second derivatives of the log likelihood is often calculated numerically. Substi-

Substituting[5.8.2] into [5.8.1], the terms involving the sample size \320\223cancel out so that
the variance-covariancematrix of \320\231can be approximated by

\\ [5.8.3]

A second estimate of the information matrix $ in [5.8.1] is called the outer-

product estimate:

hr = \320\223\0212 [hF, %)] \342\200\242
[\320\254(\320\262,\320\255\320\224'. [5.8.4]

Here hF, %,) denotes the (a x 1) vector of derivatives of the log of the conditional

density of the rth observation with respect to the a elements of the parameter vector
\320\262,with this derivative evaluated at the maximum likelihood estimate 6:

\342\200\236(\320\262,%)
=

\320\265\320\265

In this case, the variance-covariance matrix of \320\262is approximated by

\320\223
T V1

\320\225(\320\262
-

\320\262\320\276)(\320\262
-

\320\2620)'
= I 2 [hF, %,)] \342\226\240

[hF,
lOJ'J

\342\200\242

As an illustration of how such approximations can be used, supposethat the

log likelihood is given by expression [5.7.6]. For this casej one can see analytically

that

\320\264\320\262\320\264\320\262'

\302\2601

-4j'

and so result [5.8.3] suggests that the variance of the maximum likelihood estimate
\320\2622can be approximated by 1. The MLE for this example was 02

= 0- Thus an
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approximate 95% confidence interval for S2 is given by

0 \302\2612VJ = \302\2611.

Note that unless the off-diagonal elements of \302\243are zero, in general oneneeds
to calculate all the elements of the matrix $ and invert this full matrix in order to
obtain a standard error for any given parameter.

Which estimate of the information matrix, $2d or $op>1S it better to use in

practice? Expression [5.8.1] is only an approximation to the true distribution of

6, and $2d and $op aie in tum 0\320\237'\320\243approximations to the true value of $. The

theory that justifies these approximations does not give any clear guidance to which

is better to use, and typically, researchers rely on whichever estimate of the in-
information matrix is easiest to calculate. If the two estimates differ a great deal,
this may mean that the model is misspecified. White A982) developed a general
test of model specification based on this idea. One option for constructing standard

errors when the two estimates differ significantly is to use the \"quasi-maximum

likelihood\" standard errors discussedat the end of this section.

Likelihood Ratio Test

Another popular approach to testing hypotheses about parameters that are
estimated by maximum likelihood is the likelihood ratio test. Suppose a null hy-

hypothesis implies a set of m different restrictions on the value of the (a x 1)
parameter vector 6. First, we maximize the likelihood function ignoring these

restrictions to obtain the unrestricted maximum likelihood estimate \320\262.Next, we

find an estimate \320\262that makes the likelihood as large as possible while still satisfy-

satisfyingall the restrictions. In practice, this is usually achieved by defining a new

[(a -
m) x 1] vector X in terms of which all of the elements of \320\262can be expressed

when the restrictions are satisfied. For example, if the restriction is that the last

m elements of \320\262are zero, then X consists of the first a - m elements of \320\262.Let

i\302\243F)denote the value of the log likelihood function at the unrestricted estimate,

and let i\302\243F)denote the value of the log likelihood function at the restricted

estimate. Clearly i\302\243F)> i\302\243F),and it often proves to be the case that

X2(m). [5.8.5]

For example, suppose that a = 2 and we are interested in testing the hy-

hypothesis that \320\2622
= 0i + 1. Under this null hypothesis the vector (S1?\320\262\320\263)'can be

written as (\320\233,\320\233+ 1)', where \320\233= 0t. Suppose that the log likelihood is given by

expression [5.7.6]. One can find the restricted MLE by replacing \320\2622by et + 1 and

maximizing the resulting expression with respect to 0t:

2@.) = -1.50? - 2F, + IJ.

The first-order condition for maximization of $\302\243F,)is

-\320\227\320\262,
-

4(\320\262,+ 1) =
\320\236,

or St = -$. The restricted MLE is thus \320\262= (-$, ?)', and the maximum value

attained for the log likelihood while satisfying the restriction is

a\302\256
= (-dmJ

- my
- -{C \342\200\242

4)/B
\342\200\2427 \342\200\242

7)}{4 + 3}
= -i

The unrestricted MLE is \320\262= 0, at which <\302\243(9)
= 0. Hence, [5.8.5] would be

2[<\302\243(\320\231)
-

X(B)] = \302\245= 1.71.
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The test here involves a single restriction, so m = 1. From Table B.2 in Appendix

B, the probability that a *2A) variable exceeds 3.84is 0.05.Since 1.71 < 3.84, we
acceptthe null hypothesis that 02 =

0t + 1 at the 5% significance level.

Lagrange Multiplier Test

In order to use the standard errors from [5.8.2J or [5.8.4]to test a hypothesis
about 6, we need only to find the unrestricted MLE 9. In order to use the likelihood

ratio test [5.8.5], it is necessary to find both the unrestricted MLE 6 and the re-

restricted MLE 6. The Lagrange multiplier test provides a third principle with which

to test a null hypothesis that requires only the restricted MLE 6. This test is useful
when it is easier to calculate the restricted estimate \320\262than the unrestricted estimate
0.

Let \320\262be an (a x 1) vector of parameters, and let \320\262be an estimate of \320\262that

maximizes the log likelihood subject to a set of m restrictions on \320\262.Let /(y,|y,_i,
y,_2> . . . ; \320\262)be the conditional density of the rth observation, and let hF, 4),)
denote the (a x 1) vector of derivatives of the log of this conditional density
evaluated at the restricted estimate \320\262:

h(9 \321\203=
\320\264\320\262

The Lagrange multiplier test of the null hypothesis that the restrictions are true is

given by the following statistic:

,
41,)j.

hF,
%,)] *-'|j\302\243

hF,
41,)j.

[5.8.6]

If the null hypothesis is true, then for large T this should approximately have a

X2(m)distribution. The information matrix $ can again be estimated as in [5.8.2]
or [5.8.4]with 6 replaced by \320\262.

Quasi-Maximum Likelihood Standard Errors

It was mentioned earlier in this section that if the data were really generated

from the assumed density and the sample size is sufficiently large, the second-
derivative estimate \302\247\320\263\320\262and the outer-product estimate $0P of the information

matrix should be reasonably close to each other. However, maximum likelihood

estimation may still be a reasonable way to estimate parameters even if the data

were not generated by the assumed density. For example,we noted in Section 5.2
that the conditional MLE for a Gaussian ARA) process is obtained from an OLS

regression of y, on y,_ t. This OLS regression is often a very sensible way to estimate

parameters of an AR{\\) process even if the true innovations e, are not i.i.d. Gaus-

Gaussian.Although maximum likelihood may be yielding a reasonable estimate of \320\262,

when the innovations are not i.i.d. Gaussian, the standard errors proposedin [5.8.2]

or [5.8.4] may no longer be valid. An approximate variance-covariance matrix for
\320\262that is sometimes valid even if the probability density is misspecified is given by

\302\243(\320\262
-

\320\262\321\214)F
-

\320\2620)'\342\226\240
\320\242-\320\247^\320\264\320\240\320\270\320\224-1- [5-8.7]

This variance-covariance matrix was proposed by White A982), who described this

approach as quasi-maximum likelihood estimation.
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5.9. Inequality Constraints

A Common Pitfall with Numerical Maximization

Supposewe were to apply one of the methods discussed in Section 5.7 such

as steepest ascent to the ARA) likelihood [5.7.2]. We start with an arbitrary initial

guess, say, \321\204
= 0.1. We calculate the gradient at this point, and find that it is

positive. The computer is then programmed to try to improve this estimate by

evaluating the log likelihood at points described by <\302\243A>
=

<\302\243@>+ ,rg($<0>) for

various values of s, seeingwhat works best. But if the computer were to try a value

for 5 such that \321\204\321\202
=

\321\204@)+ .S'g@(O)) = 1.1, calculation of [5.7.2] would involve

finding the log of A
- 1.12) = - 0.21.Attempting to calculate the log of a negative

number would typically be a fatal execution error, causing the search procedure
to crash.

Often such problems can be avoided by using modified Newton-Raphson
procedures, provided that the initial estimate 6@) is chosen wisely and provided

that the initial search area is kept fairly small. The latter might be accomplished
by setting the initial weighting matrix A@> in [5.7.15] and [5.7.16] equal to a small

multiple of the identity matrix, such as A@) = A x 10~4)'Io.In later iterations,
the algorithm should use the shape of the likelihood function in the vicinity of the
maximum to keep the search conservative. However, if the true MLE is closeto
one of the boundaries (for example, if <f>MLE

= 0.998 in the ARA) example), it
will be virtually impossible to keep a numerical algorithm from exploring what

happens when \321\204is greater than unity, which would induce a fatal crash.

Solving the Problem by Reparameterizing the Likelihood
Function

One simple way to ensure that a numerical search always stays within certain

specified boundaries is to reparameterize the likelihood function in terms of an

(a x 1) vector X for which \320\262= g(X), where the function g: R\"-> U\" incorporates
the desired restrictions. The scheme is then as follows:

Input Procedure

values of
\320\243\320\270\320\243\320\263,---,\320\243\321\202

and X

Output

set \320\262= g(X);
calculate <\302\243F)

For example, to ensure that \321\204is always between \302\2611,we could take

\320\233

\320\244
= g(A) =

1 + [5.9.1]

The goal is to find the value of \320\233that produces the biggest value for the log
likelihood. We start with an initial guess such as \320\233= 3. The procedure to evaluate

the log likelihood function first calculates

\321\204
= 3/A + 3) = 0.75

and then finds the value for the log likelihood associated with this value of \321\204from

[5.7.2]. No matter what value for A the computer guesses,the value of \321\204in [5.9.1]
will always be less than 1 in absolute value and the likelihood function will be well
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defined. Once we have found the value of \320\233that maximizes the likelihood function,

the maximum likelihood estimate of \321\204is then given by

1 +

This technique of reparameterizing the likelihood function so that estimates

always satisfy any necessary constraints is often very easy to implement. However,
one note of caution should be mentioned. If a standard error is calculated from
the matrix of second derivatives of the log likelihood as in [5.8.3], this represents
the standard error of A, not the standard error of \321\204,\320\242\320\276obtain a standard error
for \321\204,the best approach is first to parameterize the likelihood function in terms
of \320\233to find the MLE, and then to reparameterize in terms of \321\204to calculate the
matrix of second derivatives evaluated at \321\204to get the final standard error for \321\204.

Alternatively, one can calculate an approximation to the standard error for $ from

the standard error for A, based on the formula for a Wald test of a nonlinear

hypothesis described in Chapter 14.

Parameterizations for a Variance-Covariance Matrix

Another common restriction one needsto impose is that a variance parameter
a2 be positive. An obvious way to achieve this is to parameterize the likelihood

in terms of \320\233which represents \302\2611 times the standard deviation. The procedure to
evaluate the log likelihood then begins by squaring this parameter A:

a2 =
A2;

and if the standard deviation a is itself called, it is calculated as

More generally, let il denote an in x n) variance-covariance matrix:

\320\236=

an al2

a2l a22

Here one needs to imposethe condition that il is positive definite and symmetric.
The best approach is to parameterize il in terms of the n(n + l)/2 distinct elements

of the Cholesky decomposition of il:

where

P =

\320\236= PP'

\\u \320\276 \320\276

\\\320\273\320\22022\320\236

[5.9.2]

_Ani

No matter what values the computer guesses for Au, A2i, . . . , \320\220\342\200\236\342\200\236,the matrix il
calculated from [5.9.2] will be symmetric and positive semidefinite.
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Parameterizations for Probabilities

Sometimes some of the unknown parameters are probabilities pu p2, . . . ,

pK which must satisfy the restrictions

0 rsPi <= l for/ = 1,2, . . . , \320\232

pl + p2 + \342\226\240\342\226\240\342\226\240+ pK = 1.

In this case, one approach is to parameterize the probabilities in terms of A1? A2,

. . . , Ak_1? where

Pi =
A?/(l + Af + Al + \342\200\242- \342\226\240+ \\2K_l) for i = 1, 2, . . . , \320\232- 1

\320\240\320\272
= 1/A + A? + Al + \342\226\240\342\226\240\342\200\242+ Abi).

More General Inequality Constraints

For more complicated inequality constraints that do not admit a simple re-
parameterization, an approach that sometimes works is to put a branching statement

in the procedure to evaluate the log likelihood function. Theprocedurefirst checks

whether the constraint is satisfied. If it is, then the likelihood function is evaluated
in the usual way. If it is not, then the procedure returns a large negative number

in place of the value of the log likelihood function. Sometimes such an approach
will allow an MLE satisfying the specified conditions to be found with simple
numerical search procedures.

If these measures prove inadequate, more complicated algorithms are avail-
available. Judge, Griffiths, Hill, and Lee A980, pp. 747-49) described some of the

possible approaches.

APPENDIX 5. A. Proofs of Chapter5 Propositions

\342\226\240Proof of Proposition 5.1.

(a) By Taylor's theorem,

Substituting [5.7.18]into [5.A.1],

2(\320\265\321\201\"-*\321\207)
_ 2(eCm>) = [g(e(m')]'sA(\"'g(e(\020+ \320\273,(\320\262(\,")\320\262\"--1)). [5.\320\220.2]

Since A<m) is positive definite and sinceg(e(\"l)) \320\2440, expression [5.A.2] establishesthat

where \320\272(\320\262<\321\202>)> 0. Moreover, j-'-K^e*\021),e<ra+1>) -\302\2730 as s -\302\2730. Hence, there existsan s

such that 2(e<ra+1>)
-

2(\320\265<\">)> \320\236,as claimed,

(b) Direct differentiation reveals

\321\215\320\2650as

[5.\320\220.\320\227]

with the last line following from [5.7.18]. The first-order conditions set [5.A.3] equal to

zero, which implies

\320\276= [g(e(m+i))]'jA(m)g(e(m)) =
[g(e<m+1>)]'[e<m+1>

-
e<m>],

with the last line again following from [5.7.18]. This establishes the claim to [5.7.19].
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(\321\201)Let \321\203be any (a x 1) nonzero vector. The task is to show that \321\203'\320\220'\021*1^> \320\236.

Observe from [5.7.16] that

,'AH, -j \320\277.\320\267
(\320\224\321\221())\320\220(\342\204\242)(\320\224\321\221(\321\202))

\021>)'\321\203
[5.\320\220\320\220]

Since Ac\"\302\260is positive definite, there existsa nonsingular matrix P such that

A<\"> = PP'.

Define

\320\243*
= \320\240'\320\243

x* =
P'Ag('\"+1>.

Then [5. A.4] can be written as

,.*-\342\200\242>,= v'PP'v - yPP(Ag
y \"\342\226\240y y y

(Age\302\273+>)pP(Ag())

+
\321\206)(\320\2248\321\201

+
1>)'\321\203 .

+1>)
l J

Recalling equation [4.A.6], the first two terms in the last line of [5.A.5]represent the sum
of squared residuals from an OLS regressionof y* on x*. This cannot be negative,

[5.A.6]

it would equal zero only if the OLS regression has a perfect fit, or if y* = /3x* or P'y
=

/\320\227\320\240^\321\201\321\207-')for some p. Since P is nonsingular, expression [5.A.6] would only be zero if

\321\203
=

^Ag(\342\204\242+1>for some /3. Consider two cases.

Case 1. There is no /3 such that \321\203
=

/SAg'\021*\". In this case, the inequality [5.A.6] is strict
and [5.A.5] implies

v'A(\">+1>v >
l

Since [\321\203'\320\224\320\2621\021*')]2
a 0, it follows that y'Al\021+1>y > 0, provided that

(Ag(\302\273.+i>)'(Ae<'\302\273
+

l>) < 0. [5.A.7]

But, from [5.7.19],

(Ago\302\273-M>)'(Ae(\302\273+'>)
= [g(e('\"-'>)

-
g(e(\"i>)]'(Ae(\"i+1))

= -g(el'\">)'(Ae(\"I+1)) [5.A.8]
= -g(ef\">)'sAf\g(ef\">),

with the last line following from [5.7.18]. But the final term in [5.A.8] must be negative,
by virtue of the facts that A'\020 is positive definite, s > 0, and g(e(m)) \320\2440. Hence, [5.A.7]
holds,meaning that A'\021+ 1) is positive definite for this case. \342\200\242\342\200\242

Case 2. There exists a 0 such that \321\203
=

0Ag<\"+1>. In this case, [5.\320\220.6]is zero, so that
[5.A.5]becomes

= \321\203
y y

=
-/3\302\273(AgC\"+i))'(Ae*\"+t>)

= ^2g(e(m>)'jA(m>g(e(\"i)) > o,

asin[5.A.8]. \342\226\240
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Chapter 5 Exercises

5.1. Show that the value of [5.4.16]at \320\262= \320\262,<\321\202\320\263= &2 is identical to its value at \320\262= \320\262\021,

\302\253\320\2632= \321\2212<72.

5.2. Verify that expression[5.7.12]calculates the maximum of [5.7.6] in a single step from

the initial estimate \320\262@)= (-1, 1)'.
5.3. Let (\321\203\\,\321\203\320\263,\342\226\240\342\226\240\342\226\240,yT) be a sample of size T drawn from an i.i.d. N(fi, cr2) distribution,

(a) Show that the maximum likelihood estimatesare given by

&2 = r->i (\321\203,
- AJ.

(b) Show that the matrix $2D in [5.8.2] is

*2D~
[ 0 1/B**)J\"

(c) Show that for this example result [5.8.1]suggests

H.ivfH \\&4T
\302\260

1)
\320\230 \"{[a*]' I 0 2*Vt\\)-

Chapter 5 References

Anderson, Brian D. O., and John B. Moore. 1979.Optimal Filtering. Englewood Cliffs,

N.J.: Prentice-Hall.

Bemdt, E. K.,B.H.Hall, R. E. Hall, and J. A. Hausman. 1974.\"Estimation and Inference
in Nonlinear Structural Models.\" Annals of Economic and SocialMeasurement 3:653-65.

Box, George E. P., and D. R. Cox. 1964.\"An Analysis of Transformations.\" Journal of
the Royal Statistical Society SeriesB, 26:211-52.

and Gwilym M. Jenkins. 1976.Time Series Analysis: Forecasting and Control,rev.
ed. San Francisco: Holden-Day.

Broyden, \320\241G. 1965. \"AClassof Methods for Solving Nonlinear Simultaneous Equations.\"
Mathematics of Computation 19:577-93.

. 1967.\"Quasi-Newton Methods and Their Application to Function Minimization.\"
Mathematics of Computation 21:368-81.

Chiang, Alpha C. 1974. Fundamental Methodsof Mathematical Economics, 2d ed. New

York: McGraw-Hill.

Davidon, W. C. 1959.\"Variable Metric Method of Minimization.\" A.E.C. Research and

Development Report ANL-5990 (rev.).
Fletcher, R., and M. J. D. Powell. 1963. \"A Rapidly Convergent Descent Method for

Minimization.\" Computer Journal 6:163-68.
Galbraith, R. F., and J. I. Galbraith. 1974. \"On the Inversesof Some Patterned Matrices
Arising in the Theory of Stationary Time Series.\" Journal of Applied Probability 11:63-71.

Hannan, E., and J. Rissanen. 1982. \"Recursive Estimation of Mixed Autoregressive-Mov-
ing Average Order.\" Biometrika 69:81-94.
Janacek, G. J., and A. L. Swift. 1990. \"A Classof Models for Non-Normal Time Series.\"

Journal of Time Series Analysis 11:19-31.

Judge, George G., William E. Griffiths, R. Carter Hill, and Tsoung-Chao Lee. 1980.The

Theory and Practice of Econometrics. New York: Wiley.
Koreisha, Sergio, and Tarmo Pukkila. 1989.\"Fast Linear Estimation Methods for Vector
Autoregressive Moving-Average Models.\" Journal of Time Series Analysis 10:325-39.

Li, W. K., and A. I. McLeod. 1988.\"ARMA Modelling with Non-Gaussian Innovations.\"

Journal of Time Series Analysis 9:155-68.

Martin, R. D. 1981.\"Robust Methods for Time Series,\"in D. F. Findley, ed., Applied
Time Series, Vol. \320\237.New York: Academic Press.

150 Chapter 5 I Maximum Likelihood Estimation



Nelson, Harold L., and \320\241W. J. Granger. 1979. \"Experience with Using the Box-Cox
Transformation When Forecasting Economic TimeSeries.\" Journal of Econometrics 10:57-
69.
Quandt, Richard E. 1983. \"Computational Problems and Methods,\" in Zvi Griliches and
Michael D. Intriligator, eds., Handbook of Econometrics, Vol. 1. Amsterdam: North-Holland.

White, Halbert. 1982. \"Maximum Likelihood Estimation of Misspedfied Models.\" Econ-
ometrica 50:1-25.

Chapter 5 References 151



6

Spectral Analysis

Up to this point in the book, the value of a variable Y, at date t has typically been

described in terms of a sequenceof innovations {e,}*..^ in models of the form

The focus has been on the implications of such a representation for the covariance

between Y, and yrat distinct dates t and \321\202.This is known as analyzing the properties
of {\320\243,}\320\223__=c in the time domain.

This chapter instead describes the value of Y, as a weighted sum of periodic
functions of the form cos(&>f)and sin(&>f), where w denotes a particular frequency:

f\" f\"
Y, = \320\270+ I <*(u>)-cos(u>f) dw + I 5(u>)-sin(u>f) dco.

Jo Jo

The goal will be to determine how important cycles of different frequencies are in

accounting for the behavior of Y. This is known as frequency-domain or spectral

analysis. As we will see, the two kinds of analysis are not mutually exclusive. Any

covariance-stationary process has both a time-domain representation and a fre-

frequency-domain representation, and any feature of the data that can be described
by one representation can equally well be described by the other representation.
For some features, the time-domain description may be simpler, while for other

features the frequency-domain description may be simpler.
Section 6.1 describesthe properties of the population spectrum and introduces

the spectral representation theorem, which can be viewed as a frequency-domain
version of Wold's theorem. Section 6.2 introduces the sample analog of the pop-
population spectrum and uses an OLS regression framework to motivate the spectral
representation theorem and to explain the sense in which the spectrum identifies

the contributions to the variance of the observed data of periodic components with

different cycles. Section 6.3 discussesstrategies for estimating the population spec-
spectrum. Section 6.4 provides an example of applying spectral techniques and discusses
someof the ways they can be used in practice. More detailed discussions of spectral

analysis are provided by Anderson A971), Bloomfield A976), and Fuller A976).

6.1. The Population Spectrum

The Population Spectrum and Its Properties
Let {\320\243,\320\232\302\260\302\253-\302\273be a covariance-stationary process with mean E(Yt) =

\321\206and

/th autocovariance

E(Y, -
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Assuming that these autocovariances are absolutely summable, the autocovariance-

generating function is given by

where z denotesa complex scalar. If [6.1.1] is divided by 2\321\202\320\263and evaluated at some
z represented by z = \320\265~\321\210for i = V^T and to a real scalar, the result is called
the population spectrum of Y:

Note that the spectrum is a function of to: given any particular value of to and a

sequence of autocovariances {yy-}\"_-.e, we could in principle calculate the value of

Sy(@).
De Moivre's theorem allows us to write e~M as

e-t<\302\273J= cos(w/)
-

i-sin(o\302\273/). [6.1.3]

Substituting [6.1.3] into [6.1.2],it appears that the spectrum can equivalently be

written

2
=

*1-\320\230=r I yy[cos(o\302\273/)
-

i-sin(oy)]. [6.1.4]
^\302\2437\320\223y\342\204\242\342\200\224oe

Note that for a covariance-stationary process, \321\203,
=

y_y. Hence, [6.1.4] implies

ivM
=

^To[cos(O)
- isin(O)] i g

2 7/[cos(w/) + cos(-\302\253/)
-

i-sin(o\302\273/)
- i-sin(

Next, we make use of the following results from trigonometry.1

cos(O) - 1
sin(O)

= 0

sin(-e) = -sin(e)
cos(-e) =

cos@).

Using these relations, [6.1.5] simplifies to

Sy(o>) =
j-\\ To + 22 \320\243/cos(o\302\273/) . [6.1.6]

Assuming that the sequenceof autocovariances {\321\203\321\203}\"__\302\273is absolutely sum-

summable, expression [6.1.6] implies that the population spectrum exists and that Sy(co)
is a continuous, real-valued function of to. It is possibleto go a bit further and

show that if the y/s represent autocovariances of a covariance-stationary process,
then Sy(<o) will be nonnegative for all to.2 Since cos(<u/) = cos(- toj) for any to,
the spectrum is symmetric around to = 0. Finally, since cos[(&> + 2irk)-j\\

= cos(o>/)
for any integers \320\272and/, it follows from [6.1.6]that sr(to + 2\321\202\320\263\320\272)

= sY(to) for any
integer \320\272.Hence, the spectrum is a periodic function of to. If we know the value
of sY((o)for all to between 0 and \321\202\320\263,we can infer the value of sY(to) for any to.

'These are reviewed in Section A.I of the Mathematical Review (Appendix A) at the end of the

book.

2See, for example, Fuller A976, p. 110).
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Calculating the Population Spectrumfor Various Processes

Let Y, follow an MA(\302\273)process:

Y, = /i + \321\204[\320\254)\320\265\342\200\236 [6.1.7]

where

/-0

\\\321\204,\\
< \302\260\302\260

;
for t = \321\202

\320\236 otherwise.

Recall from expression [3.6.8] that the autocovariance-generating function for Y

is given by

gY(z) =

Hence, from [6.1.2], the population spectrum for an MA(\302\273)process is given by

sy(\302\253)
=

B\321\202\320\263)-1-\321\201\321\2022\321\204(\320\265-^)\321\204(\320\265\"').[6.1.8]

For example, for a white noise process, \321\204(\320\263)
= 1 and the population spectrum

is a constant for all w:

sY(w) = <\321\2022/2\321\202\320\263. [6.1.9]

Next, consider an MA{Y) process:

Y,
=

\320\262,+ Ob,-!.

Here, \321\204(\320\263)
= 1 + 6z and the population spectrum is

sY(co)
= Bv)-i-o\\l + \320\262\320\265-'\302\273)A+ \320\262\320\265'\")

^
=

B\321\202\320\263)-1-<\321\2022A+ \320\262\320\265~\321\210+ \320\262\320\265'\"+ \320\2622).

But notice that

\320\265-\321\210+ \320\265\321\210
-

cos(to) _ j.sin(to) + cos(to)+ i-sin(to)
= 2-cos(to), [6.1.11]

so that [6.1.10] becomes

sY(o)) =
B\321\202\320\263)-1-\320\260-2[1+ \320\2622+ 2e-cos(w)]. [6.1.12]

Recall that cos(&>) goes from 1 to -1 as \321\210goes from 0 to \321\202\321\202.Hence, when

\320\262> 0, the spectrum Sy(co)is a monotonically decreasing function of w for \321\210in

[0, \321\202\320\263],whereas when \320\262< 0, the spectrum is monotonically increasing.

For an ARA) process

Y,
= c + 0\320\243,_, + \320\265\342\200\236

we have \321\204{\320\263)
= 1/A

-
\321\204\320\263)as long as \\\321\204\\< 1. Thus, the spectrum is

i
2\321\202\320\263A

-
\321\204\320\265-'\"

-
\321\204\320\265'\"+ \321\2042)

1 \320\276-2

[6.1.13]
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When \321\204> 0, the denominator is monotonically increasing in u> over [0, \321\202\320\263],meaning

that sY(u)) is monotonically decreasing. When \321\204< 0, the spectrum sY(w) is a

monotonically increasing function of w.

In general, for an ARMA(p, q) process

Y,
= \321\201+ \321\2041\320\243,_1

-

+ \320\2622\320\265,_2+ \342\200\242\342\200\242\342\200\242+ 0,\320\265,_,,

the population spectrum is given by

a-2 A + e^-\"\" + \320\2622\320\265-\"-\321\210+ \342\200\242\342\200\242\342\200\242+
0,\320\265-'\302\273\321\210)

A + \320\262\321\205\321\221\321\213+ \320\2652\320\265\320\260\"+ \342\200\242\342\200\242\342\200\242+ \320\262\321\217\320\265\"\"*)
[6.1.14]

If the moving average and autoregressive polynomials are factored as follows:

1 + Q,z + 02z2 + \342\226\240\342\200\242\342\200\242+ e,z\302\253
= A

- 4lz)(l -
r,2z)

\342\200\242\342\200\242\342\200\242
A

-
4,z)

then the spectral density in [6.1.14] can be written

0-2 \320\237[1 + rf
~

2*}/cos(a\302\273)]

sY((o)
=

\342\200\224IJj
.

2\321\202\320\263\320\237[1 + A? - 2A/cos(to)]

Calculating the Autocovariances from the Population Spectrum
If we know the sequence of autocovariances {\342\200\242)\302\273/}\"__,,in principle we can

calculate the value of sY(o)) for any \321\201\320\276from [6.1.2] or [6.1.6]. The converseis also
true: if we know the value of sY(to) for all \321\210in [0, \321\202\320\263],we can calculate the value
of the /tth autocovariance yk for any given k. This means that the population

spectrum sy(&>) and the sequence of autocovariances contain exactly the same
information\342\200\224neither one can tell us anything about the process that is not possible
to infer from the other.

The following proposition (proved in Appendix 6.A at the end of this chapter)

provides a formula for calculating any autocovariance from the population spec-
spectrum.

Proposition 6.1: Let {y^J. -*.be an absolutely summable sequence of autocovari-

autocovariances,and define sr(io) as in [6.1.2]. Then

sY((o)e\"\302\260kdo\302\273= yk. [6.1.15]

Result [6.1.15]can equivalently be written as

(V
Sy(w) cos(a)k) dw =

yk. [6.1.16]
J -IT
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Interpreting the Population Spectrum
The following result obtains as a special case of Proposition 6.1 by setting

\320\272= 0:

\320\223sY(<o) da> = y0. [6.1.17]J -IT

In other words, the area under the population spectrum between \302\261\321\202\320\263gives y0, the
variance of \320\243,.

More generally\342\200\224since sY(w) is nonnegative\342\200\224if we were to calculate

\320\223\320\260,,

sY((o) d(o

for any &>! between 0 and \321\202\320\263,the result would be a positive number that we could
interpret as the portion of the variance of Y, that is associatedwith frequencies \321\201\320\276

that are less than \321\2101in absolute value. Recalling that Sy(io) is symmetric, the claim
is that

[6.1.18]

represents the portion of the variance of Y that could be attributed to periodic
random components with frequency less than or equal to <ov

What does it mean to attribute a certain portion of the variance of Y to cycles
with frequency less than or equal to a)t? To explore this question, let us consider

the following rather specialstochasticprocess.Suppose that the value of Y at date

t is determined by

\320\274

Y, = 2 [a/cos(ay) +
5jSia(u>jt)]. [6.1.19]

Here, ay-
and 5y are zero-mean random variables, meaning that E(Yt) = 0 for all

t. The sequences {<*;}/!iand {8/}fLi are serially uncorrelated and mutually uncor-

related:

E(af8k) = 0 for all / and k.

The variance of Y, is then

\320\274
\320\223 1

?) = 2 \302\243(\302\253y2)-cos2(to/0+ \302\243E?)-sin2(u>/)
/-i L J

\320\243CT2Ls2(aH) + sin2(on)l [6.1.20]

M

with the last line following from equation [A.1.12]. Thus, for this process, the
portion of the variance of Y that is due to cycles of frequency aij is given by a-j.

156 Chapter 6 | Spectral Analysis



If the frequencies are ordered0 < cox < \321\210^< \342\200\242\342\200\242\342\200\242< \321\201\320\276\320\274< \321\202\320\263,the portion of the
variance of Y that is due to cyclesof frequency less than or equal to

coj is given by

crl + trl + \342\226\240\342\226\240\342\226\240+ <rj.
The fcth autocovariance of Y is

E(Y,Y,_k)
= f {\302\243(aJ)-co8(\302\253y0-co8K(f

-
*)]

+
E(ay2)-sin(\302\253yQ-sin[\302\253y(f

-
*)\302\273

[6 1 21]
= 2 o-/{cos(a\302\273yr)-cos[a\302\273y(f

-
k)]

+
sin(a\302\273yf)-sin[a\302\273/(f

-
k)]}.

Recall the trigonometric identity3

cos(A
- B) = cos(A)cos(B)+ sin(A)sin(B). [6.1.22]

For A =
\320\250/tand \320\222=

coj(t
- k), we have A - \320\222=

cojk, so that [6.1.21] becomes

E(YtY,_k)
= f of-cos(\302\253y*).

\342\200\242
[6-1.23]

Since the mean and the autocovariances of Y are not functions of time, the process
describedby [6.1.19] is covariance-stationary, although [6.1.23] implies that the

sequence of autocovariances {\321\203^.\320\276is not absolutely summable.
We were able to attribute a certain portion of the variance of Y, to cyclesof

lessthan a given frequency for the process in [6.1.19] because that is a rather special
covariance-stationary process. However, there is a general result known as the

spectral representation theorem which says that any covariance-stationary process
\320\243,\321\201\320\260\320\277be expressed in terms of a generalization of [6.1.19]. For any fixed frequency
w in [0, tt], we define random variables a(co) and 8(w) and propose to write a

stationary process with absolutely summable autocovariances in the form

f\"
Y, = fi + j [a((o)cos((ot)+ 8((o)sin((ot)] do>.

The random processes represented by <*(\342\200\242)and S(-) have zero mean and the further

properties that for any frequencies 0 < w1 < w2 < <o3 < &>4 < \321\202\320\263,the variable

/\342\204\242fa(co) dco is uncorrelated with J%*3 a(co) dco and the variable J\"\342\204\242JS(cu) dw is
uncorrelated with J\"J\302\2438(\321\210)dco, while for any 0 < <ut < \321\211< \321\202\321\202and 0 < &>3 <

u>4 < \321\217-,the variable J\"\"f a(w) dco is uncorrelated with J\"^ 8(co) dco. For such a

process, one can calculate the portion of the variance of Y, that is due to cycles
with frequency less than or equal to some specified value cox through a generalization
of the procedure used to analyze [6.1.19]. Moreover, this magnitude turns out to

be given by the expression in [6.1.18].
We shall not attempt a proof of the spectral representation theorem here;

for details the reader is referred to Cramer and Leadbetter A967, pp. 128-38).
Instead, the next section provides a formal derivation of a finite-sample version of
these results, showing the sense in which the sample analog of [6.1.18]gives the

portion of the sample variance of an observed series that can be attributed to cycles
with frequencies less than or equal to cox.

3See, for example, Thomas A972, p. 176).
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6.2. The Sample Periodogram
For a covariance-stationary process Y, with absolutely summable autocovariances,
we have defined the value of the population spectrum at frequency w to be

where

Vi-

Viand fj.
= E(Yt). Note that the population spectrum is expressed in terms of

{yji'-oi which represents population second moments.
Given an observed sample of T observations denoted yu y2,. . . , yT, we can

calculate up to T \342\200\2241 sample autocovariances from the formulas

~\\ 2+1(\320\243.

-
\320\243\320\245\320\243,-;-\320\243) for/

= 0, 1, 2, . . . , \320\223- 1
\320\243/ ' '

./*\320\243+1 for/
= -1, -2 -T + 1,

[6.2.2]
where \321\203is the sample mean:

\320\243
= T-1 2 \320\243,- [6-2.3]

For any given \321\210we can then construct the sample analog of [6.2.1], which is known

as the sample periodogram:

Sy{o>)
=

^ J^Jje-1*. [6.2.4]

As in [6.1.6], the sample periodogram can equivalently be expressed as

\320\251-

The same calculations that led to [6.1.17] can be used to show that the area under

the periodogram is the sample variance of y:

sy(w) dw = %.J \342\200\224it

Like the population spectrum, the sample periodogram is symmetric around

w = 0, so that we could equivalently write

There also turns out to be a sample analog to the spectral representation
theorem, which we now develop. In particular, we will see that given any T ob-

observations on a process (yv y2 yT), there exist frequencies col, o^, . . . , o>M

and coefficients /2, &u a2, . . . , &M, Bu Sj bM such that the value for \321\203at

date t can be expressedas

\320\243,
= A + 2 {*/Cos[\302\253;(r

- 1)] + dj-sm^it - 1)]}, [6.2.6]
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where the variable d;-cos[ay(t
- 1)] is orthogonal in the sample to ak-cos[wk(t

-
1)]

for/ \320\244k, the variable \302\243y-sin[oy(t
-

1)] is orthogonal to 8k-sin[wk(t
- 1)]for/ \320\244k,

and the variable fycos[oy(t
- 1)] is orthogonal to 8k-a.n[cok(t

- 1)] for all / and k.
The samplevariance of \321\203is T\0212^.1(y,

- yJ, and the portion of this variance
that can be attributed to cycleswith frequency ay can be inferred from the sample
periodogram \302\247y(<Oj).

We will develop this claim for the case when the sample size T is an odd

number. In this case y, will be expressed in terms of periodic functions with

M = (T - l)/2 different frequencies in [6.2.6]. The frequencies \321\210\320\270o>2, . . \342\226\240, o>M

are specified as follows:

co2 =

[6.2.7]

coM
= IMtrlT.

Thus, the highest frequency considered is

2(T -
l)w

% = <

Consideran OLS regression of the value of y, on a constant and on the various
cosine and sine terms,

\320\274

\320\243,
=

M + 2 {a/cos[oy(r- 1)]+ 8,sin[(Oj(t
- 1)]} + \302\253,.

This can be viewed as a standard regression model of the form

y,
= P'x, + u,, [6.2.8]

where

x,
= 1 cos[w!(f - 1)] sinter -

1)] cos[(o2(t
- 1)] sin[u^(f

-
1)]

\342\200\242\342\200\242\342\200\242
cos[uiM(t

- 1)] sin[a>M(t
-

1)]

P' =
[fj. at 5, a2 Sj \342\226\240\342\226\240\342\226\240

aM 8M]. [6.2.10]

Note that x, has BM + 1) = T elements, so that there are as many explanatory
variables as observations. We will show that the elements of x, are linearly inde-

independent, meaning that an OLS regression of y, on x, yields a perfect fit. Thus, the
fitted values for this regression are of the form of [6.2.6] with no error term \302\253,.

Moreover, the coefficients of this regression have the property that \\{aj + 8f)
represents the portion of the sample variance of \321\203that can be attributed to cycles

with frequency cd/. This magnitude \\{6tf + of) further turns out to be proportional
to the sample periodogram evaluated at ay. In other words, any observed series

\320\2431>\320\243\320\263,\342\226\240\342\226\240\342\226\240i \320\243\321\202can be expressed in terms of periodic functions as in [6.2.6], and

the portion of the sample variance that is due to cycleswith frequency ,oy can be
found from the sample periodogram. These points are established formally in the

following proposition, which is proved in Appendix 6. A at the end of this chapter.
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Proposition 6.2: Let T denote an odd integer and let M = (T - l)/2.Let

coj
= 2TTJITforj = 1, 2 M, and let x, be the (T x 1) vector in [6.2.9]. Then

Furthermore, let {yu y2 yT} be any T numbers. Then the following are true:

(a) The value ofy, can be expressed as

\320\274

\320\243,
= M + 2 {\302\253ycos[toy(f

-
1)] +

8;Sia[u>j(t
-

1)]},

with fl
=

\321\203(the sample mean from [6.2.3])and

a,
= BIT) 2 y,-cos[o\302\273/f

-
1)] for/ = 1,2 M [6.2.12]

8j
= BIT) 2 y,-sin[^(f- 1)] for/

= 1, 2 M. [6.2.13]

(b) The sample variance of y, can be expressedas

(\320\243\320\242)2 (\320\243,
~

\320\243?
= A/2) 2 (\302\253,2+ S?), [6.2.14]

and the portion of the sample variance ofy that can be attributed to cycles of
frequency <oj is given by j(aj + 8j).

(c) The portion of the sample variance of \321\203that can be attributed to cycles of
frequency Wj can equivalently be expressedas

(l/2)(aj + S?)
=

D\321\202\320\263/\320\223\320\235>;), [6.2.15]

where
$\321\203(<\320\276/)

is the sample periodogram at frequency <Oj.

Result [6.2.11] establishes that 2,r=1x,x,' is a diagonal matrix, meaning that

the explanatory variables contained in x, are mutually orthogonal. The proposition
asserts that any observed time series (yu y2, . . . , \320\243\320\263)with T odd can be written

as a constant plus a weighted sum of (T - 1)periodic functions with (T
- 1I2

different frequencies; a related result can also be developedwhen T is an even
integer. Hence, the proposition gives a finite-sample analog of the spectral rep-
representation theorem. The proposition further shows that the sample periodogram
captures the portion of the sample variance of \321\203that can be attributed to cycles

of different frequencies.
Note that the frequencies \321\210}

in terms of which the variance of \321\203is explained
all lie in [0, \321\202\320\263].Why aren't negative frequencies \321\210< 0 employed as well? Suppose

that the data were actually generated by a special case of the process in [6.1.19],

Y,
= a-cos(-urt) + S-sin(-urt), [6.2.16]

where - \321\210< 0 represents some particular negative frequency and where a and 5

are zero-mean random variables. Since cos(
-

a>t)
= cos(otf) and sin( -

wt)
= -sin(arf),

the process [6.2.16]can equivalently be written

Y, = acos(o)t) -
8sin((ot). [6.2.17]

Thus there is no way of using observed data on \321\203to decide whether the data are

generated by a cycle with frequency
- w as in [6.2.16] or by a cycle with frequency
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/

cos[AT/2)(l cos[Cir/2)t)

-1.5 \342\226\240\342\200\242

-2 \342\226\240\342\226\240

FIGURE 6.1 Aliasing: plots of cos[Gi72)f]and cos[C7r/2)r] as functions of t.

+ o) as in [6.2.17]. It is simply a matter of convention that we choose to focus only
on positive frequencies.

Why is (\320\276= \321\217-the largest frequency considered? Suppose the data were

generated from a periodic function with frequency o> > \321\202\320\263,say, a> = \320\227\321\202\320\263/2for

illustration:

Y, = a-cos[C7r/2)f] + 5-sin[C7r/2)f]. [6.2.18]

Again, the properties of the sine and cosine function imply that [6.2.18] is equivalent
to

Y,
= a-cos[(-ir/2)f] + 5-sin[(-7r/2)f]. [6.2.19]

Thus, by the previous argument, a representation with cycles of frequency (\320\227\321\202\320\263/2)

is observationally indistinguishable from one with cycles of frequency (\321\202\320\263/2).

To summarize, if the data-generating process actually includes cycles with

negative frequencies or with frequencies greater than it, these will be imputed to

cycles with frequencies between 0 and tt, This is known as aliasing.
Another way to think about aliasing is as follows. Recall that the value of

the function cos(orf) repeats itself every 2ir/\302\253uperiods, so that a frequency of \321\210is

associated with a period of 2\321\202\320\263/\321\210.4We have argued that the highest-frequency cycle
that one can observeis \321\210= \321\202\321\202.Another way to express this conclusion is that the
shortest-period cycle that one can observeis one that repeats itself every 2\321\202\320\263/\321\202\320\263=

2 periods. If a> = 3irl2, the cycle repeats itself every I periods. But if the data are
observed only at integer dates, the sampled data will exhibit cycles that are repeated
every four periods, corresponding to the frequency o> = \321\202\320\263/2.This is illustrated in

Figure 6.1, which plots cos[(nl2)t]and cos[Ctt/2)/] as functions oft. When sampled
at integer values of t, these two functions appear identical. Even though the function

cos[Cnl2)t] repeats itself every time that t increases by I, one would have to observe
y, at four distinct dates (y,, y,+ 1, yl+2, \321\203,+\320\267)before one would see the value of

cos[Cnl2)t] repeat itself for an integer value of t.

\342\200\242SeeSection A.I of the Mathematical Review (Appendix A) at the end of the book for a further

discussion of this point.
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Note that in a particular finite sample, the lowest frequency used to account

for variation in \321\203is \321\211
= 2irlT, which corresponds to a period of T. If a cycle takes

longer than \320\223periods to repeat itself, there is not much that one could infer about
it if one has only T observations available.

Result (c)of Proposition 6.2 indicates that the portion of the sample variance

of \321\203that can be attributed to cycles of frequency o>y is proportional to the sample
periodogram evaluated at <Oj, with 4\321\202\320\263/\320\223the constant of proportionality. Thus, the

proposition develops the formal basis for the claim that the sample periodogram

reflects the portion of the sample variance of \321\203that can be attributed to cycles of

various frequencies.
Why is the constant of proportionality in [6.2.15] equal to 4\321\202\320\263/\320\223?The pop-

population spectrum sY((o) could be evaluated at any \321\210in the continuous set of points

between 0 and \321\202\321\202.In this respect it is much like a probability density fx(x), where

AT is a continuous random variable. Although we might loosely think of the value

oifx(x) as the \"probability\" that X = x, it is more accurate to say that the integral

I'i] fx(x) dx represents the probability that X takes on a value between xx and x2.
As x2 -

Xx becomes smaller, the probability that X will be observed to lie between

x1 and x2 becomessmaller, and the probability that X would take on precisely the

value x is effectively equal to zero. In just the same way, although we can loosely

think of the value of sY(a>) as the contribution that cycles with frequency o> make

to the variance of Y, it is more accurate to say that the integral

sY(o>)do) = 2sY(o>) do)
J \342\200\224Wi JO

represents the contribution that cycles of frequency less than or equal to \321\210\321\205make

to the variance of Y, and that Jz\\ 2sY{o>)do representsthe contribution that cycles
with frequencies between \321\211and o>2 make to the variance of Y. Assuming that

sY(<o) is continuous, the contribution that a cycle of any particular frequency a>

makes is technically zero.
Although the population spectrum sY((o)is defined at any o> in [0, \321\202\320\263],the

representation in [6.2.6] attributes all of the sample variance of \321\203to the particular
frequencies <ou ii^, . . . , a>M. Any variation in Y that is in reality due to cycles

with frequencies other than these M particular values is attributed by [6.2.6] to
one of these M frequencies.If we are thinking of the regression in [6.2.6]
as telling us something about the population spectrum, we should interpret
h(aj + Ej) not as the portion of the variance of Y that is due to cycles with

frequency exactly equal to ay, but rather as the portion of the variance of Y that

is due to cycleswith frequency near e>y. Thus [6.2.15] is not an estimate of the

height of the population spectrum, but an estimate of the area under the pop-
population spectrum.

This is illustrated in Figure 6.2. Suppose we thought of
\\{&j

+ 8j) as an
estimate of the portion of the variance of Y that is due to cycleswith frequency
between (oj_1

and
a>j,

that is, an estimate of 2 times the area under Sy(o)) between

ft)y_!
and

<uy. Since ay
= 2njlT, the difference ay

-
e>y_! is equal to 2\321\202\320\263/7\\1iSy(fi>j)

is an estimate of
sY(a>j), then the area under sY(w) between o>y_ j and

o>y-
could be

approximately estimated by the area of a rectangle with width 2\321\202\320\263/\320\242and height

$y(o)j).
The area of such a rectangle is BttIT)-Sj((oj).Since\\{oif + 8j) is an estimate

of 2 times the area under sY(w) between
\321\210/_1

and <oj7 we have k(aj + &j) =

(AnlT)iy(a)j),
as claimed in equation [6.2.15].

Proposition 6.2 also provides a convenient formula for calculating the value of

the sample periodogram at frequency \321\210,-
= 2rrjlT for j = 1, 2, . . . , (T

- 1I2,

162 Chapter 6 \\ Spectral Analysis



\320\236
\321\201\320\2761\321\201\320\2762

FIGURE 6.2 The area under the sample periodogram and the portion of the

variance of \321\203attributable to cycles of different frequencies.

namely,

where

That is,

\320\232)
=

[77(8\321\202\320\263)](\320\260?+ if),

=
B/\320\223)2 \321\203(-\321\201\320\2768[\302\273\320\224\302\273

-
1)]

=
B/\320\223)2 y\302\253-sin[\302\273y(f

- 1)].

y,-sin[\302\253y(f
-

6.3. Estimating the Population Spectrum
Section 6.1 introduced the population spectrum sY(a>), which indicates the portion
of the population variance of Y that can be attributed to cycles of frequency \321\210.

This section addresses the following question: Given ail observed sample{yb y2,

\342\226\240. . , yT}, how might sY(u)) be estimated?

Large-Sample Properties of the Sample Periodogram

One obvious approach would be to estimate the population spectrum sY(<o)

by the sample periodogram \302\243y(<o).However, this approach turns out to have some
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serious limitations. Suppose that

2
/-o

where {i^}JL0 's absolutely summable and where {e,}f_ _\342\200\236is an i.i.d. sequence with

E(et)
= 0 and E(s2) = a2.Let sY{a>) be the population spectrum defined in [6.1.2],

and suppose that sY(a>) > 0 for all a>. Let
\302\247y(a>)

be the sample periodogram defined

in [6.2.4]. Fuller A976, p. 280)showed that for a> \320\2440 and a sufficiently large
samplesizeT, twice the ratio of the sample periodogram to the population spectrum

has approximately the following distribution:

Moreover, if \320\220\320\244\321\210,the quantity

[6.3.2]

also has an approximate #2B) distribution, with the variable in [6.3.1] approxi-

approximatelyindependent of that in [6.3.2].
Since a x2B) variable has a mean of 2, result [6.3.1] suggests that

\"

or since .$\320\263(\320\271>)is a population magnitude rather than a random variable,

E[iy(w)] \302\273sY(o>).

Thus, if the sample size is sufficiently large, the sample periodogram affords an

approximately unbiased estimate of the population spectrum.
Note from TableB.2 that 95% of the time, a *2B) variable will fall between

0.05 and 7.4. Thus, from [6.3.1], $\321\203(\321\210)
is unlikely to be as small as 0.025times the

true value of sY(u)), and Sy(<o) is unlikely to be any larger than 3.7 times as big as
sY(o)).Given such a large confidence interval, we would have to say that sy(co) is
not an altogether satisfactory estimate of sY((o).

Another feature of result [6.3.1] is that the estimate
$\321\203(\321\210)is not getting any

more accurate as the sample size \320\223increases. Typically, one expects an econometric

estimate to get better and better as the sample size grows. For example, the variance
for the sample autocorrelation coefficient p) given in [4.8.8] goes to zero as T \342\200\224\302\273\302\260\302\260,

so that given a sufficiently large sample, we would be able to infer the true
value of

pj
with virtual certainty. The estimate sy((o) defined in [6.2.4] does not

have this property, because we have tried to estimate as many parameters (%. Ti.
\342\200\242\342\200\242\342\200\242. \320\243\321\202-i)as we had observations (ylt y2 yT)-

Parametric Estimates of the Population Spectrum
Suppose we believe that the data could be represented with an ARMA(p, q)

model,

\320\243,= M + 4>iY,-i + <^Y,-2+ \342\226\240\342\226\240\342\226\240+
\320\244\321\200\320\243.-f+ e, + 0,6,-! [63.3]

+ e2e,_2 + \342\200\242\342\200\242\342\200\242+ eqe,_q,

where e, is white noise with variance cr2.Then an excellent approach to estimating
the population spectrum is first to estimate the parameters (i, \321\204\320\263,. . . , \321\204\321\200,9\320\263,
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. . . , \320\262\320\264and cr2 by maximum likelihood as describedin the previous chapter. The
maximum likelihood estimates (& <i>p, \320\262\320\270. . .

,\320\262\320\264,&\320\263)could then be plugged
into a formula such as [6.1.14]to estimate the population spectrum sY(a>) at any

frequency a>. If the model is correctly specified, the maximum likelihood estimates
(& \321\204\321\200,\302\247!,..., \320\262\320\264,&2) will get closer and closer to the true values as the

sample size grows; hence, the resulting estimate of the population spectrum should
have this same property.

Even if the model is incorrectly specified, if the autocovariances of the true

process are reasonably closeto those for an ARMA(p, q) specification, this pro-
procedure should provide a useful estimate of the population spectrum.

Nonparametric Estimates of the Population Spectrum
The assumption in [6.3.3] is that Yt can be reasonably approximated by an

ARMA(p, q) processwithp and q small. An alternative assumption is that sY(a>)
will be close to sY(k) when \321\210is close to A. This assumption forms the basis for
another class of estimates of the population spectrum known as nonparametric or

kernel estimates.

llsY(a>) is closeto sY(\\) when a> is close to A, this suggests that sY(a>) might
be estimated with a weighted average of the values of Sy{k) for values of A in a

neighborhood around o>, where the weights depend on the distance between \321\210and

A. Let \302\243y(u>)denote such an estimate of sY(a>) and let
<Oj

= 2njlT. The suggestion
is to take

fy(a>y)
=

\302\243\320\272(\320\260>/+\321\202,o>,H(a>y+m). [6.3.4]
m\302\273\342\200\224h

Here, A is a bandwidth parameter indicating how many different frequencies {\321\210{\302\2611,

o)j\302\2612 \302\260>j\302\261hl
\320\275\320\265viewed as useful for estimating iy(&)y).

The kernel \320\272(\320\276I+\321\202,\321\210,)

indicates how much weight each frequency is to be given. The kernel weights sum

to unity:

One approach is to take \320\272(\321\2101+\321\202,caj) to be proportional to h + 1 -
\\m\\. One

can show that5

2 [h + i - M] = (a + iJ.
m= \342\200\224h

Hence, in order to satisfy the property that the weights sum to unity, the proposed
kernel is

*(o,/+m, <,)
=

^JpJ
[6.3.5]

'Notice that

\320\253]
=

J,Jh
+ 1)- J,_ \\m\\

= BA + 1)(A + 1) -
2A(A + l)/2

=
(h + iy.
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and the estimator [6.3.4]becomes

For example, for h = 2, this is

Recall from [6.3.1] and [6.3.2] that the estimates Sy(a>)
and

\302\243\320\224\320\220)
are approximately

independent in large samples for \321\210\320\244A. Because the kernel estimate averages
over a number of different frequencies, it should give a much better estimate than

does the periodogram.
Averaging \302\243\321\203(\321\210)over different frequencies can equivalently be represented

as multiplying the /th sample autocovariance fy- for / > 0 in the formula for the

sample periodogram [6.2.5] by a weight \320\272*.For example, consider an estimate of
the spectrum at frequency \321\210that is obtained by taking a simple average of the

value of sy(k) for A between \321\210\342\200\224v and \321\210+ v:

\302\247Y{a>)
= Bv)~

Substituting [6.2.5] into [6.3.7], such an estimate could equivalently be expressed
as

)-1 f\"+\" fo + 22 fycos(Ay)l
dk

]~ll_. [6-3.8]
/-1

=
(Itt)\021^ + BJ/7T)\021 2 7/(l//)\"{sin[(u)

+ v)j]
-

sin[(u)
- v)j]}.

Using the trigonometric identity6

sin(A + B)~ sin(A
- B) = 2-cos(A)-sin(B), [6.3.9]

expression [6.3.8] can be written

[6.3.10]

Notice that expression [6.3.10] is of the following form:

Jy(\302\273)
=

B7\320\223)-11?0 + 2 2
\302\253;fycos(u>y)|,

[6.3.11]

where

\302\253*=!1!^
\342\200\242 [6.3.12]

The sample periodogram can be regarded as a special case of [6.3.11]when \320\272*= 1.

Expression [6.3.12] cannot exceed 1 in absolute value, and so the estimate [6.3.11]
essentially downweights yf relative to the sample periodogram.

\302\253See,for example, Thomas A972, pp. 174-75).
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Recall that sinGr/) = 0 for any integer/. Hence, if v =
\321\202\320\263,then \320\272*= 0 for

all; and [6.3.11] becomes

SY(co)
= Gm)^% [6-3.13]

In this case, all autocovariances other than y0 would be shrunk to zero. When v =

7\320\223,the estimate [6.3.7] is an unweighted average of Sy(k) over all possible values
of A, and the resulting estimate would be the flat spectrum for a white noise process.

Specification of a kernel function
\320\272(\320\271)\321\203+\321\202,o)y) in [6.3.4] can equivalently be

described in terms of a weighting sequence {\302\253/};!}
in [6.3.11]. Because they are

just two different representations for the same idea, the weight \320\272*is also sometimes
called a kernel. Smaller values of \320\272*impose more smoothness on the spectrum.

Smoothing schemes may be chosen either because they provide a convenient speci-
specification for \320\272(\320\271>\321\203\320\247\321\202,<oj)

or because they provide a convenient specification for \320\272*.

One popular estimate of the spectrum employs the modified Bartlett kernel,

which is given by

for/= 1,2,. . . ,q
[6.3.14]

iorj>q.

TheBartlett estimate of the spectrum is thus

SY(w)
=

B7\320\223)\021
|fo

+ 2.J [1 -
//(<? +

1)]?\321\203\321\201\320\276\320\262(\321\207/)|-
[6.3.15]

Autocovariances yy for j > q are treated as if they were zero, or as if Y, followed

an MA(q) process.For/ =\302\243q, the estimated autocovariances y, are shrunk toward

zero, with the shrinkage greater the larger the value of/.
How is one to choose the bandwidth parameter h in [6.3.6] or q in [6.3.15]?

The periodogram itself is asymptotically unbiased but has a large variance. If one
constructs an estimate based on averaging the periodogram at different frequencies,
this reduces the variance but introduces somebias.The severity of the bias depends
on the steepness of the population spectrum and the size of the bandwidth. One

practical guide is to plot an estimate of the spectrum using several different band-
widths and rely on subjective judgment to choose the bandwidth that produces the

most plausible estimate.

6.4. Uses of Spectral Analysis

We illustrate some of the uses of spectral analysis with data on manufacturing
production in the United States. The data are plotted in Figure 6.3. The series is
the Federal Reserve Board's seasonally unadjusted monthly index from January
1947 to November 1989. Economic recessions in 1949, 1954, 1958, 1960, 1970,
1974,1980, and 1982 appear as roughly year-long episodes of falling production.
There are also strong seasonal patterns in this series; for example, production
almost always declines in July and recovers in August.

The sample periodogram for the raw data is plotted in Figure 6.4, which

displays \302\247y(toj)as a function of/ where
wy

=
2\321\202\320\263//\320\223.The contribution to the sample

variance of the lowest-frequency components (/ near zero)is several orders of

magnitude larger than the contributions of economic recessions or the seasonal

factors. This is due to the clear upward trend of the series in Figure 6.3. Let y,
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FIGURE 6.3 Federal Reserve Board's seasonally unadjusted index of industrial

production for U.S. manufacturing, monthly 1947:1 to 1989:11.
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FIGURE 6.4 Sampleperiodogram for the data plotted in Figure 6.3. The figure
plots \302\243y(b>;)

as a function of j, where
<uy-

= 2njlT.
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FIGURE 6.5 Estimate of the spectrum for monthly growth rate of industrial

production, or spectrum of 100times the first difference of the log of the series in

Figure 6.3.

represent the series plotted in Figure 6.3. If one were trying to describe this with

a sine function

y, = 8-sin((ot),

the presumption would have to be that a> is so small that even at date t = T the

magnitude \321\210\320\242would still be less than \321\202\320\263/2.Figure 6.4 thus indicates that the trend

or low-frequency components are by far the most important determinants of the

sample variance of \321\203.

The definition of the population spectrum in equation [6.1.2] assumed that

the process is covariance-stationary, which is not a good assumption for the data

in Figure 6.3. We might instead try to analyze the monthly growth rate defined by

x, = 100-[log(yt) - log(yt_!)]. [6.4.1]

Figure 6.5 plots the estimate of the population spectrum of X as described in

equation [6.3.6] with h \342\200\22412.

In interpreting a plot such as Figure 6.5 it is often more convenient to think
in terms of the period of a cyclic function rather than its frequency. Recall that if

the frequency of a cycleis a>, the period of the cycle is 2irla>. Thus, a frequency
of

a)j
=

2\321\202\320\263//\320\223corresponds to a period of
2\321\202\320\263/\320\271>\321\203

=
7V/. The sample size is T = 513

observations, and the first peak in Figure 6.5 occurs around/ = 18.This corresponds

to a cycle with a period of 513/18 = 28.5 months, or about 2\\ years. Given the

dates of the economic recessions noted previously, this is sometimes described as
a \"business cycle frequency,\" and the area under this hill might be viewed as telling
us how much of the variability in monthly growth rates is due to economic reces-
recessions.
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The second peak in Figure 6.5 occurs at; = 44and corresponds to a period
of 513/44= 11.7months. This is natural to view as a 12-month cycle associated
with seasonal effects. The four subsequent peaks correspond to cycles with periods

of 6, 4, 3, and 2.4 months, respectively, and again seem likely to be picking up

seasonal and calendar effects.
Sincemanufacturing typically falls temporarily in July, the growth rate is

negative in July and positive in August. This induces negative first-order serial

correlation to the seriesin [6.4.1] and a variety of calendar patterns for x, that may

account for the high-frequency peaks in Figure 6.5. An alternative strategy for

detrending would use year-to-year growth rates, or the percentagechange between

y, and its value for the corresponding month in the previous year:

w, = 100-[log(y,)- log(y,_12)]. [6.4.2]

The estimate of the sample spectrum for this series is plotted in Figure 6.6.
When the data are detrended in this way, virtually all the variance that remains is
attributed to components associated with the business cycle frequencies.

Filters

Apart from the scale parameter, the monthly growth rate x, in [6.4.1] is

obtained from log(y,)by applying the filter

x, =
A

-
L)log(yt), [6.4.3]

where L is the lag operator. To discuss such transformations in general terms, let

Y, be any covariance-stationary serieswith absolutely summable autocovariances.

101 121

Value af j

HI 161 1B1 201 221

FIGURE 6.6 Estimate of the spectrum for year-to-year growth rate of monthly
industrial production, or spectrum of 100times the seasonal difference of the log
of the series in Figure 6.3.
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Denote the autocovariance-generating function of Y by gy(z), and denote the
population spectrum of Y by sY(a>). Recall that

Sy(O)) =
\\\320\237\320\223)gY\\e )\342\226\240 [D.4.4J

Suppose we transform Y according to

X, =
h{L)Yt,

where

and

Recall from equation [3.6.17] that the autocovariance-generating function of X can
be calculated from the autocovariance-generating function of Y using the formula

gx{z)
= h{z)h{z-*)gY{z). [6.4.5]

The population spectrum of X is thus

sx{a>)
=

B\302\273r)-\302\253fcr(e-'-)
=

B\302\273r)-'A(e-fa)A(\302\253fa0gy(e-'-). [6.4.6]

Substituting [6.4.4] into [6.4.6]revealsthat the population spectrum of AT is related

to the population spectrum of Y according to

sx(w)=
h{e-'\302\273)h{e'\302\273)sY{a>). [6.4.7]

Operating on a series Y, with the filter h(L) has the effect of multiplying the
spectrum by the function A(e\"'\A(e\"\302\260).

For the difference operator in [6.4.3], the filter is h(L) = 1 - L and the

function h{e-iQ>)h{eiQ>) would be

A(e-'u)A(efc\") = A - e-'\(l")- e'\
= 1 - e-\"\302\260- e\"\302\260+ 1 [6.4.8]
= 2 -

2-cos(u>),

where the last line follows from [6.1.11]. If X, =
A

- L)Yt, then, to find the

value of the population spectrum of X at any frequency <o, we first find the value
of the population spectrum of \320\232at \321\210and then multiply by 2 - 2-cos(w). For
example,the spectrum at frequency \321\210= 0 is multiplied by zero, the spectrum at

frequency \321\210= 7r/2 is multiplied by 2, and the spectrum at frequency <o = -\320\273is

multiplied by 4. Differencing the data removes the low-frequency components and

accentuates the high-frequency components.
Of course,this calculation assumes that the original process Y, is covariance-

stationary, so that Sy(u)) exists. If the original process is nonstationary, as appears
to be the case in Figure 6.3, the differenced data A - L)Y, in general would not
have a population spectrum that is zero at frequency zero.

The seasonal difference filter used in [6.4.2] is h(L) = 1 -
L12, for which

A(e-'\A(e'\")") =
A

-
e\0212'\(l")

- el2i\

= 2 -
2-cosA2w).
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This function is equal to zero when I2co =
\320\236,27r, 47r, 67r, 87\320\263,107\320\263,or 127r; that

is, it is zero at frequencies \321\210= 0, 2w/12, 4W12, \320\2617\320\263/12,87\320\263/12,107\320\263/12,and 7\320\263.

Thus, seasonally differencing not only eliminates the low-frequency (\321\210
= 0) com-

components of a stationary process, but further eliminates any contribution from cycles

with periods of 12,6, 4, 3,2.4,or 2 months.

Composite Stochastic Processes

LetX,be covariance-stationary with absolutely summable autocovariances,
autocovariance-generating function gx(z), and population spectrum sx(<o).LetW,

be a different covariance-stationary series with absolutely summable autocovari-

autocovariances,autocovariance-generating function gw(z), and population spectrum sw(<o),
where X, is uncorrelated with WT for all r and \321\202.Suppose we observe the sum of

these two processes,

Y,
= X, + W,.

Recall from [4.7.19] that the autocovariance-generating function of the sum is the
sum of the autocovariance-generating functions:

gr(z) = gx(z) + gw(z).

It follows from [6.1.2] that the spectrum of the sum is the sum of the spectra:

sY(<o)
= sx(w) + sw(<o). [6.4.9]

For example, if a white noise series W, with variance a2 is added to a seriesX, and

if X, is uncorrelated with WT for all t and \321\202,the effect is to shift the population

spectrum everywhere up by the constant \321\201\320\2632/B\321\202\320\263).More generally, if X has a peak
in its spectrum at frequency <ol and if W has a peak in its spectrum at aJ, then

typically the sum X + W will have peaks at both <ol and a^.
As another example,supposethat

Y,= \321\201+ E hjX,_, + 8,,
i--\"

where X, is covariance-stationary with absolutely summable autocovariances and

spectrum sx(<o).Supposethat the sequence {fy}/= _\342\200\236is absolutely summable and
that e, is a white noise processwith variance &1 where e is uncorrelated with X at
all leads and lags. It follows from [6.4.7] that the random variable S\"_ -\342\200\236hjX,_]

has spectrum h(e~ia)h(eiM)sx(a>), and so, from [6.4.9], the spectrum of \320\243is

sY((o) = A(e-\"')A(e\">M^(w)

APPENDIX 6.A. Proofs of Chapter6 Propositions

\342\226\240Proof of Proposition 6.1. Notice that

\320\223^(\321\210)\320\265\"do, = ~ \320\223\320\201y
J -ir 2/R J ~ir y\302\253-to

=
\320\223\"\320\2017/ f\" {cosK*

~ /)] + i-sinK* - /)]}dm.

[6.A.1]
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[6.A.2]
\320\260\321\210

Consider the integral in [6.A.I]. For \320\272= /, this would be

I {cos[o)(it - /)] + /sin[w(ifc
- /)]} dio = I {cos@) + i-sin@)}dta

-
\302\243

= 2ir.

For it \320\244j, the integral in [6.A.I] would be

I {cos[w(fc
- /)] + /-sin[eu(fc

- /)]} dai

[6.A.3]

- /)] + i-cos[-i7(* -
\320\233]}.

But the difference between the frequencies ir{k - j) and \342\200\224\321\202\320\263(\320\272\342\200\224\321\203)is 2ir(k
- /), which

is an integer multiple of 2ir. Since the sine and cosine functions are periodic, the magnitude

in [6.A.3] is zero. Hence, only the term for / = \320\272in the sum in [6.A.I] is nonzero, and

using [6.A.2], this sum is seen to be

^\"
If\"

^5\320\263(\321\210)\320\265\321\213db> =
^ytj_n [cos(\302\260)+ '-sin(O)] d(o = yt,

as claimed in [6.1.15].
To derive [6.1.16],notice that since sr(io) is symmetric around \321\210= \320\236,

f\" f\" f\"
sY(io)e'\302\260*dio =

jyfeuie\342\204\242*dio + sr(ai)eM dio
J-iT J-iT J0

= 1 Sy(-a>)e-'\302\260'k d<o +
J j,.(eu)eto* deu

=
J J,-(eu)-2-cos(eufc) dta,

where the last line follows from [6.1.11]. Again appealing to the symmetry of sy(a)),

Jsr(<i))-2-cos(<i>k)
dta = I sr((o) cos(eufc) dta,

so that

I Sy{a))e'\302\260>kdta = I sY(to) cos(euit) dta,

as claimed. \342\226\240

\342\226\240Derivation of Equation [6.2.11]in Proposition 6.2. We begin by establishing the following

result:

1^B^-1)]=^ ;:;::o\302\2611,\302\2612,...,\302\261(T-i).
^

That [6.A.4] holds for s = 0 is an immediate consequenceof the fact that exp@)= 1.To

see that it holds for the other cases in [6.A.4], define

z =
exp[iBira/r>]. [6.A.5]

Appendix 6. A. Proofs of Chapter 6 Propositions 173



Then the expression to be evaluated in [6.A.4] can be written

2 exp[iBns/r)(r
- 1I = 2 2('-\".

i-i i-i

We now show that for any N,

[6.A.6]

2zo-a.i\342\200\224t-, [6.A.7]
i.l 1 \342\200\2242

provided that z \320\2441, which is the case whenever 0 < \\s\\ < T. Expression [6.A.7] can be

verified by induction. Clearly, it holds for N = 1, for then

Given that [6.A.7] holds for N, we see that

~
2)

1 - Z

1 -
=

1 - 2 '

as claimed in [6.A.7].
Setting N = Tin [6.A.7] and substituting the result into [6.A.6], we see that

2 exp[fB\302\253/7Kf
- 1)] -

^y [6.A.8]

[6.A.9]

for 0 < \\s\\ < T. But it follows from the definition of z in [6.A. 5] that

zT = exp[iBvslT)-T]
=

exp[/Bire)]

= cosBire) + i-sinBi7s)
= 1 fors = \302\2611,\302\2612,. . . , \302\261(T

- 1).

Substituting [6.A.9]into [6.A.8] produces

2 \320\265\321\205\321\200[/B\320\264\320\260/\320\223)(\320\263
- 1)] = 0 for s = \302\2611,\302\2612 , \302\261(T

- 1),

as claimed in [6.A.4].
To see how [6.A.4] can be used to deduce expression [6.2.11], notice that the first

column of 2,1, x,x,' is given by

[6. A. 10]

2 cosK(\302\253
- 1)]

2 sinK(\302\253
- 1)]

2 cos^Cf - 1)]
_.2sinK,(r- 1)]

where 2 indicates summation over r from 1 to T. The first row of 2f_ iX,x,' is the transpose
of [6.A.10].To show that all the terms in [6.A.10] other than the first element are zero,
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we must show that

T
2 cos[tu,(\302\253

- 1)] = 0 for/ = 1,2, . . . , M [6.A.11]r- [

and

\302\243sin[w/<
- 1)] = 0 for / = 1, 2, . . . , M [6.A.12]

1= 1

for a); the frequencies specifiedin [6.2.7]. But [6.A.4] establishesthat

0 =
\302\243exp[iBnjlT)(t

-
1)]

a

=
\302\243coi[frrilT)(t

- 1)] + i-\302\243sin[B\302\253-//7)(r
- 1)]

for/ = 1,2,. . . , M. For [6.A. 13]to equal zero, both the real and the imaginary component
must equal zero. Since euy

= 2irj/T, results [6.A.11]and [6.A.12] follow immediately from

[6.A.13].
Result [6.A.4] can also be used to calculate the other elements of 2,r,,x,x/. To see

how, note that

-[ei> + e-m] = -[cos(9)+ i-sin(9) + cos(9) - rsin(9)] .g \320\264^,
= cos(9)

and similarly

i[e\302\253
_ e-m = i{cos(9) + rsin(9) -

[cos(9)
- i-sin(9)]}2i 2i [6. A. 15]

= sin(9).

Thus, for example, the elementsof 2,1,\321\205,\321\205,'corresponding to products of the cosine terms

can be calculated as

\302\243cos[<u,(r- l)]cosK(\302\253- 1)]

=
\\

E {\320\265\321\205\321\200[;\321\210\321\203(\302\253
-

1)] + \320\265\321\205\321\200[-;\321\210\320\224\302\253
- 1)]}

x {exp[iwt(\302\253
- 1)] + exp[-;4(\302\253

- 1)]}
1 /
J , + wt)(\302\253

- 1)] + exp[i(-eu; + <\"*)(<
~

1I
\320\264

+ exp[/(o),
-

eut)(\302\253
- 1)] + \320\265\321\205\321\200[\320\263(-\320\250/

-
wt)(\302\253

- 1)]}

=
\\

2 {exp[iB1r/r)(/ + *)(f -
1)] + exp[iB1r/T)(fc - /X' - 1)]

+ exp[iBw/T)(j
- *)(t

- 1)]+ exp[iB^T)(-/- fc)(\302\253
- 1)]}.

For any/
= 1, 2, . . . , M and any \320\272= 1, 2, . . . , M where \320\272\320\244j, expression [6.A.16] is

zero by virtue of [6.A.4]. For \320\272= j, the first and last sums in the last line of [6.A.16]are
zero, so that the total is equal to

(i/4) 2 (i + i) = \321\202\320\260.
(- 1
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Similarly, elements of 2/, 1x,x,'corresponding to cross products of the sine termscan

be found from

\302\243sin[*;(f
- Dl-sinKC - 1)]

= -if {\320\265\321\205\321\200[\321\210,.(\320\263
- 1)] -

\320\265\321\205\321\200[-\321\210/\320\263
- 1)]}

x {exp[iwt(\302\253-1)]
- exp[-iiok(t - 1)]}

42 *)(f
- 1)] - exp[iBir/T)(* -

\320\226'
~ 1I

- exp[iB,r/r)G \"
*)(<

- 1I + exp[iBWr)(-; -
*)(r

-
1)]}

772 for j = \320\272

0 otherwise.

Finally, elementsof 2,1, x,x,' corresponding to crossproducts of the sine and cosine
terms are given by

i cos[w,(r- l)]'sinK(\302\253
- 1If 1

=
7; I! {expK(f -

1)] +
\320\265\321\205\321\200[-\321\210/\320\263

- 1)]}

x {exp[iiut(f
- 1)] - exp[-i4(r - 1)]}

1 2 / + k)(t - 1)] + exp[iB1r/T)(fc
- j%t - 1)]

-
exp[iB1r/T)(/

- k)(t - 1)] -
exp[iBWT)(-y

- k)(t - 1)]},
which equals zero for all/' and k. This completesthe derivation of [6.2.11]. \342\226\240

\342\226\240Proof of Proposition 6.2(a). Let b denote the estimate of \320\255based on OLS estimation of

the regression in [6.2.8]:

[6-A-171

0

But the definition of x, in [6.2.9] implies that

[

2 ^- -[S>. 2 JVcosMf
- 1)] 2 J-.-sint-ifr

\" 1I

- 1)] 2jV*inte(f - 1)] \342\200\242\342\200\242\342\200\242
[6.A.18]

j

^,4\302\273s[o)\302\253(\302\253
- 1)] 2 JVSin[w\302\253(<

~
1)] \\,

where 2 again denotes summation over t from 1 to T. Substituting [6.A.18] into [6.A.17]

produces result (a) of Proposition 6.2. \342\226\240

\342\226\240Proof of Proposition 6.2(b). Recall from expression [4.A.6] that the residual sum of
squares associated with OLS estimation of [6.2.8]is

2 a? - 2 yi
-

\320\2232 \321\203a1 If 2 *,x;l f 2 *,\320\2731- [\320\261.\320\220.14
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Since there are as many explanatory variables as observations and since the explanatory
variables are linearly independent, the OLS residuals tf, are all zero. Hence,[6.A. 19] implies
that

\302\243f- =
[\302\243

>
A1] [\302\243x,x;j [\302\243\320\266,\320\233].

[6.\320\220.20]

But [6. A. 17] allows us to write

Substituting [6.A.21] and [6.2.11] into [6.A.20] establishes that

\321\203\320\263= \320\254.\320\223\320\223
0 (r/2)

\320\276 G72)-Ir

-
\320\223-\320\224*+ (\320\223/2)2 (*

so that

-Ir.JLo (T/2)-Ir.J |_0 (T/2)-Ir.J

A/2) E (\302\253,?+ *?)\342\200\242 [6.A.22]
;1

Finally, observefrom [4.A.5] and the fact that /X =
\321\203that

A/7) \302\243>?
-

\320\274\320\263= A/T) \302\243(\320\233
r-l r-1

allowing [6.A.22]to be written as

\302\243(.\321\203,
- yf = A/2) \302\243(df

as claimed in [6.2.14]. Since the regressors are all orthogonal, the term i(d/ + hf) can be

interpreted as the portion of the sample variance that can be attributed to the regressors

cos[euy(\302\253
-

1)] and sin[w,(\302\253
- 1)]. \342\226\240

\342\226\240Proof of Proposition 6.2(c). Notice that

(&f + bj) =
{&, + \320\246)(*,

-
i-h,). [6.A.23]

But from result (a) of Proposition 6.2,

a, = B/T) \302\243y,-cos[u,j(t
- 1)] = B/7) \302\243(y,

-
\320\243)-\320\276\320\272\320\246(\320\263

- 1)], [6.A.24]
\320\223-1 \320\223-I

where the second equality follows from [6.A.11]. Similarly,

\302\243G-,
-

y)-stal\302\273i(f
\" 1I- [6-A.25](-1

It follows from [6.A.24] and [6.A.25] that

&, + i-h, -
B/\320\223)(\302\243{\321\203,

-
JF)-oost\302\273;(f

\" 1I
L'-i

+ /\342\200\242\302\243\320\241\320\243,
-

y)-sin[<u;(f
-

1)]] [6.A.26]

= B/T)\302\243(>>,
-

7)-\320\265\321\205\321\200[/\320\250\321\203(\320\263
- I)].r-l
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Similarly,

\321\202

a,
-

i-\321\221,
=

B/\320\223)2 \320\254\320\263
~

\320\243)-\320\265\321\205\321\200[-/\321\210\320\224\321\202
- 1)]. [6.\320\220.27]

Substituting [6.A.26] and [6.A.27] into [6.A.23] produces

{y, - yyexpU^t -

-r-JO-exrf-toA- l)]}

>,-|-\320\243)-\320\265\321\205\321\200[\321\210\321\203]

+ 2 (\320\243,-\320\243)(\320\243.+2
-

\320\243)-\320\265\321\205\321\200[-2/\321\210\321\203]

+ 2 (\320\233
-

\320\243)(\320\243,-2
\"

\320\243)-\320\265\321\205\321\200B\320\270\302\273\321\203]+ \342\200\242\342\200\242\342\200\242
[6.\320\220.28]

\320\223-\320\227

+ (\320\243,
~

\320\243)(\320\243\321\202
-

\321\200)-\320\265\321\205\321\200[-(\320\242
-

l)ia)j]

+ (\320\243\321\202
~

\320\243)(>\320\263
-

\320\243)'\320\265\321\205\321\200[(\320\223
- l)i

+ ?\320\263_,-\320\265\321\205\321\200[-(\320\223
-

=
D/\320\242)B1\320\263)^(\321\210\321\203),

from which equation [6.2.15]follows. \342\226\240

Chapter 6 Exercises

6.1. Derive [6.1.12] directly from expression [6.1.6]and the formulas for the autocovariances
of an MA(l) process.

6.2. Integrate [6.1.9] and [6.1.12] to confirm independently that [6.1.17] holds for white

noise and an MA(i) process.
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7

Asymptotic Distribution

Theory

Suppose a sample of \320\223observations (y^, y2, \342\226\240\342\226\240\342\226\240, yT) has been used to construct

6, an estimate of the vector of population parameters. For example,the parameter

vector 6 =
(\321\201,\321\204\320\270\321\2042,\342\226\240\342\226\240. , \321\204\321\200,\320\2762)'for an AR(p) process might have been

estimated from an OLS regression ofy, on lagged y's. We would like to know how

far this estimate \320\262is likely to be from the true value \320\262and how to test a hypothesis

about the true value based on the observed sample of y's.
Much of the distribution theory used to answer these questions is asymptotic:

that is, it describes the properties of estimators as the sample size (\320\223)goes to

infinity. This chapter develops the basic asymptotic results that will be used in

subsequent chapters. The first section summarizes the key tools of asymptotic

analysis and presents limit theorems for the sample mean of a sequenceof i.i.d.
random variables. Section 7.2 develops limit theorems for serially dependent var-
variables with time-varying marginal distributions.

7.1. Review of Asymptotic DistributionTheory

Limits of Deterministic Sequences

Let {cr}f=1 denote a sequence of deterministic numbers. The sequence is said
to converge to \321\201if for any e > 0, there exists an N such that \\cT

- c\\< e whenever

T sl N; in other words, cT will be ascloseas desired to \321\201so long as T is sufficiently

large. This is indicated as

Urn cT = c, [7.1.1]

or, equivalently,

cT-*c.

For example, cT = 1/\320\223denotes the sequence {1, i,i, . . .},for which

lim cT = 0.

A sequence of deterministic (m x n) matrices {\320\241\320\263}\302\243=i converges to \320\241if each

element of Cr convergesto the corresponding element of C.
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Convergence in Probability

Consider a sequence of scalar random variables, {.\320\243\320\263\320\232\320\263-i.-The sequence is
said to converge in probability to \321\201if for every e > 0 and every 8 > 0 there exists

a value N such that, for all T s N,

P{\\XT
-

c\\ > 8} < e. [7.1.2]

In words, if we go far enough along in the sequence,the probability that XT differs
from \321\201by more than 8 can be made arbitrarily small for any 8.

When [7.1.2] is satisfied, the number \321\201is called the probability limit, or plim,
of the sequence {XT}.This is indicated as

plim XT = \321\201,

or, equivalently,

Recall that if {ct)y-i is a deterministic sequence converging to c, then there
exists an N such that \\cT

-
c\\ < 8 for all \320\223>\320\233(.Then P{\\cT

-
c\\ > 8} = 0 for

all T s N. Thus, if a deterministic sequence convergesto c, then we could also

say that \321\201\321\202\320\224c.

A sequence of (m x n) matrices of random variables {Xr} converges in

probability to the (m x n) matrix \320\241if each element of Xr converges in probability
to the corresponding element of C.

More generally, if {Xr} and {Yr} are sequencesof (m x n) matrices, we will

use the notation

to indicate that the difference between the two sequences converges in probability
to zero:

xr- \321\203\320\263\320\224\320\276.

An example of a sequence of random variables of interest is the following.

Suppose we have a sampleof \320\223observations on a random variable {Yl,Y2, \342\226\240\342\226\240\342\226\240,

YT}. Consider the samplemean,

YT^(VTJY,, [7.1.3]c-l

as an estimator of the population mean,

Mr
= YT.

We append the subscript T to this estimator to emphasizethat it describes the
mean of a sampleof sizeT. The primary focus will be on the behavior of this

estimator as T grows large. Thus, we will be interested in the properties of the

sequence {/xr}r=!-
When the plim of a sequence of estimators (such as {/ir}f = 0 is equal to the

true population parameter (in this case, \320\264),the estimator is said to be consistent.

If an estimator is consistent, then there exists a sufficiently large sample such that
we can be assuredwith very high probability that the estimate will be within any
desired tolerance band around the true value.
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Thefollowing result is quite helpful in finding plims; a proof of this and some

of the other propositions of this chapter are provided in Appendix 7.A at the end
of the chapter.

Proposition 7.1: Let {Xr} denote a sequence of(n x 1) random vectors with plim
c, and let g(c) be a vector-valued function, g: W -\302\273Rm, where g(-) is continuous

at \321\201and does not depend on T. Then g(Xr) -\302\273g(c).

The basic idea behind this proposition is that, since g(-) is continuous, g(Xr)

will be close to g(c) provided that Xr is close to \321\201By choosing a sufficiently large
value of \320\223,the probability that Xr is close to \321\201(and thus that g(Xr) is close to

g(c)) can be brought as near to unity as desired.

Note that g(Xr) depends on the value of Xr but cannot depend on the index

\320\223itself. Thus, g(XT, T) = T-X^-isnot a function covered by Proposition 7.1.

Example 7.1
If XlT A c, and X2TA c2, then (XlT + X2r) A (c, + c2).This follows

immediately, since g(XiT, X2T)
= (XlT + X2T) is a continuous function of

(Xit, X2T).

Example 7.2
Let {Xlr} denote a sequence of (\320\270x n) random matrices with \320\245[\320\223\320\220\320\2411;\320\260

nonsingular matrix. Let X2r denote a sequenceof (\320\270x 1) random vectors
with X2r A c2. Then [Xir]

-
'X2rA [C,]\"'c2.To see this, note that the elements

of the matrix [Xlr]-1 are continuous functions of the elements of XlT at

Xlr = C,, since [\320\241,]\021exists. Thus, [Xlr]-'A [\320\241,]\021.Similarly, the elements
of [X-it]~1X2t are sums of products of elementsof [Xlr]~'with those of X2r.
Since each sum is again a continuous function of Xir and X2r,

plim [XlT]-lX2T =
[plim X^]\021 plim X2r = [Cj-4:2.

Proposition 7.1 also holds if some of the elements of Xr are deterministic

with conventional limits as in expression [7.1.1]. Specifically, let X^-
= (X[r, c2T),

where Xlr is a stochastic (nt x 1)vector and c2r is a deterministic (n2 x 1)vector.
If plim X,r

= c, and limj-... c2r =
c2, then g(Xlr, c2r) A g(ct, c2).(SeeExer-

Exercise7.1.)

Example 7.3 _
Consideran alternative estimator of_the mean given by YT =

[1/(\320\223
-

1}] x
2T-iY,. This can be written as clTYT, where clT \342\226\240

[T/(T
- 1)] and YT =

(l/T)E^,iY,. Under general conditions detailed in Section 7.2, the sample
mean is a consistent estimator of the population mean, implying that YT\320\220\320\264.

It is also_easy to verify that \321\201\320\274-\342\200\224*1- Since clTYT is_a continuous function of

clr and YT,it follows that clTYT \342\200\224\342\226\2721-\320\264
=

\320\264.Thus, YT, like YT, is a consistent

estimator of \320\264.

Convergence in Mean Square and Chebyshev's Inequality
A stronger condition than convergencein probability is mean square convergence.

The random sequence {XT} is said to converge in mean square to c, indicated as
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if for every e > 0 there exists a value N such that, for all \320\223\320\263N,

E(XT
- cf < e. [7.1.4]

Another useful result is the following.

Proposition 7.2: {Generalized Chebyshev's inequality). Let Xbea random variable
with E(\\X\\r) finite for some r > 0. Then, for any 8 > 0 and any value ofc,

P{\\X
-

c\\ > 8} < ^X
\320\241|. [7.1.5]

An implication of Chebyshev's inequality is that if XT ^i c, then \320\245\321\202\320\224\321\201.\320\242\320\276

see this, note that if XT ^\302\273c, then for any e > 0 and 8 > 0 there exists an N such
that E(XT - cJ < 82e for all T > N. This would ensure that

s2
e

for all T ^ N. From Chebyshev'sinequality, this also implies

P{\\XT
-

c\\ > 8} < e

for all T > N, or that Zr-^ \321\201

Law of Large Numbers for Independent
and Identically Distributed Variables

Let us now consider the behavior of the sample mean Yj
= (VTIl=lY,

where {Y,} is i.i.d. with mean \320\264and variance a2. For this case, YThas expectation
/u, and variance

_ / T
\\

T

E(YT
- MJ =

A/\320\2232)Var 2 \320\243,
=

A/\320\2232)2 Var(y,) = \320\276-2/\320\223.

V-l / t-i

Since <x2/T\342\200\224*0 as \320\223-\302\273<\302\273,this means that YT^i \320\264,implying also that YT-^* \320\264.

Figure 7.1 graphs an example of the density of the sample mean/yr(yr) for
three different values of T. As \320\223becomes large, the density becomesincreasingly

concentrated in a spike centered at \320\264.

The result that the samplemean is a consistent estimate of the population
mean is known as the law of large numbers.l It was proved here for the special

case of i.i.d. variables with finite variance. In fact, it turns out also to be true of

any sequence of i.i.d. variables with finite mean \320\264.2Section 7.2 explores some of
the circumstances under which it also holds for serially dependent variables with

time-varying marginal distributions.

Convergence in Distribution

Let {XT}r=v be a sequence of random variables, and let FXt(x) denote the

cumulative distribution function of XT. Suppose that there exists a cumulative
distribution function Fx(x) such that

lim
FXt(x)

= Fx(x)
r-\302\273=c

'This is often described as the weak law of large numbers. An analogous result known as the strong
law of large numbers refers to almost sure convergence rather than convergence in probability of the

sample mean.

2This is known as Khinchine's theorem. See, for example, Rao A973, p. 112).

7.1. Review of Asymptotic Distribution Theory 183



T-100

FIGURE 7.1 Density of the sample mean for a sample of size \320\223.

at any value x at which Fx{-) is continuous. Then XT is said to converge in distri-

distribution (or in law) to X, denoted

XT\302\261X.

When Fx(x) is of a commonform, such as the cumulative distribution function for

a N(fjL, a2) variable, we will equivalently write

The definitions are unchanged if the scalar XT is replacedwith an (\320\270x 1)
vector Xr. A simple way to verify convergence in distribution of a vector is the

following.3 If the scalar (Ai.ATir + \320\2202\320\233\320\2232\320\223+ \342\200\242\342\200\242\342\200\242+ KnXnT) converges in distribution

to (AjATj + K2X2 + \342\200\242\342\200\242\342\200\242+ K,,Xn) for any real values of (Au A2, . . . , \320\220\342\200\236),then

the vector Xr =
(XlT, \320\245\320\263\321\202,. . . , XnT)' converges in distribution to the vector

X =
(XuX2;...,Xn)'.
The following results are useful in determining limiting distributions.4

Proposition 73:
(a) Let {YT} be a sequence of (n x 1) random vectors with YT \342\200\224\342\226\272Y. Suppose

that {XT}is a sequenceof (n x 1) random vectors such that (Xr -
Yr) \342\200\224\342\226\2720.

Then XT -\302\273Y; that is, XT and Yr have the same limiting distribution.

(b) Let {XT}be a sequence of random (n x 1) vectors with XT \342\200\224\302\273c, and let {YT}
be a sequence of random (n x 1) vectors with YT \342\200\224\342\226\272Y. Then the sequence
constructed from the sum {XT + YT] converges in distribution to \321\201+ Y and
the sequence constructed from the product {X'TYT}converges in distribution

to c'Y.

(c) Let {XT} be a sequence of random (n x 1) vectors with XT -*\342\226\240X, and let g(X),
g: U\" -* Um be a continuous function (not dependent on T). Then the sequence

of random variables {g(Xr)} converges in distribution to g(X).

3This Is known as the Cramer-Wold theorem. See Rao A973, p. 123).
\"See Rao A973, pp. 122-24).
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FIGURE 7.2 Density of VT(YT
-

\320\264).

Example 7.4

Suppose that \320\245\321\202\320\220\321\201and YT \342\200\224\342\226\272Y, where Y ~
\320\234(\320\264,cr2). Then, by Proposition

7.3(b), the sequence XTYT has the same limiting probability law as that of \321\201

times a N(p, cr2)variable. In other words, XTYT A N(cn, c2cr2).
Example 7.5
Generalizing the previous result, let {Xr} be a sequence of random (m x n)

matrices and {Yr} a sequence of random (\321\217x 1) vectors with \320\245\320\263\320\220\320\241and

Yr -> Y, with Y ~ N(fi, ft). Then the limiting distribution of XrYr is the
same as that of CY; that is, XrYr A N(C>, CftC).

Example 7.6
Supposethat XT-* N@, 1). Then Proposition 7.3(c) implies that the square
of XT asymptotically behaves as the square of a N@, 1) variable: X\\ A

Central Limit Theorem

We have seen that the samplemean Yrfor an i.i.d. sequence has a degenerate

probability density as T -*\342\226\240<\302\273,collapsing toward a point mass at \320\264as the sample
size grows. For statistical inference we would like to describe the distribution of

YT in more detail. For this purpose, note that thejandom variable Vf(YT
-

\320\264)

has mean zero and variance given by (VT}2 Var( Yr)
= a2 for all T, and thus, in

contrast to YT, the random variable VT( YT
\342\200\224

\320\264)might be expected to converge
to a nondegenerate random variable as \320\223goes to infinity.

The, central limit theorem is the result that, as T increases, the sequence

VT(YT
-

fj.) converges in distribution to a Gaussian random variable. The most
familiar, albeit restrictive, version of the central limit theorem establishes that if

Y, is i.i.d. with mean \320\264and variance cr2, then5

VT(YT -
m)

A N@, a2). [7.1.6]

Result [7.1.6] also holds under much more general conditions, some of which are

explored in the next section. _
Figure 7.2 graphs an example of the density of \\/T(YT

-
\320\264)for three different

5See,for example, White A984, pp. 108-9).
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values of \320\223.Each of these densities has mean zero and variance a2. As T becomes

large, the density converges to that of a N@, a2) variable.

A final useful result is the following.

Proposition 7.4:L Let {X,} be a sequence of random (n x 1) vectors such that

VT(Xr - c)-* X, and let g: W -*\342\226\240Rm have continuous first derivatives with G

denoting the (m x n) matrix of derivatives evaluated at c:

\"
ax' ,_;

Then VT[g(Xr)
- g(c)] \320\233GX.

Example 7.7
Let {Yu \320\2432,. . . , YT} be an i.i.d. sampleof sizeT drawn from a distribution
with mean \320\264\320\2440 and variancejr2. Consider the distribution of the reciprocal
of the sample mean, ST =

VYT, where YT =
A/\320\223J,\321\202\321\2101\320\243,.We know from

the central limit theorem that VT(YT -
\320\264)\320\233\320\243,where \320\243~

N@, \320\276-2).Also,

g(y) =
\\ly is continuous at \321\203

=
\320\264.Let G =

(dg/dy)\\y^^
=

(-l/\320\2642). Then

VT[ST
-

(l/\320\264)]̂ G-\320\243;in other words, VT[ST - A/^)]-+ N@, <

7.2. Limit Theorems for Serially Dependent Observations
The previous section stated the law of large numbers and central limit theorem for

independent and identically distributed random variables with finite second mo-
moments. This section develops analogous results for heterogeneously distributed
variables with various forms of serial dependence. We first develop a law of large

numbers for a general covariance-stationary process.

Law of LargeNumbers for a Covariance-Stationary Process

Let (Yu Y2, . . . , YT) represent a sample of size T from a covariance-

stationary process with

E(Y,)
=

\320\274 for all t [7.2.1]

E(Y, - MY,-, -
\320\274)

=
\321\203, for all t [7.2.2]

2o Ir/I
< -\342\200\242 I7-2-3]

Consider the properties of the sample mean,

YT =
A/\320\223)f \320\243,- [7.2.4]

Taking expectations of [7.2.4]revealsthat the sample mean provides an unbiased

estimate of the population mean,

E(YT)
=

M,
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while the variance of the sample mean is

E(YT -
mJ

/*) + (\320\243*-/*) + \342\200\242\342\200\242\342\200\242+Or
\" /*)]

x [(\320\2431
-

\320\270)+ (\320\2432
-

m) + \342\200\242\342\200\242\342\200\242+ (YT
- m)]}

=
A/\320\223\302\273)\302\243{(\320\243,

-
\320\274)[(\320\243,

-
\320\274)+ (Y2

-
\320\274)+ \342\200\242\342\200\242\342\200\242+ (\320\243\320\263

-
\320\274

+ (\320\2432
-

\320\274)[(\320\243|
-

\320\274)+ (\320\2432
-

\320\274)+ \342\200\242\342\200\242\342\200\242+ (\320\243\320\263
- /*)]

+ (\320\243,
-

\320\234)[(\320\243,
-

\320\234)+ (\320\2432
-

\320\234)+ \342\200\242\342\200\242\342\200\242+ (\320\243\320\263
-

\320\274)]

+ \342\200\242\342\200\242\342\200\242+ (\320\243\320\263
-

\320\274)[(\320\243,
-

\320\274)+ (\320\2432
-

\320\274)+ \342\200\242\342\200\242\342\200\242+ (\320\243\320\263
-

=
A/\320\2232){[\320\243\320\276+ \320\243\321\205+ \320\2432+ \320\243\320\267+ \342\200\242\342\200\242\342\200\242+ \320\243\320\263-i]

+ \320\254\321\205+ \320\243\320\276+ Ti + \320\2432+ \342\200\242\342\200\242\342\200\242+ \320\2437-2]

+ [\320\243\320\263+ \320\243\\+ \320\243\320\276+ \320\243\\+ \342\226\240\342\226\240\342\226\240+ \320\243\320\263-\320\267]

+ \342\200\242\342\200\242\342\200\242+ [\320\243\320\263-i+ \320\243\320\263-2+ \320\243\320\263-\321\215+ \342\200\242\342\200\242\342\200\242+ \320\243\320\276]}-

Thus,

E(YT
-

\320\274J
=

A/\320\237{\320\223\321\2030+ 2(\320\223
-

1)\320\2431

+ 2(\320\223
-

2)\321\2032+ 2(\320\223
-

3)\321\203\321\215+ \342\200\242\342\200\242\342\200\242+ 2yr_J

or

\320\225(?\321\202
-

\320\274J
=

A/\320\223){% + [(\320\223
-

1)/\320\223]B\320\2431)+ [(\320\223
-

2)/\320\223]B\321\2032)
2

+ [(\320\223
-

3)/\320\223]B\321\203\321\215)+ \342\200\242\342\200\242\342\200\242+ [1/\320\223\320\2322\321\203\320\263.,)}.

It is easy to see that this expression goes to zero as the sample size grows\342\200\224

that is, that YT ^* \320\264:

TE(?T
- mJ =

|y0 + [(\320\223-1)/\320\223]B\320\2431)+ [(\320\223
-

2)/\320\223]B\321\2032)

+ [(\320\223-3)/\320\223]B\320\243\321\215)+ \342\200\242\342\200\242\342\200\242+ [VT]ByT^)\\

s{|%| + [(\320\223-1)/\320\223]-2|\320\2431|+ [(\320\223-2)/\320\223]-2|\321\2032| [7.2.6]

Hence, \320\223-\302\243(\320\243\320\223
-

\320\264J< \302\260\302\260,by [7.2.3], and so E(YT -
\320\274J-\302\2730, as claimed.

It is also of interest to calculate the limiting value of TE(YT
-

\320\264J.Result

[7.2.5] expresses this variance for finite \320\223as a weighted average of the first T- 1

autocovariances yj. For large/, these autocovariances approach zero and will not
affect the sum. For small/, the autocovariances are given a weight that approaches

unity as the sample size grows. Thus, we might guess that

lim T-E(YT
-

\320\274J
= 2 \320\252

=
\320\243\320\276+ 2y, + 2y2 + 2y3 + \342\200\242\342\200\242\342\200\242. [7.2.7]

r-= /- -=

This conjecture is indeed correct. To verify this, note that the assumption [7.2.3]
means that for any e > 0 there exists a q such that

2|y,+ 1| +
2|y,+2|

+ 2|y,+3| + \342\200\242\342\200\242\342\200\242< ell.
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Now

tv,~ T-E(?T-
mJ

=
\320\232\320\243\320\276+ 2y, + 2y2 + 2y, + \342\200\242\342\200\242

\342\200\242}

- {% + [(\320\223
-

1)/\320\237-2\321\203,+ [(\320\223
-

2)/\320\223]-2\321\2032

+ [(\320\223
-

3)/\320\223]-2\321\203\321\215+ \342\200\242\342\200\242\342\200\242+ [1/71-2\321\203\320\263_,}|

s
A/7>2\320\253 + B/7>2|%| + C/\320\223)-2|\321\203\321\215|+ \342\200\242\342\200\242\342\200\242

+
(?/\320\223)-2|\321\203,|+ 2|\321\203,+1|+ 2|\321\203\342\200\236+2|

+ 2|\321\203?+3|

<
A/\320\223)-2|\321\203,|+ B/7>2|%| + C/\320\223)-2\320\253+

\342\200\242\342\200\242\342\200\242

+
(?/\320\223)-2|\321\203,|

+ \320\262/2.

Moreover, for this given q, we can find an N such that

(l/7>2|y,| + B/\320\223)-2\320\253+ C/\320\223)-2|\321\203\321\215|+ \342\200\242\342\200\242\342\200\242+ (q/T)-2\\yg\\ < ell

for all T & N, ensuring that

2 V,
-

TE(YT - < e,

as was to be shown.
These results can be summarized as follows.

Proposition 7.5: Let Y, be a covariance-stationary process with moments given by

[7.2.1] and [7.2.2]and with absolutely summable autocovariances as in [7.2.3]. Then
the sample mean [7.2.4] satisfies

\342\200\224tn.s.

(a) \320\243\320\263~>\320\234

(b) \320\250\320\277{\320\223\302\243(\320\243\320\263
- mI} = f yt.

T\342\200\224* ;- - =

Recall from Chapter 3 that condition [7.2.3] is satisfied for any covariance-

stationary ARMA(p, q) process,

: il 4-A 4- ft I -\\- ft T2 4- ' ' * -I- ft IQ^f

with roots of A
-

\321\204\320\263\320\263
-

\321\2042\320\2632
- \342\200\242\342\200\242\342\200\242-

\321\204\342\200\236\320\263\321\200)
= 0 outside the unit circle.

Alternative expressions for the variance in result (b) of Proposition 7.5 are
sometimes used. Recall that the autocovariance-generating function for y,is defined

as

8y(,z) = 2 \320\243/2''

while the spectrum is given by
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Thus, result (b) could equivalently be describedas the autocovariance-generating

function evaluated at z = 1,

or as 2ir times the spectrum at frequency \321\210=
\320\236,

S y;-
=

2\342\204\242y@),
i--*

the last result coming from the fact that e\302\260- 1. For example,considerthe MA(\342\204\242)

process

/-o

with \302\243(e,er)
= a2 if t = \321\202and 0 otherwise and with

2?=\320\276\\\321\204/\\
< \302\260\302\260-Recall that its

autocovariance-generating fucntion is given by

Evaluating this at z = 1,

2 \321\203,
=

\321\204A)\321\201\321\2022\321\204A)
= a*[l + \321\2041+ \321\2042+ \321\204,+

--
-\321\200. [7.2.8]

Martingale Difference Sequence

Somevery useful limit theorems pertain to martingale difference sequences.
Let {\320\243,}\320\223-1denote a sequence of random scalars with E(Y,) = 0 for all t.6 Let \320\237,

denote information available at date t, where this information includes current and

lagged values of Y.7 For example, we might have

\"\302\273
= '*;> *i-l \320\234>-\320\233\302\273>-\320\233|-11\342\200\242\342\200\242\342\200\242>^1\320\254

where X, is a second random variable. If

\302\243(Y,|n,_i)
= 0 for t = 2, 3, . . . , [7.2.9]

then {Y,} is said to be a martingale difference sequence with respect to {fi,}.

Where no information set is specifies,\302\2431,is presumed to consist solely of
current and lagged values of Y:

Thus, if a sequence of scalars {Y,}T~i satisfied \302\243(Y,)
= 0 for all t and

\320\222\320\224\320\243|_\342\200\236\320\243,-\320\263,...,\320\243,)
= 0, [7.2.10]

for t = 2, 3, . . . , then we will say simply that {Y,} is a martingale difference
sequence.Note that [7.2.10] is implied by [7.2.9] by the law of iterated expectations.

A sequenceof (n x 1) vectors {YJ^-i satisfying \302\243(Y,)
= 0 and \302\243(Y,|Y,_1;

Y,_2 Yj) = 0 is said to form a vector martingale difference sequence.

'Wherever an expectation is indicated, it is taken as implicit that the integral exists, that is, that

\302\243|yjis finite.

'More formally, {\302\243!,}*_,denotes an increasing sequence of <r-fields (fi,_, \320\241\320\237,)with \320\243,measurable

with respect to \320\237,.See, for example, White A984, p. 56).
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Note that condition [7.2.10] is stronger than the condition that Y, is serially

uncorrelated. A serially uncorrelated sequencecannot be forecast on the basis of
a linear function of its past values.No function of past values, linear or nonlinear,
can forecast a martingale difference sequence. While stronger than absence of

serial correlation, the martingale difference condition is weaker than independence,
since it does not rule out the possibility that higher moments such as E(Yj\\Y,-v

\320\243,_2,. \342\200\242\342\200\242, Yt) might depend on past Y's.

Example 7.8
If e, ~ i.i.d.N@, a2), then Y, = e,e,_i is a martingale difference sequence
but not serially independent.

\\,l-Mixingales

A more general classof processesknown as Ll-mixingales was introduced by

Andrews A988). Consider a sequence of random variables {\320\243,}\320\223-1with E(Y,) =

0 for t = 1,2 Let ft, denote information available at time t, as before, where

ft, includes current and lagged values of Y. Suppose that we can find sequences of

nonnegative deterministic constants {c,},Vi and {fm}* _0 such that lim^,, fm
= 0

and

[7.2.11]

for all f \320\2631 and all m > 0. Then {\320\243,}is said to follow an L'-mixingale with respect
to {ft,}.

Thus, a zero-meanprocessfor which the /n-period-ahead forecast \302\243(y,|ft,_m)

converges (in absolute expected value) to the unconditional mean of zero is de-
described as an L'-mixingale.

Example 7.9
Let {\320\243,}be a martingale difference sequence. Let \321\201,

=
\302\243|\320\243,|,and choose

& = 1 and fm
= 0 for m = 1,2 Then [7.2.11] is satisfied for ft,

=

{\320\243,,\320\243,_! yj, so that {\320\243,}could be described as an L'-mixingale

sequence.

Example 7.10
Let \320\243,

=
2*_0i^ie,_y, where

EjLol'/'/l
< \302\260\302\260and {e,} is a martingale difference

sequence with \302\243|e,|< M for allffor someM < \302\260\302\260.Then {\320\243,}is an L'-mixingale
with respect to ft, = {e,,e,_u . . .}.To see this, notice that

\320\225(\320\243,\\\320\262,.\321\202,\320\265,.\321\202.\320\270...)
= E

Since {i/>;}f_o is absolutely summable and
\302\243|e,_;-|

< M, we can interchange the

order of expectation and summation:

2W\\,j\\2W
j\342\200\224m j = m

Then [7.2.11] is satisfied with c, = M and fm
=

2*_m|i^|. Moreover,
limm_=c fm

= 0, because of absolute summability of
{i/iy}*_0- Hence, {\320\243,}is an

L'-mixingale.
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Law of Large NumbersFor \\J-Mixingales

Andrews A988) derived the following law of large numbers for L'-mixingales.8

Proposition 7.6: Let {Y,} be an U-mixingale. If (a) {Y,} is uniformly integrable
and (b) there exists a choice for {c,}such that

\321\202

lim (VTJ \321\201,< \321\201\320\276,
r i

To apply this result, we need to verify that a sequence is uniformly integrable.
A sequence {Y,}is said to be uniformly integrable if for every e > 0 there exists a

number \321\201> 0 such that

E(\\Y,\\-8m*c])
< e [7.2.12]

for all t, where S(|yj=C]
= 1 if |K,| s \321\201and 0 otherwise. The following proposition

gives sufficient conditions for uniform integrability.

Proposition 7.7: (a) Supposethere exist an r > 1 and an M' < \302\260\302\260such that

\302\243(M0 < M' for all t. Then {Y,}is uniformly integrable. (b) Suppose there exist an

r>\\andanM' < \302\260\302\260such that E{\\X,\\r) < M' for all t. If Y, = 2JL_,&,*,_,\342\200\242
with

2JU-* \\hj\\
< oo, then {Y,} is uniformly integrable.

Condition (a) requires us to find a moment higher than the first that exists.
Typically, we would use r = 2. However, even if a variable has infinite variance, it

can still be uniformly integrable as long as \302\243|yjrexists for some r between 1 and 2.

Example 7.11
Let YT be the sample mean from a martingale difference sequence, Yr

=

(l/rjS^i Y, with \302\243|Y,|r < M' for somer > 1 and M' < <*>. Note that this also
implies that there exists anM < \302\253such that E\\Y\\ < M. From Proposition
7.7(a), {Y,} is uniformly integrable. Moreover, from Example 7.9, {Y,}can be
viewed as an Ll-mixingale with c,

= M. Thus, \320\232\321\202^,;A/\320\242I.?\321\2101\321\201,
= \320\234< \302\273,

and so, from Proposition 7.6, YT\342\200\224>0.

Example 7.12
Let Y,

=
'S.-Lo^jBi-j, where

SJL=ol\302\253A,-|
< \302\260\302\260and {e,} is a martingale difference

sequencewith \302\243|e,|r< M' < oofor somer > 1 and some M' < oo.Then, from

Proposition 7.7(b), {Y,}is uniformly integrable. Moreover, from Example 7.10,
{Y,} is an L'-mixingale with c,

= M, where M represents the largest value of

\302\243|e,|for any t. Then limr^ (l/TIJLtc, = M < oo, establishing again that
\320\233

Proposition 7.6 can also be applied to a double-indexed array {YtT}; that is,
each samplesize \320\223can be associated with a different sequence {\320\2431\320\242,Y2,T, . . . ,

YTT}. The array is said to be an L'-mixingale with respect to an information set

fi,.r that includes {YUT, Y2lT YTT} if there exist nonnegative constants fm
and c,T such that limm_=c tjm

= 0 and

\302\243|\302\243(\320\243,,\320\263|\320\257-\321\202.\320\263I
s cru,

\"Andrews replaced part (b) of the proposition with the weaker_ condition limr_* (VT) IJi, c,< \302\260\302\260.

See Royden A968, p. 36) on the relation between \"lim\" and \"lim.\"
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for all m > 0, T s 1, and t = 1, 2, . . . , T. If the array is uniformly integrable
with limr_\302\253A/D2,r_ic,,r < \302\260\302\260.then (\320\243\320\242J1\321\207\320\2431-\320\242\320\2330.

Example 7.13
Let {e,}r_i be a martingale difference sequencewith \302\243|e,|r< M' for some
r > 1 and M' < oo, and define \320\243,.\320\263

= (f/7>,. Then the array {Y,,T} is a uniformly
integrable L'-mixingalewith c,T= M, where M denotes the maximal value

for \302\243|e,|,&
= 1, and \302\243m

= 0 for /\320\270> 0. Hence, (VTJJ,i(t/T)e,^ 0.

Consistent Estimation of SecondMoments

Next consider the conditions under which

A/\320\223J Y,Y,-k4> E{Y,Y,.k)
i-i

(for notational simplicity, we assume here that the sample consists of T + \320\272

observations on \320\243).Suppose that Y, = S'-otye,-^ where 2*_0||^| < \302\260\302\260and {e,} is
an i.i.d. sequencewith E|e,|r < \302\273for some r > 2. Note that the population second
moment can be written9

2 \320\244.\320\244\320\263\320\262,-\320\270\320\222,-*-)[7.2\320\233\320\227]
0 /

Define X,k to be the following random variable;

= X S \320\244\320\270\320\244\321\203\320\254-\320\270\320\251-\320\272-\321\203)-IDS \320\244\320\270\320\244\321\203\320\225{\320\265,-\320\270\320\265,_\320\272_\321\203)I

\320\260\321\201\320\266

Consider a forecast of X,k on the basis of \320\237,_\321\202
=

{\320\265,_,\342\200\236,\320\265,_\321\202_\320\270. . .} for m > k:
\320\266 \320\266

E{Xtk\\il,-m)
= 2j 2j \320\244\320\270\321\204\321\203[\320\2651-\320\270\320\265,-\320\272-\321\203

- E(e,_uet_k^v)\\.

\302\253Noticethat

and \302\243|ei-ue(-t.J < \302\260\302\260,permitting us to move the expectation operator inside the summation signs in
the last line of [7.2.13].
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The expectedabsolute value of this forecast is bounded by

E(Xju,_m)
i \342\200\224mv \342\200\224m \342\200\224\320\272

Zj \320\244\320\270\320\244\321\203[^-\320\270\320\265(-\320\272-\321\203
-

E{\302\243t-uet-k-v)]
\342\200\242m \342\200\224k

[2 2 \\\320\244\320\226\\-\\\320\265,-\320\270\320\265,-\320\272-*
~

E(e,_tte,_k_v)\\ I

u\342\204\242mv\342\204\242m\342\200\224Jfc

for some M < <*>. Define

\302\243m
\342\200\2242 2 \\\320\244\320\270\320\244\321\203\\

=
2\\\320\244\320\270\\2 \\\320\244\321\203\\-

\302\253\342\204\242mv = m \342\200\224k u = m v=m\342\200\224k

Since
{|/>;}*_\320\276is absolutely summable, limm_=c E*=m|i/>u|

= 0 and limm_>=c fm = 0.
It follows that Xlk is an L^mixingale with respect to \320\237,with coefficient c, = M.
Moreover,X,k is uniformly integrable, from a simple adaptation of the argument
in Proposition 7.7(b) (see Exercise 7.5). Hence,

\320\263

A/7\") 2 \320\245,\320\273
= (VT) 2 [Y,Y,-k

~

from which

A/\320\223)\302\243\321\203,\320\243,-*A \302\243(Y,Y,_,). [7.2.14]

It is straightforward to deducefrom [7.2.14] that they'th sample autocovariance

for a sample of size \320\223gives a consistent estimate of the population autocovariance,

A/71
_2+1(\320\243,

- YT)(Y,.t - 7T)\320\233E(Y,
- n){Y,_k -

M), [7.2.15]

where YT = (l/IJSf.J,; see Exercise7.6.

Central Limit Theorem for a Martingale
Difference Sequence
Next we consider the asymptotic distribution of VT times the sample mean.

Thefollowing version of the central limit theorem can often be applied.

Proposition 7.8: {White, 1984, Corollary 5.25, p. 130). Let {Y,}T=i be a scalar
martingale difference sequence with YT =

(\320\243\320\223\320\255\320\225^\320\243,.Suppose that (a) E(Yj) =

aj > 0 with (l/r)S(r\302\253i0-? -* or2 >Q, (b) E\\Y,\\r < \302\260\302\260forsome r > 2 and all t, and

(\321\201)A/\320\223J,7_1\320\232?A a2. Then VTYT-^ N@, er2).

Again, Proposition 7.8 can be extended to arrays {\320\243,\320\263}as follows. Let

{^t.r}^-i be a martingale difference sequence with E(Y2T) = ajT > 0. Let

{y\302\253r+i}\302\243Vbe a potentially different martingale difference sequence with

E(YlT+l) =
\320\276?,\320\263+1

> 0. If (a) (l/rJf.io?.r-f a2, (b) \302\243|\320\243,,\320\223|'< \302\253for some

r > 2 and allf and T, and (\321\201)A/\320\223J,\321\202_1\320\243?.\320\263-^\302\260-2.then VT \320\243\320\242\320\233N(Q, er2).

Proposition 7.8 also readily generalizes to vector martingale difference
sequences.
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Proposition 7.9: Let {Y,}f= i be an n-dimensional vector martingale difference se-

sequence with Yr = (l/f)E,r. ,Y,. Supposethat (a) \302\243(Y,Y,')
= ft,, a positive definite

matrix with A/\320\223J,\321\202_,11,-> ft> a positive definite matrix; (b) \302\243(\320\243\320\270*\320\236>\321\203/\302\273\321\203\321\202.)
< \302\260\302\260

for all t and all i, j, I, and m (including i = j = / =
m), where Yu is the ith element

of the vector Y,/ and (c) (l/rjS.^Y.Y,' \320\224.\320\237.Then Vf Yr4 N@, ft).

Again, Proposition7.9holdsforarrays{Y,7),r_1 satisfying thestated conditions.
To apply Proposition 7.9, we will often need to assume that a certain process

has finite fourth moments. The following result can be useful for this purpose.

Proposition 7.10: Let X, be a strictly stationary stochastic process with E(X^) =

M4 < oo. Let Y, = 1J=oh)X,_j, where 2*_0|fy|
< \302\260\302\260.Then Y, is a strictly stationary

stochastic process with E\\Y,YSYUYV\\ < \302\253'forall t, s, u, and v.

Example 7.14
Let \320\243,

= 0,7,-! + 02\320\243,-2 + \342\200\242\342\200\242\342\200\242+ \320\244\320\240\320\243,-\320\240
+ \320\265\342\200\236where {e,} is an i.i.d.

sequenceand where roots of A
-

\321\204\320\263\320\263
-

<f>2z2
- \342\226\240\342\226\240\342\226\240-

\321\204\321\200\320\263\321\200)
= \320\236lie outside\321\200

the unit circle. We saw in Chapter 3 that Y, can be written as EJLo'/'/ei-y

\320\251-\320\276\320\251
< \"\342\200\242Proposition 7.10 states that if e, has finite fourth moments, then

so does Y,.

Example 7.15
Let \320\243,

=
S'.otye,-, with 2*.0|^yl < \302\260\302\260and ei ii-d. with E(e,)

= 0, E(ej) =
a2, and E(ef) < oo. Consider the random variable X, defined by X, = e,Y,-k
for \320\272> 0. Then X, is a martingale difference sequence with variance E(Xf) =
\320\276-2-\302\243(\320\243?)and with fourth moment \302\243(e?)\302\243(Y?) < oo, by Example 7.14. Hence,
if we can show that

A/\320\242J\321\205?\320\233\320\225(\320\2452), [7.2.16]

then Proposition 7.8 can be applied to deduce that

or

2 [7.2.17]
To verify [7.2.16], notice that

2 (e? -
(=1 (-1

But (e? - 0^O?.^isa martingale difference sequence with finite second mo-

moment, so, from Example 7.11,

194 Chapter 7 \\ Asymptotic Distribution Theory



It further follows from result [7.2.14] that

Thus, [7.2.18]implies

as claimed in [7.2.16].

Central Limit Theoremfor Stationary Stochastic Processes

We now present a central limit theorem for a serially correlated sequence.
Recallfrom Proposition 7.5 that the samplemean has asymptotic variance given
by A/\320\223J\"__\320\260\321\201'\320\243/.Thus, we would expect the central limit theorem to take the

form VT(Tr
-

/u.) -* N@, 2*__\302\253Vy). The next proposition gives a result of this

type.

Proposition 7.11: {Anderson, 1971, p. 429). Let

2 /,/

where {e,} is a sequence ofi.i.d. random variables with E(ej) < \302\273and E/L0|i/iy| <
\320\276\302\273.Then

Vf(?T- \320\274)\320\233^@, 2 V,). [7.2.19]

A version of [7.2.19] can also be developedfor {e,} a martingale difference
sequencesatisfying certain restrictions; see Phillips and SoloA992).

APPENDIX7.A. Proofs of Chapter 7 Propositions

\320\250Proof of Proposition 7.1. Let g,(c) denote the /th element of g(c), g,: R\" -> R1. We
need to show that for any 8 > 0 and e > 0 there existsan N such that for all \320\223\320\260\320\233\320\263,

Continuity of g,(-) implies that there exists an rj such that \\gj(XT)
-

g,(c)| > 8 only if

K*i7-
- c<J + (*2\321\202

-
c2)> + \342\226\240\342\226\240\342\226\240+ (\320\245\342\200\236\321\202

-
\321\201\342\200\236\320\243]> r,K [7.A.2]

This would be the case only if (XIT
\342\200\224

c,J > rj2/n for some i. But from the fact that plim

XIT =
\321\201\342\200\236for any t and specified values of e and rj we can find a value of iV such that

P\302\247XIT
-

c,\\ > 7,/Vn} < eln

for all T a N.
Recall the elementary addition rule for the probability of any events A and B,

P{A or B} \302\243P{A} + P{B},
from which it follows that

P{(\\X>T
- c,| > rj/VH) or (\\X2T

-
c2\\ > 7,/VH) or \342\200\242\342\200\242\342\200\242or (\\\320\245\342\200\236\320\242

-
\321\201\342\200\236\\> rj/VH)}

< (\320\265/\320\277)+ (\320\265/\320\277)+ \342\200\242\342\200\242\342\200\242\342\200\242+ (\320\265/\320\277).

Hence,

Tit-
-

\321\201,J+ (\320\220-27.
- c2J + \342\200\242\342\200\242\342\200\242+ (^\342\200\236r

- c,J] > rj2} < e
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for all \320\223\320\260N. Since [7.A.2] was a necessary condition for Ig/Xj-)
- g,(c)| to be greater

than 5, it follows that the probability that \\gf(XT)
- g,(c)| is greater than 8 is less than e,

which was to be shown. U

U Proof of Proposition 7.2. Let 5 denote the set of all x such that \\x
-

c\\ > 8, and let 5
denote its complement (all x such that \\x

\342\200\224
c\\ s 8). Then, for fx(x) the density of x,

E\\X -
c\\'

=
j \\x

- c\\'fx(x) dx

=
jjx- cYfx(x) dx +

\\. \\x
- c\\'fx(x)

-
c\\'fx(x) dx

so that

as claimed.

. 8'fx(x)dx

= 6rP{\\X
-

c\\> 8},

E\\x
-

c\\r;
-

c\\ > 8},

\342\226\240Proof of Proposition 7.4. Consider any real (m x 1) vector X, and form the function
h: R\" -* R1 defined by A(x) \342\226\240Vg(x), noting that h(-) is differentiable. The mean-value
theorem states that for a differentiable function ft(-), there exists an (n x 1) vector cr
between XT and \321\201such that10

h(XT)
-

h(c) = Bh(x)

dx'

and therefore

VT[h(XT) -
A(c)]

= Bh(x)
dx'

x (XT - c)

x VT(XT
- c). [7.A.3]

Since cT is between XT and \321\201and since XT -!> c, we know that \321\201\321\202\320\224\321\201Moreover, the
derivative Bh(x)/Sx' is itself a continuous function of x. Thus, from Proposition 7.1,

dx' ax'

Given that VT(XT -
\321\201)\320\233X, Proposition 7.3(b) applied to expression [7.A.3] gives

T ~*
*' ...

or, in terms of the original function g(-),

-gWD-^A'J^- X.

Since this is true for any X, we conclude that

as claimed.

x,

'\"That is, for any given XT there exists a scalar ^T with 0
A -

mj-)c. See, for example, Marsden A974, pp. 174-75).

s 1 such that QT \342\200\224
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\342\226\240Proof of Proposition 7.7. Part (a) is established as in Andrews A988, p. 463) using
Holder's inequality (see, for example,White, 1984, p. 30), which states that for r > 1, if

\302\243[|\320\243|\320\223]< \302\260\302\260and \302\243[|Wt'<'-')] < \302\253,then

E\\YW\\

This implies that

Since8[\342\204\226e]is either 0 or 1, it follows that

(8[|yj=c])r'<r\021)
=

8|\342\204\226

and so

[7.A.4]

y.
~

pi\\Y,\\ [7.A.5]

where the last result follows from Chebyshev's inequality. Substituting [7. A.5] into [7.A.4],

[7.A.6]

Recall that \302\243[|y,h < M' for all t, implying that there also exists an M < \302\260\302\260such that

E\\Y\\ < M for all t. Hence,

This expression can be made as small as desired by choosing \321\201sufficiently large. Thus
condition [7.2.12] holds, ensuring that [Y,] is uniformly integrable.

To establish (b), notice that

.2A,*.-/-\302\253d [7.A.7]

Since \302\243[|Jf,_/|/'] < M' and since 8[m*c\\
s 1> it follows that

\302\243P{|Ar,_y|-5f|Vt|-cl}is bounded.
Since {Ay}\". _* is absolutely summable, we can bring the expectation operator inside the

summation in the last expressionof [7.A.7] to deduce that

21 \\hi\\-\\X,

where the last inequality follows from the same arguments as in [7.A.6]. Hence, [7.A.7]
becomes

[7.A.8]

But certainly, E\\Y,\\ is bounded:

E\\Y,\\
= \302\243

fFlVl

\320\223,.;|
= \320\232

Thus, from [7.A.8],

[7.A.9]

Since 2\", _\302\273|/iy|is finite, [7.A.9] can again be made as small as desired by choosing \321\201

sufficiently large. U

\320\250Proof of Proposition 7.9. Consider Y, \342\200\242VY, for X any real (\320\273\321\2051) vector. Then Y, is

a martingale difference sequence. We next verify that each of the conditions of Proposition
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7.8 is satisfied, (a) E(Yj) =
\320\245'\320\237,\320\245

= of > 0, by positive definiteness of O,. Likewise,

\302\253A-\302\273\320\220'\320\237\320\220\342\226\240o-2,

with cr2 > 0, by positive definiteness of \320\233.(b) \302\243(\320\243?)is a finite sum of terms of the form

XiXJX,\\mE(YuY,,Y,,Ym) and so is bounded for all t by condition (b) of Proposition 7.9;
hence, Y, satisfies condition (b) Of Proposition 7.8 for r = 4. (c) Define 5r \342\226\240

A/7) x

S,7\"-! 17 and ST \342\226\240A/7) 2\302\243,Y,Y;, noticing that 5r =
A'SrA. Since 5ris a continuous function

of Sr, we know that plim ST = \320\220'\320\233\320\220= cr2, where \320\230is given as the plim of ST.
Thus Y,jatisfies conditions (a) through (c) of Proposition 7.8, and so VT \320\243\320\223\320\233iV@, a2),
or VT Yr-k VY, where Y ~ @, \320\237).Since this is true for any X., this confirms the claim

that VTYr-4N@, IX). \342\226\240

\342\226\240Proof of Proposition 7.10. Let \320\243= X,X, and W = ^r,,^. Then Hdlder's inequaUty
implies that for r > 1,

For r = 2, this means

A second application of H61der's inequality with \320\243= XJ and W \302\273XJ reveals that

Again for r = 2, this implies from the strict stationarity of {X,} that

Hence, if {A',} is strictly stationary with finite fourth moment, then

\302\243|\320\220\320\242,\320\220-,\320\220\320\242\342\200\236\320\220\320\242,,|s E(X*) =
\320\2644

for all t, s, u, and v.
Observe further that

E\\Y,Y,YuYy\\
= E

= E

h,x,., 2 htx,.,2 h,xu_,
/0 /0

EIE2 hlh,h,hnx,_lx,_lxu-lxr
/-0 \320\243-0/-0 m-0

But
\321\217:\320\266\320\276\321\201\321\217: \320\266 \320\272 \320\272

(-0 /-0 /-0 Wt-\320\236 \320\2530 /-\320\236 f=0

< 00

and

for any value of any of the indices.Hence,

E\\Y,Y,YuYy\\ <tlt 2 |\320\220,\320\233/\320\220,\320\220\302\273,|>4
j-0 j-0 /-0 m-0

< 00. \342\226\240

Chapter 7 Exercises

7.1. Let {ATj-} denote a sequence of random scalarswith plim XT =
\302\243.Let {cT} denote a

sequence of deterministic scalars with lim,-.^ cT = c. Let g; R2 -\342\231\246R1 be continuous at

(i, c). Show that g(XT, \321\201\321\202)\320\233g(t, c).
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7.2. Let \320\243,
=

0.8\320\243,_4+ \320\265,with \302\243(\320\265,\320\265\321\202)
= 1 for t = \321\202and zero otherwise.

(a) Calculate limr_. \320\242\\\320\260\321\202(?\321\202).

(b) How large a samplewould we need in order to have 95% confidence that YT

differed from the true value zero by no more than 0.1?

7.3. Does a martingale difference sequence have to be covanance-stationary?

7.4. Let \320\243,
= 2\".o^e,-y, where 2jL0|ifc| < \302\253and {e,} is a martingale difference sequence

with E(e2) = cr2. Is Y, covanance-stationary?

7.5. Define XIJt
\321\2102;,o2;,oi^,>v[E,_,,E,_t_v

-
\302\243(\320\265,_\342\200\236\320\265,_4_,,)],where e, is an i.i.d. se-

sequence with \302\243|e',|'< \320\233\320\223for some r > 2 and M\" < \302\253with 2f,0 |i^| < \302\253.Show that Xa. is
uniformly integrable.

7.6. Derive result [7.2.15].
7.7. Let Y, follow an \320\233\320\233\320\234\320\233(\321\200,q) process,

A -
\321\204,\320\254

-
\321\204\320\2631? 4>,L>)(Y,

- p) = A + e,L + 62L2 + \342\226\240\342\226\240\342\226\240+ 9qL')e,,
with roots of A

- 0,z -
\321\2042\320\2632

- \342\200\242\342\200\242\342\200\242-
\321\204\321\200\320\263\321\200)

= 0 and A + 0,z + 02z2 + \342\200\242\342\200\242\342\200\242+ ^z1\302\273)
= 0 outside the unit circle. Suppose e, has mean zero and is independent of e, for t \320\244\321\202

with E(e?) = cr2 and \302\243(e?)< \302\273for all (, Prove the following:

(a) A/7) \302\243\320\243,\320\233\321\200
i-i

(b) \320\233
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8

Linear Regression Models

We have seen that one convenient way to estimate the parameters of an auto-

regression is with ordinary least squares regression, an estimation technique that
is also useful for a number of other models. This chapter reviews the properties
of linear regression. Section 8.1 analyzes the simplest case, in which the explanatory
variables are nonrandom and the disturbances are i.i.d. Gaussian. Section8.2
develops analogous results for ordinary least squares estimation of more general
models such as autoregressions and regressions in which the disturbances are non-

Gaussian, heteroskedastic, or autocorrelated. Linear regression models can also
be estimated by generalized least squares, which is described in Section 8.3.

8.1. Review of OrdinaryLeastSquareswith Deterministic

Regressors and i.i.d. Gaussian Disturbances

Suppose that a scalar y, is related to a (A: x 1) vector x, and a disturbance term u,
according to the regression model

y, = x,'P + \302\253,. [8.1.1]

This relation could be used to describe either the random variables or their real-
realization. In discussing regression models, it proves cumbersome to distinguish no-
tationally between random variables and their realization, and standard practice
is to use small letters for either.

This section reviews estimation and hypothesis tests about P under the as-
assumptions that x, is deterministic and u, is i.i.d. Gaussian. The next sections discuss

regression under more general assumptions. First, however, we summarize the

mechanics of linear regression and present some formulas that hold regardless of
statistical assumptions.

The Algebra of Linear Regression
Given an observed sample {yu y2, \342\226\240\342\226\240\342\226\240, yT), the ordinary least squares (OLS)

estimate of p (denoted b) is the value of 3 that minimizes the residual sum of

squares (RSS):

Z (\320\243,
~

\321\205,'\320\255J. [8.1.2]
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We saw in Appendix 4.A to Chapter 4 that the OLS estimate is given by

b
[i]

assuming that the (\320\272\321\205it) matrix 2,T_1(x,x,') is nonsingular. The OLS sample
residual for observation t is

\320\271,
=

\320\243,-x,'b.

Often the model in [8.1.1] is written in matrix notation as

\321\203
=

\320\245\320\255+ u,

[8.1.4]

[8.1.5]

where

\320\243
=

(\320\223\320\2451)

\320\243\320\263

\320\243\321\202

U
(\320\223\320\2451)

Then the OLS estimate in [8.1.3] can be written as
_ \320\273

b =
:

' ' ' *r]

\302\2532

L\"rJ

\320\243\320\263

V-\320\243\321\202\320\220

[8.1.6]

=
(\320\245'\320\245)-\320\247\320\241'\321\203.

Similarly, the vector of OLS sample residuals [8.1.4] can be written as

u = y-Xb = y- XCX'XJ-^'y= [Ir -
X(X'X)-!X']y

= Mxy, [8.1.7]

where Mx is defined as the following (\320\223\321\205\320\223)matrix:

Mx = Ir - XCX'X)-^'. [8.1.8]
One can readily verify that Mx is symmetric:

Mx
= Mx;

idempotent:

MXMX
= Mx;

and orthogonal to the columns of X:

MXX
= 0. [8.1.9]

Thus, from [8.1.7], the OLS sample residuals are orthogonal to the explanatory

variables in X:

fl'X = y'MxX = 0'. [8.1.10]

TheOLSsample residual (\320\271,)should be distinguished from the population

residual (\302\253,).The sample residual is constructed from the sample estimate b

(#, =
\321\203t

- x,'b), whereas the population residual is a hypothetical construct based
on the true population value p (\320\270,

=
\321\203,

- x,'p). The relation between the sample
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and population residuals can be found by substituting [8.1.5] into [8.1.7]:

\320\277=
\320\234\320\245(\320\245\320\255+ u) = Mxu. [8.1.11]

Thedifference between the OLS estimate b and the true population parameter
P is found by substituting [8.1.5] into [8.1.6]:

b = (X'X)-!X'[Xp+ u]
=

\320\255+ (X'X^X'u. [8.1.12]

The fit of an OLS regression is sometimesdescribedin terms of the sample
multiple correlation coefficient, or R2. The uncentered R2 (denoted Rl) is defined

as the sum of squares of the fitted values (x,'b) of the regression as a fraction of
the sum of squares of y:

2
\320\243\320\243 \320\243\320\243

[g\320\2731

If the only explanatory variable in the regression were a constant term (x, =
1), then the fitted value for each observation would just be the samplemean \321\203and

the sum of squares of the fitted values would be \320\242\321\2032.This sum of squares is often

compared with the sum of squares when a vector of variables x, is included in the

regression. The centered R2 (denoted R2.) is defined as

\320\243'\320\245(\320\245'\320\245)-\320\247\321\203

-
\320\242\321\2032

\320\243\320\243-\320\242\321\2032

Most regression software packages report the centered R2 rather than the uncen-

uncenteredR2. If the regression includes a constant term, then Rl must be between zero
and unity. However, if the regression does not include a constant term, then R2

can be negative.

The ClassicalRegressionAssumptions

Statistical inference requires assumptions about the properties of the explan-
explanatoryvariables x, and the population residuals \302\253,.The simplest case to analyze is

the following.

Assumption 8.1: (a)x,isa vector of deterministic variables (for example, x, might
include a constant term and deterministic functions oft); (b) u, is i.i.d. with mean
0 and variance \320\2601;(\321\201)u, is Gaussian.

To highlight the role of each of these assumptions, we first note the impli-

implications of Assumption 8.1(a) and (b) aloneand then comment on the added im-

implications that follow from (c).

Properties of the Estimated OLS Coefficient Vector
Under Assumption 8.1(a) and (b)

In vector form, Assumption 8.1(b) could be written \302\243(u)
= 0 and \302\243(uu')

=

a2lT.

Taking expectations of [8.1.12]and using these conditions establishes that b

is unbiased,

E(b) = p + (X'X)-'X'[\302\243(u)]
= p, [8.1.15]
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with variance-covariance matrix given by

\302\243[(b
- 3)(b -

\320\255)']
=

= (X'X)-'X'[\302\243(uu')]X(X'X)-'
[8\320\233\320\2336]

The OLS coefficient estimate b is unbiased and is a linear function of y. The
Gauss-Markov theorem states that the variance-covariance matrix of any alternative
estimator of P, if that estimator is also unbiased and a linear function of y, differs

from the variance-covariance matrix of b by a positive semidefinite matrix.1 This

means that an inference based on b about any linear combination of the elements

of P will have a smaller variance than the corresponding inference based on any

alternative linear unbiased estimator. The Gauss-Markov theorem thus establishes
the optimality of the OLS estimate within a certain limited class.

Properties of the Estimated Coefficient Vector
Under Assumption 8.1(a) Through (c)

When u is Gaussian, [8.1.12]implies that b is Gaussian. Hence,the preceding

results imply

b~./VC, o-^X'X)-1). [8.1.17]
It can further be shown that under Assumption 8.1(a) through (c), no unbiased

estimator of p is more efficient than the OLS estimator b.2Thus, with Gaussian

residuals, the OLS estimator is optimal.

Properties of Estimated Residual Variance

Under Assumption 8.1 (a) and (b)
The OLS estimate of the variance of the disturbances cr2 is

s2 = RSS/(T
-

\320\272)
=

\320\270'\320\270/(\320\223
- it) = u'MxMxu/(T -

it) [8.1.18]

for Mx the matrix in [8.1.8]. Recalling that Mx is symmetric and idempotent,

[8.1.18] becomes

s2 = u'Mxu/(T- it). [8.1.19]
Also, since Mx is symmetric, there exists \320\260(\320\223x T) matrix P such that3

Mx
= PAP' [8.1.20]

and

P'P = Ir, [8.1.21]

where \320\233is a (T X \320\223)matrix with the eigenvalues of Mx along the principal diagonal
and zeros elsewhere.Note from [8.1.9] that Mxv = 0 if v should be given by one

of the it columns of X. Assuming that the columns of X are linearly independent,

the \320\272columns of X thus represent \320\272different eigenvectors of Mx each associated

'See,for example, Theil A971, pp. 119-20).

2See, for example, Theil A971, pp. 390-91).

'See, for example, O'Nan A976, p. 296).
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with an eigenvalue equal to zero. Also from [8.1.8], Mxv = v for any vector v
that is orthogonal to the columns of X (that is, any vector v such that X'v = 0);
(\320\223

- it) such vectors that are linearly independent can be found, associated with

(T
-

k) eigenvalues equal to unity. Thus, \320\233contains \320\272zeros and (\320\223
-

A:) Is along
its principal diagonal. Notice from [8.1.20] that

u'Mxu = u'PAP'u

= (P'u)'A(P'u) [8.1.22]
= w'Aw

= w^! + w\\k2 + \342\226\240\342\226\240\342\226\240+ wf-Aj.,

where
w = P'u.

Furthermore,

\302\243(w')
=

\302\243(P'uu'P)
=

P'\302\243(uu')P
= o-2P'P = a4T.

Thus, the elements of w are uncorrelated, with mean zero and variance cr2. Since

\320\272of the A's are zero and the remaining T - \320\272are unity, [8.1.22] becomes

u'Mxu
= w\\ + w\\ + \342\226\240\342\226\240\342\226\240+ w\\_k. [8.1.23]

Furthermore, each w2 has expectation cr2, so that

\302\243(u'Mxii)
=

(\320\223
- A>2,

and from [8.1.19], s2 gives an unbiased estimate of a2:

E(s2) = a2.

Propertiesof Estimated Residual Variance Under

Assumption 8.1 (a) Through (c)

When u, is Gaussian, w, is also Gaussian and expression [8.1.23]is the sum

of squares of (\320\223
- it) independent iV@, cr2) variables. Thus,

RSSIa2 =
u'Mxu/o-2 ~x2(T

- k). [8.1.24]

Again, it is possible to show that under Assumption 8.1(a) through (c), no

other unbiased estimator of cr2 has a smaller variance than does s2.4

Notice also from [8.1.11] and [8.1.12] that b and u are uncorrelated:

\302\243[u(b
- 3)'] =

\302\243[Mxuu'X(X'X)-4
= o^MxXCX'X)-1 = 0. [8.1.25]

Under Assumption 8.1(a) through (c), both b and \320\277are Gaussian, so that absence
of correlation implies that b and u are independent. This means that b and s2 are

independent.

t Tests About p UnderAssumption 8.1 (a) Through (c)

Supposethat we wish to test the null hypothesis that @,, the ith element of

\320\255,is equal to some particular value /3\302\260.The OLS t statistic for testing this null

hypothesis is given by

. _ ib,
~ /B?) _ (b, - #)1-

~k~
-

^j^' [8'U6]

\"See Rao A973, p. 319).
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where \302\243\"'denotes the row i, column i element of (X'X)\021 and &bl
=

vV\302\243\"is the
standard error of the OLS estimate of the (th coefficient. The magnitude in [8.1.26]
has an exact t distribution with T \342\200\224\320\272degrees of freedom so long as x, is deter-
deterministic and u, is i.i.d. Gaussian. To verify this claim, note from [8.1.17]that under

the null hypothesis, b, ~ N(Pi, o-2\302\243\,")meaning that F,-
- jS^/Vo3?\"~ iV@, 1).

Thus, if [8.1.26] is written as

the numerator is N@, 1) while from [8.1.24] the denominator is the square root
of a x2 (T - k) variable divided by its degrees of freedom.Recalling [8.1.25], the
numerator and denominator are independent, confirming the exact t distribution

claimed for [8.1.26].

F Tests About p Under Assumption 8.1 (a) Through (c)
Moregenerally, suppose we want a joint test of m different linear restrictions

about P, as represented by

Ho: R3 = r. [8.1.27]
HereR is a known (m x k) matrix representing the particular linear combinations
of p about which we entertain hypotheses and r is a known (m x 1) vector of the

values that we believe these linear combinations take on. For example, to represent
the simple hypothesis p,

=
/3\302\260used previously, we would have m = 1, R a A x it)

vector with unity in the (th position and zeros elsewhere, and r the scalar P\302\260.As

a second example, consider a regression with \320\272= 4 explanatory variables and the

joint hypothesis that j3x + /32 = 1 and /33
= /34. In this case, m = 2 and

0 1-1
\320\223=

0 [8.1.28]

Notice from [8.1.17] that under Ho,

m>~N(r, o-2R(X'X)-!R'). [8.1.29]
A Wald test of Ho is based on the following result.

Proposition 8.1: Consideran (n x 1).vector z ~
N@, ft) with ft nonsingular.

Then z'ft-'z ~ x\\n).

For the scalar case (n = 1), observe that if z ~ N(Q, a2), then (zla)
~ N(Q, 1)

and z2/cr2 ~
#2A), as assertedby the proposition.

To verify Proposition 8.1 for the vector case, since ft is symmetric, there
exists a matrix P, as in [8.1.20] and [8.1.21], such that ft = PAP' and P'P = I,,
with A containing the eigenvalues of ft. Since ft is positive definite, the diagonal
elementsof A are positive. Then

z'ft-'z = z'(PAP')-'z

= w'A-'w

Z

[8.1.30]

= 2 w2/A,,
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where w = P~'z. Notice that w is Gaussian with mean zero and variance

\302\243(ww')
= E(F-lzz'[V']-1)

= P-'fifP']-1 =
\320\240-'\320\240\320\233\320\240'\321\200\320\240']-1

= \320\233.

Thus [8.1.30] is the sum of squares of n independent Normal variables, each divided

by its variance A,. It accordingly has a x2{n) distribution, as claimed.
Applying Proposition 8.1 directly to [8.1.29],under Ho,

(Rb
- rJ'I^RCX'Xj-'R'J-'CRb - r) ~

x2(m). [8.1.31]

Replacing cr2 with the estimate s2 and dividing by the number of restrictions gives

the Wald form of the OLS F test of a linear hypothesis:

F = (Rb - rJ't^RCX'Xj-'R'l-'CRb-
r)/m. [8.1.32]

Note that [8.1.32] can be written

(Rb
- r)'[g2R(X'X)-'R']-'(Rb -

r)/m

[RSSI{T
- k)]/cr2

The numerator is a x2(m) variable divided by its degrees of freedom, while the

denominator is a x (T -
\320\272)variable divided by its degrees of freedom. Again,

since b and u are independent, the numerator and denominator are independent

of each other. Hence, [8.1.32]has an exact F{m, T -
\320\272)distribution under Ha

when x, is nonstochastic and u, is i.i.d. Gaussian.
Notice that the t test of the simple hypothesis ft, = /3?is a specialcaseof the

general formula [8.1.32], for which

F = (b, - 0?)[s2?]-Kb,~ 0?). [8.1.33]

This is the square of the t statistic in [8.1.26]. Since an F(l, T -
\320\272)variable is just

the square of a t(T -
\320\272)variable, the identical answer results from A) calculating

[8.1.26] and using t tables to find the probability of so large an absolute value for

a t(T -
\320\272)variable, or B) calculating [8.1.33] and using F tables to find the

probability of so large a value for an F(l, T -
\320\272)variable.

A Convenient Alternative Expression for the F Test

It is often straightforward to estimate the model in [8.1.1] subject to the
restrictions in [8.1.27]. For example, to imposea constraint jBj

= 0? on the first
element of p, we could just do an ordinary least squares regression of y,

-

P\302\260xuon \321\205\321\212,\320\245\320\267,,\342\226\240\342\226\240\342\226\240, xkt. The resulting estimates b%, b*, . . . , b% minimize

2,1, [{\320\243,
~

/3?\321\205\342\200\236)
-

\320\253\321\205\321\212
- btxi, b*kxklf with respect to />2*,fcf, \342\200\242\342\200\242\342\200\242,

b* and thus minimize the residual sum of squares [8.1.2] subject to the constraint

that /3t
= Pi- Alternatively, to imposethe constraint in [8.1.28], we could regress

y, -
\321\205\321\212on (xu

-
\321\205\321\212)and (x3t + *\342\200\236,):

\320\243,
~

*2, = 0i(*i, -
\321\205\321\212)+ #j(x3, + x4t) + \320\270,.

The OLS estimates b\\ and b* minimize

2 \\{\320\243,
-

**)
-

\320\251\321\205\320\270
-

\321\205\342\200\236)
-

bt(x3, + \321\205\342\200\236)\320\243
'\"'

\320\263 [8.1.34]
= 2 [\320\233

\"
\320\254\320\245\321\205\320\270

-
A -

\320\254*)\321\205\321\212
-

\320\252*\320\263\321\205\321\212,
-

b*x4lf
i

and thus minimize [8.1.2] subject to [8.1.28].
Whenever the constraints in [8.1.27] can be imposed through a simple OLS

regression on transformed variables, there is an easy way to calculate the Fstatistic
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[8.1.32] just by comparing the residual sum of squares for the constrained and
unconstrained regressions.The following result is established in Appendix 8. A at
the end of this chapter.

Proposition 8.2: Let b denote the unconstrained OLS estimate [8.1.6]and let RSSl
be the residual sum of squaresresulting from using this estimate:

RSSt
= 2 (\320\243.

~
*;bJ. [8.1.35]

Let b* denote the constrained OLS estimate and RSS0 the residual sum of squares
from the constrained OLS estimation:

\321\202

RSS0
= 2 (\320\243,

~
*;b*J. [8.1.36]t-i

Then the Waldform of the OLS F test of a linear hypothesis [8.1.32]canequivalently

be calculated as

_ (RSS0- RSSJ/mF~
RssAT-k)

\342\200\242 [8'L37]

Expressions [8.1.37] and [8.1.32] will generate exactly the same number,

regardless of whether the null hypothesis and the model are valid or not.

For example, suppose the sample size is \320\223= 50 observations and the null

hypothesis is /33 =
/34

= 0 in an OLS regression with \320\272= 4 explanatory variables.
First regress y, on xu, \321\205\321\212,xit, x*, and call the residual sum of squares from this

regression RSSt. Next, regress y, on just xu and x2l and call the residual sum of

squares from this restricted regression RSS0. If

(RSS0
- RSSjn

RSSt/E0 -
4)

is greater than 3.20 (the 5% critical value for an FB, 46) random variable), then

the null hypothesis should be rejected.

8.2. Ordinary Least Squares UnderMoreGeneral
Conditions
The previous section analyzed the regression model

y,
= x;p + u,

under the maintained Assumption 8.1 (x, is deterministic and u, is i.i.d. Gaussian).
We will hereafter refer to this assumption as \"case 1.\" This section generalizes this

assumption to describe specifications likely to arise in time series analysis. Some

of the key results are summarized in Table 8.1.

Case 2. Error Term Ltd. Gaussian and Independent
of Explanatory Variables

Consider the case in which X is stochastic but completely independent of u.

Assumption8.2:s (a) x, stochastic and independent of usfor all t, s; (b) \320\270,
~ i.i.d.

N@, a2).

'This could be replaced with the assumption u|X
\342\200\224

N@, a2lT) with all the results to follow un-

unchanged.
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Many of the results for deterministic regressors continue to apply for this

case. For example,taking expectations of [8.1.12] and exploiting the independence

assumption,

\302\243(\320\254)
=

\320\255+ {\302\243[(X'X)-lX']H\302\243(u)}
= 3, [8.2.1]

so that the OLS coefficient remains unbiased.

The distribution of test statistics for this case can be found by a two-step
procedure. The first step evaluates the distribution conditional on X; that is, it

treats X as deterministic just as in the earlier analysis. The secondstep multiplies

by the density of X and integrates over X to find the true unconditional distribution.

For example, [8.1.17] implies that

b|X
~

\320\233\320\223(\320\255,o-^X'X)\021). [8.2,2]

If this density is multiplied by the density of X and integrated over X, the result

is no longer a Gaussian distribution; thus, b is non-Gaussian under Assumption
8.2. On the other hand, [8.1.24] implies that

RSS\\X
-

<\321\202\320\263-\321\205\\\320\242
-

\320\272).

But this density is the same for all X. Thus, when we multiply the density of i?55|X
by the density of X and integrate, we will get exactly the same density. Hence,

[8.1.24] continues to give the correct unconditional distribution for Assumption

8.2.

The same is true for the t and Fstatistics in [8.1.26] and [8.1.32]. Conditional
on X, (b,

-
/3?)/[\321\201\320\263(\302\243\"I/2]

~
iV@, 1) and sla is the square root of an independent

[1/(\320\223
- k)]-x2(T

-
k) variable. Hence, conditional on X, the statistic in [8.1.26]

has a t(T - k) distribution. Since this is true for any X, when we multiply by the

density of X and integrate over X we obtain the same distribution.

Case 3. Error Term i.i.d. Non-Gaussian and Independent
of Explanatory Variables

Next consider the following specification.

Assumption 8.3: (a) x, stochastic and independent of us for all t, s; (b) u, non-

Gaussian but i.i.d. with mean zero, variance a2, and E(uf)
=

/j,4 < <\302\273;(c) \302\243(x,x,')
= Q,, a positive definite matrix with (VT)I,Ji,iQ, -* Q, a positive definite matrix;

(d) E{xuxjtxuxm^
< \321\201\320\276for all i, j, I, m, and t; (e) (VTyZT-ii*,*1,)̂ Q-

Since result [8.2.1] required only the independence assumption, b continues

to be unbiased in this case. However, for hypothesis tests, the small-sample dis-
distributions of s2 and the t and F statistics are no longer the same as when the

population residuals are Gaussian. To justify the usual OLS inference rules, we

have to appeal to asymptotic results, for which purpose Assumption 8.3 includes
conditions (c) through (e). To understand these conditions, note that if x, is co-

variance-stationary, then \302\243(x,x,') does not depend on t. Then Q, = Q for all t and
condition (e) simply requires that x, be ergodicfor second moments. Assumption
8.3 also allows more general processes in that \302\243(x,x,') might.be different for dif-

different t, so long as the limit of (l/r)Z\302\243.i\302\243(x,x,') can be consistently estimated by
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TABLE 8.1

Properties of OLSEstimates and Test Statistics Under Various Assumptions

Coefficient b Variance s2 t statistic F statistic

Case 1 unbiased
b ~

Case2 unbiased

non-Gaussian

Case 3 unbiased
VT(bT- P)-^-

unbiased

(\320\223- k)s2la2
~ x\\T -

k)

unbiased

(\320\223
- k)s2la2 ~ X2(T - k)

unbiased

VT(s2T
-

\320\2602)\320\233iV@, ju.4
-

o-4)

exact t{T
- k) exact F(m, T - k)

exact t{T -
k) exact F(m, T -

k)

Case 4 biased

P)i
biased

V?D -
\320\2602)

\320\233N@, fi4
- a-4)

Regression model is \321\203= X3 + n, b is given by [8.1.6], s2 by [8.1.18], I statistic by [8.1.26], and ^statistic by [8.1.32]; \321\206\320\273denotes E(uf).
Case 1: X nonstochastic, u ~

N@, o-2Ir).
Case 2: X stochastic, a ~

N@, <r2lr), X independent of u.
Case 3: X stochastic, u ~ non-Gaussian @, <r2IT), X independent of u, \320\242'\320\247.\\,\\',\320\224Q.
Case 4: Stationary autoregression with independent errors, Q given by [8.2.27].



To describe the asymptotic results, we denote the OLS estimator [8.1.3] by
brto emphasize that it is based on a sample of size T.Our interest is in the behavior
of br as T becomes large. We first establish that the OLS coefficient estimator is
consistent under Assumption 8.3, that is, that br \320\224p.

Note that [8.1.12] implies

\320\254\320\263
-

\321\215
= 2 *<*; 2 \302\253a

\\_t-i J L'-i J [8.2.3]

Considerthe first term in [8.2.3]. Assumption 8.3(e) and Proposition 7.1 imply

that

\320\237\320\243\320\242)2
*A'J

\302\261Q\021. [8.2.4]

Considering next the second term in [8.2.3], notice that xru, is a martingale dif-

difference sequence with variance-covariance matrix given by

\302\243(\321\205,\320\270\320\263\321\205;\302\253.)
=

{\302\243(x,xr')}-o-2,

which is finite. Thus, from Example 7.11,

\320\237\320\243\320\242)
2t x,\302\253,J

\320\2330- [8-2.5]

Applying Example 7.2 to [8.2.3] through [8.2.5],

br -
P -?\342\226\272Q~l-0 = 0,

verifying that the OLS estimator is consistent.

Next turn to the asymptotic distribution of b. Notice from [8.2.3] that

\320\223
T VT \302\243 1

vT(br
- P) =

{VT) 2 x,x; A/vT) 2 x,u, \342\200\242

L r-i J L >=l J
[8-2.6]

We saw in [8.2.4] that the first term converges in probability to Q\021. The second

term is \321\203/\320\242times the sample mean of \321\205,\321\213\342\200\236where xru, is a martingale difference
sequencewith variance cr2-\302\243(x,x,')

= o^Q, and A/\320\223)\320\225*_iCr2Q, -\342\231\246cr2Q. Notice that
under Assumption 8.3 we can apply Proposition 7.9:

Ul/VT) J x<\302\253<]

\"^ ^@. <^2Q)- [8-2.7]

Combining [8.2.6], [8.2.4], and [8.2.7], we see as in Example 7.5 that

VT(br -
P) \320\233N@, [Q-li^Q)-Q~1]) = MO, ^Q\021). [8.2.8]

In other words, we can act as if

[8.2.9]

where the symbol = means \"is approximately distributed.\" Recalling Assumption

8.3(e), in large samples Q should be close to (l/r)Z\302\243.iX,x|- Thus Q~4T should
be close to [Sf.^x,']\021

=
(X^-Xj-)\021 for Xr the same (\320\223\321\205it) matrix that was

represented in [8.1.5] simply by X (again, the subscript T is added at this point to
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emphasize that the dimensions of this matrix depend on \320\223).Thus, [8.2.9] can be

approximated by

This, of course, is the same result obtained in [8.1.17], which assumed Gaussian
disturbances. With non-Gaussian disturbances the distribution is not exact, but

provides an increasingly good approximation as the sample size grows.
Next, considerconsistency of the variance estimate s,.. Notice that the pop-

population residual sum of squares can be written

(\321\203\320\263
-

\320\245\320\263\320\240)'(\320\243\320\263
\"

\320\245\320\223\320\255)

= (yr
- Xrbr + Xrbr -

XrP)'(yr
\"

Xrbr + Xrbr - Xrp) [8.2.10]
=

(yr
- Xrbr)'(yr -

Xrbr) + (Xrbr
- XrP)'(Xrbr -

Xrp),

where cross-product terms have vanished, since

(yr -
Xrbr)'Xr(br

- P) = 0,

by the OLS orthogonality condition [8.1.10].Dividing [8.2.10] by T,

A/\320\223)(\320\243\320\263
\"

\320\245\320\263\321\200)'(\320\243\320\263
-

XrP)
=

A/\320\223)(\321\203\320\263
-

\320\245\320\263\320\254\320\263)'(\321\203\320\263
-

Xrbr) + A/\320\223)(\320\254\320\263
-

\320\240)'\320\245^\320\245\320\223(\320\254\320\223
-

\320\240),

or

A/\320\223)(\320\243\320\263
\"

\320\245\320\263\320\254\320\263)'(\320\243\320\263
\"

\320\245\320\223\320\254\320\223)

=
(\320\243\320\242)(\320\270'\321\202\320\270\321\202)

-
(\320\254\320\263

-
\320\240)'(\320\245^\320\245\320\223/\320\223)(\320\254\320\223

-
\320\240). [8.2.11]

Now, (l/r)(u^-ur) =
A/\320\223J,1,\320\270,2,where {\320\2702}is an i.i.d. sequence with mean a2.

Thus, by the law of large numbers,

For the second term in [8.2.11], we have (\320\245'\320\223\320\245\320\223/\320\223)\320\233Q and (br - P) \320\2330, and

so, from Proposition 7.1,

(br
-

\320\240)'(\320\245^.\320\245\320\223/\320\223)(\320\254\320\223
- P) \320\233O'QO = 0.

Substituting these results into [8.2.11],

A/\320\223)(\320\243\320\263
-

\320\245\320\263\320\254\320\263)'(\321\203\320\263
-

\320\245\320\223\320\254\320\223)
\320\224\320\2602. [8.2.12]

Now, [8.2.12] describes an estimate of the variance, which we denote &\\:

#t s
{\320\243\320\251\320\243\321\202

-
\320\245\320\263\320\254\320\263)'(\320\243\320\263

-
\320\245\320\223\320\254\320\223). [8.2.13]

The OLS estimator given in [8.1.18],

s\\ =
[1/(\320\223

-
*)](\320\243\320\263

-
\320\245\320\263\320\254\320\263)'(\320\243\320\263

\"
\320\245\320\223\320\254\320\223),[8.2.14]

differs from &\\ by a term that vanishes as T-*\302\253>,

s\\
=

aT-&2T,

where aT \342\226\240[T/(T
- k)] with limr_, aT = 1. Hence, from Proposition 7.1,

plim if- = 1-cr2,

establishing consistency of Sj-
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To find the asymptotic distribution of if-, consider first vT(<xf
- cr2).From

[8.2.11],this equals

^.
- a2) =

(VVT)(u'rur)
-

But

- VT(br - pww i-r\\'^ - ^ [8.2.15]

(l/VT)(u'TUr) -
VTa2 = (VVT) 2 (\022

-
\320\276\022),

where {\320\2702
-

\321\201\320\2632}is a sequence of i.i.d. variables with mean zero and variance

E(u2
- cr2J =

\302\243(\320\2704)
-

2<\320\2632\302\243(\320\2702)+ \320\276-4=
\320\2644

- \320\276-4.Hence, by the central limit

theorem,

(VVT)(u'TuT)
- Vfo-2 \320\224\320\233\320\223(\320\236,(\320\2744

-
o-4)). [8.2.16]

For the last term in [8.2.15], we have \321\203\320\242(\320\254\320\263
- 3) \320\233JV(O, cr2Q~l), (X'TXr/T)

\342\200\2424Q, and (br -
\321\200)\320\224\320\276.Hence,

VT(br
-

\320\255)'(\320\245\320\263\320\245^\320\223)(\320\254\320\263
\"

\320\255)
\320\2330. [8.2.17]

Putting [8.2.16] and [8.2.17] into [8.2.15], we conclude

VT(&1 -
\320\260\320\263)\320\233\"\320\233\320\223(\320\236,(^

-
\320\230)). [8.2.18]

To see that sf. has this same limiting distribution, notice that

VTD -
a2)

- vT(Ei - a2) =
VT{[T/(T

-
k)\\&2T

-
ff2.}

= [(kVf)/(T
- k)]&\\.

But limr_\302\253[(itvT)/(r
- it)] = 0, establishing that

VT(s2T
- a2) - Vf(Ei -

\320\2602)
\320\224O-o-2 = 0

and hence, from Proposition 7.3(a),

VTD -
\320\276-2)

\320\233iV@, (M4
- tr4)). [8.2.19]

Notice that if we are relying on asymptotic justifications for test statistics,

theory offers us no guidance for choosing between s2 and &2 as estimates of cr2,

since they have the same limiting distribution.

Next consider the asymptotic distribution of the OLS t test of the null hy-

hypothesis j8,
= Pf,

' [8-2-20]

where \302\243'\302\243denotes the row i, column i element of (X^Xj-)\021. We have seen that

VT(b, T
-

/3\302\260)-\342\231\246N@, o^q\,") where q\" denotes the row i, column i element of

Q~l. Similarly, Tf'f is the row i, column i element of (\320\245^\320\245^\320\223)\021and converges

in probability to q\". Also, sT^* a. Hence, the t statistic [8.2.20] has a limiting

distribution that is the same as a N@, a2q\") variable divided by V<r2q\"; that is,

tT \320\233
\320\233\320\223(\320\236,1). [8.2.21]

Now, under the more restrictive conditions of Assumption 8.2, we saw that

tT would have a t distribution with (\320\223
-

k) degrees of freedom. Recallthat a t

variable with N degrees of freedom has the distribution of the ratio of a N@, 1)

variable to the square root of A/N) times an independent X2(N) variable. But a

#2(iV) variable in turn is the sum of iV squares of independent N@, 1) variables.
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Thus, letting Z denote a N@, 1) variable, a t variable with N degrees of freedom
has the same distribution as

{(Zi + Zl + \342\200\242\342\200\242\342\200\242\342\226\240

By the law of large numbers,

(Zl + Z\\ + \342\226\240\342\226\240\342\226\240+ Z2N)IN \320\233E(Z2)
= 1,

and so tN \342\200\224\302\273\342\200\242iV@, 1). Hence, the critical value for a t variable with N degrees of
freedomwill be arbitrarily close to that for a N@, 1) variable as N becomes large.
Even though the statistic calculated in [8.2.20] does not have an exact t(T -

k)

distribution under Assumption 8.3, if we treat it as if it did, then we will not be

far wrong if our sample is sufficiently large.
The sameis true of [8.1.32], the F test of m different restrictions:

FT = (Rbr - rJ'^f-RCXrXT-J-^'l-^Rbj--
r)/m r .
, \\ts.z.zz\\

= Vf(Rbr - r)'[4R(X'rXr/r)-1R']-1vT(Rbr
- r)/m.

Here s\\-^> \320\2602,\320\245^\320\245\320\263/\320\263\320\224Q, and, under the null hypothesis,

VT(Rbr
- r) = [RVf(br - 3)]

Hence, under the null hypothesis,

m-Fr-^ [RvT(br -
p

This is a quadratic function of a Normal vector of the type described by Proposition

8.1, from which

m-FT-^ x\\m).

Thus an asymptotic inference can be based on the approximation

(Rbr
- ryfii-RtX^-'R']-1^ - r) =

X\\m). [8.2.23]

This is known as the Wald form of the OLS x2 test.
As in the case of the t and limiting Normal distributions, viewing [8.2.23] as

#2(m) and viewing [8.2.22] as F(m, T - k) asymptotically amount to the same
test. Recall that an F(m, N) variable is a ratio of a x2im) variable to an indepen-

independentx2(N) variable, each divided by its degrees of freedom. Thus, if Z, denotes

a N@, 1) variable and X a x2(m) variable,

= Xlm

m'N
(Z? + Z\\ + \342\226\240\342\226\240\342\226\240+ Z%)/N'

For the denominator,

(Z? + Z\\ + \342\226\240\342\226\240\342\226\240+ Z2N)IN \320\233E(Z2)
= 1,.

implying

FmiN ^xXlm.

Hence, comparing [8.2.23]with a x2im) critical value or comparing [8.2.22] with

an F(m, T -
k) critical value will result in the identical test for sufficiently large

\320\223(see Exercise 8.2).
For a given sample of size T, the small-sample distribution (the t or F dis-

distribution) implies wider confidence intervals than the large-sample distribution (the
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Normal or x2 distribution). Even when the justification for using the t or F distri-
distribution is only asymptotic, many researchers prefer to use the t or F tables rather

than the Normal or x2 tables on the grounds that the former are more conservative

and may represent a better approximation to the true small-sample distribution.

If we are relying only on the asymptotic distribution, the Wald test statistic
[8.2.23]can be generalized to allow a test of a nonlinear set of restrictions on p.
Considera null hypothesis consisting of m separate nonlinear restrictions of the
form g(p) = 0 where g: R* -> Rm and g(-) has continuous first derivatives. Result

[8.2.8] and Proposition 7.4 imply that

V?[g(br)
- g(p0)]-

where z ~ N@, o^Q\021)and

ii.
\321\215\321\200-P-Po

denotes the (m x it) matrix of derivatives of g(-) with respect to P, evaluated at

the true value p0. Under the null hypothesis that g(P0)
= 0, it follows from

Proposition 8.1 that

\320\255\321\200-

Recall that Q is the plim of (VT)(X'rXr). Since dg/dP' is continuous and since
br\342\200\224\302\273p0, it follows from Proposition 7.1 that

Hence a set of m nonlinear restrictions about P of the form g(p) = 0 can be tested
with the statistic

{g(br)}'
\320\260\321\200'

IT1
f {g(br)} \342\200\224'

bj J

Note that the Wald test for linear restrictions [8.2.23] can be obtained as a special
case of this more general formula by setting g(p) = Rp - r.

One disadvantage of the Wald test for nonlinear restrictions is that the answer

one obtains can be different depending on how the restrictions g(p) = 0 are
parameterized. For example, the hypotheses /3t

= /32 and /V& = 1are equivalent,
and asymptotically a Wald test based on either parameterization should give the
same answer. However, in a particular finite sample the answers could be quite

different. In effect, the nonlinear Wald test approximates the restriction g(br) =
0 by the linear restriction

br
-

Po) = 0.s(Po) + iii

Some care must be taken to ensure that this linearization is reasonableover the

range of plausible values for p. See Gregory and Veall A985), Lafontaine and

White A986), and Phillips and Park A988) for further discussion.
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Case 4. Estimating Parameters for an Autoregression

Consider now estimation of the parameters of a pth-order autoregression by

OLS.

Assumption 8.4: The regression model is

y, = \321\201+ \321\2041\321\203,.1+ \321\2042\321\203,_2+ \342\226\240\342\226\240\342\226\240+
\321\204\321\200\321\203,_\321\200+ \320\265\342\200\236[8.2.24]

with roots of A
-

\321\204\321\205\320\263
-

<fez2
- \342\226\240\342\226\240\342\226\240-

\321\204\321\200\320\263\321\200)
= 0 outside the unit circle and

with {er}an i.i.d. sequencewith mean zero, variance a2, and finite fourth moment

An autoregression has the form of the standard regression model yt
=

x,'P 4- u, with x,' = A, y,^,, y,-2, .... y,-p) and u, = e,. Note, however, that

an autoregression cannot satisfy condition (a) of Assumption 8.2 or 8.3. Even

though u, is independent of x, under Assumption 8.4, it will not be the case that

u, is independent of x,+ 1. Without this independence, none of the small-sample
results for case 1 applies. Specifically, even if e, is Gaussian, the OLS coefficient
b gives a biased estimate of 3 for an autoregression, and the standard t and F

statistics can only be justified asymptotically.
However, the asymptotic results for case 4 are the same as for case 3 and are

derived in essentially the same way. To adapt the earlier notation, suppose that
the sample consists of T + p observations on y,, numbered (y-p+i, \320\243-\321\200+\320\263,

\342\226\240\342\226\240\342\226\240,

\320\243\320\276.\320\243\320\270\342\200\242\342\200\242\342\200\242i \320\243\321\202)\\OLS estimation will thus use observations 1 through T. Then, as
in [8.2.6],

VT(br
-

\320\255)
=

\320\223A/\320\223)2 x,x;l \\{VVf) 2 x,J. [8.2.25]

The first term in [8.2.25] is

where 2 denotes summation over t = 1 to \320\223.The elements in the first row or

column are of the form T'^Ly,-/ and converge in probability to /u = E(y,), by

Proposition 7.5. Other elements areof the form
\320\223~12\321\203,_,\321\203,_\321\203,which, from [7.2.14],

converges in probability to

y,-i) =
\320\243\\1-\320\233

Hence

2x,x,'| ^Q\021 [8.2.26]
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where

70 +

71 + 7\320\276 [8.2.27]

7\320\240-1
+ -\320\263+ 7\320\276

For the second term in [8.2.25], observe that x,u, is a martingale difference

sequence with positive definite variance-covariance matrix given by

E(xru,urx'r)
= E(u})-E(x,x;) = <r2Q.

Using an argument similar to that in Example 7.15, it can be shown that

\320\223
\320\242

1 \320\263

A/VT) 2 \321\205,\320\270,-\302\273
\320\233\320\223(\320\236,o-2Q) [8.2.28]

(see Exercise 8.3). Substituting [8.2.26] and [8.2.28] into [8.2.25],

VT(br -
\320\255)\320\233N@, (\320\263\320\247}-1). [8.2.29]

It is straightforward to verify further that br and if are consistent for this

case. From [8.2.26], the asymptotic variance-covariance matrix of vT(br
- P)

can be estimated consistently by s^X'j-XjJT)'1, meaning that standard t and F

statistics that treat bras if it were NC, s^X^X?)'1) will yield asymptotically valid
tests of hypotheses about the coefficients of an autoregression.

As a special case of [8.2.29],considerOLSestimation of a first-order auto-
autoregression,

\320\243,
=

\320\244\321\203,-\\+ \320\265\342\200\236

with \\\321\204\\< 1. Then Q is the scalar E(yf_ t) =
y0, the variance of an ARA) process.

We saw in Chapter 3 that this is given by o-2/(l
-

\321\2042).Hence, for \321\204the OLS

coefficient,

result [8.2.29]implies that

VTD>r
-

\321\204)
\320\233N(Q, o-2-[o-2/(l

- 1) =
N@, 1 -

\321\2042). [8.2.30]

If more precise results than the asymptotic approximation in equation [8.2.29]
are desired, the exact small-sample distribution of \321\204\321\202can be calculated in either

of two ways. If the errors in the autoregression [8.2.24] are N@, cr2), then for any

specified numerical value for \321\204\320\270fa, . . . , \321\204\321\200
and \321\201the exact small-sample distri-

distribution can be calculated using numerical routines developed by Imhof A961); for
illustrations of this method, see Evans and Savin A981) and Flavin A983). An

alternative is to approximate the small-sample distribution by Monte Carlo meth-
methods.Here the idea is to use a computer to generate pseudo-randomvariables su
. . . , eT, each distributed N@, cr2) from numerical algorithms such as that described

in Kinderman and Ramage A976).For fixed starting values y~p+i, . . . , ylt the
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values for yu y2, \342\226\240\342\226\240\342\226\240, yT can then be calculated by iterating on [8.2.24].6 One
then estimates the parameters of [8.2.24]with an OLS regression on this artificial

sample. A new sample is generated for which a new OLS regression is estimated.

By performing, say, 10,000such regressions, an estimate of the exact small-sample
distribution of the OLS estimates can be obtained.

For the case of a first-order autoregression, it is known from such calculations

that \321\204\321\202is downward-biased in small samples, with the bias becoming more severe
as \321\204approaches unity. For example, for a sample of size T = 25 generated by

[8.2.24] withp = 1, \321\201= 0, and \321\204
= 1, the estimate \321\204\320\263basedon OLS estimation

of [8.2.24](with a constant term included) will be less than the true value of 1 in
95% of the samples, and will even fall below 0.6 in 10% of the samples.7

Case 5. Errors Gaussian with Known Variance-Covariance

Matrix

Next consider the following case.

Assumption 8.5: (a) x, stochastic; (b) conditional on the full matrix X, the vector
u is N@, cr2V); (c) V is a known positive definite matrix.

When the errors for different dates have different variances but are uncor-
related with each other (that is, V is diagonal), then the errors are said to exhibit

heteroskedasticity. For V nondiagonal, the errors are said to be autocorrelated.

Writing the variance-covariance matrix as the product of some scalar cr2 and a

matrix V is a convention that will help simplify the algebra and interpretation for

some examples of heteroskedasticity and autocorrelation. Note again that As-

Assumption 8.5(b) could not hold for an autoregression, since conditional on x,+ 1
=

A, y,, y,_i, . . . , y,_p + i)' and x,, the value of u, is known with certainty.
Recall from [8.1.12] that

(b
-

\320\255)
= (X'X)\"lX'u.

Taking expectations conditional on X,

\302\243[(b
-

3)|X] = (X'X)-lX'-E(u) = 0,
and by the law of iterated expectations,

\302\243(b
-

\320\255)
= Ex{E[(b

- 3)|X]} = 0.

Hence, the OLS coefficient estimate is unbiased.

The variance of b conditional on X is

\302\243{[(b
-

3)(b - 3)']|X}= \302\243{[(X'X)-iX'Uu'X(X'X)-4|X}
^

= o-2(X'X)-1X'VX(X'X)-1.

Thus, conditional on X,

b|X ~ nU, o-2(X'X)-1X'VX(X'X)-4.

'Alternatively, one can generate the initial values for \321\203with a draw from the appropriate uncon-

unconditionaldistribution. Specifically, generate i(pxl) vector v ~ N@,I,) and set (>-\342\200\236+,,. . . , \320\243\320\276\320\243
= /x-1 + P-v, where /x = c/(l -

\321\204,
-

\321\204\320\263
- \342\200\242\342\200\242\342\200\242-

\321\204\342\200\236),1 denotes a (p X 1) vector of Is, and P is
the Cholesky factor such that P-P' = \320\223for \320\223the (p X p) matrix whose columns stacked in a (p2 x 1)
vector comprise the first column of the matrix o-J[I,2

- (F \302\256F)]\021, where F is the [p x p) matrix

defined in equation [1.2.3] in Chapter 1.

'These values can be inferred from Table B.5.
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Unless V = Ir, this is not the same variance matrix as in [8.1.17], so that the OLS
t statistic [8.1.26] does not have the interpretation as a Gaussian variable divided

by an estimate of its standard deviation. Thus [8.1.26] will not have a t(T -
k)

distribution in small samples, nor will it even asymptotically be N@, 1). A valid

test of the hypothesis that /3,
= /3? for case 5 would be based not on [8.1.26]but

rather on

where dH denotes the row i, column i element of (X'X)\021X'VX(X'X)\021. This
statistic will be asymptotically N@, 1).

Although one could form an inference basedon [8.2.32], in this case in which

V is known, a superior estimator and test procedure are describedin Section 8.3.

First, however, we consider a more generalcasein which V is of unknown form.

Case 6. Errors Serially Uncorrelated but with General
Heteroskedasticity
It may be possible to design asymptotically valid tests even in the presence

of heteroskedasticity of a completely unknown form. This point was first observed

by Eicker A967) and White A980) and extended to time series regressions by

Hansen A982) and Nicholls and Pagan A983).

Assumption 8.6: (a) x, stochastic, including perhaps lagged values of y; (b) x,u, is

a martingale difference sequence; (c) \302\243(K?xps,')
= ft,, a positive definite matrix, with

(l/r^/lA converging to the positive definite matrix il and (l/T^Sf.^x,*.' -^ \320\237;

(d) E(utxitKjtK,,xm,) <<*>foralli,j, I, m, andt; (e)plimsof(l/T)'ZJ'=lulxux,x;and
A/\320\223J:\320\263\320\263_A*/,x,x,' exist and are finite for all i and j and (\320\243\320\251^\321\205.\321\205,1A Q, a

nonsingular matrix.

Assumption 8.6(b) requires u, to be uncorrelated with its own lagged values
and with current and lagged values of x. Although the errors are presumed to be

serially uncorrelated, Assumption 8.6(c) allows a broad class of conditional het-

heteroskedasticity for the errors. As an example of such heteroskedasticity, consider
a regression with a single i.i.d. explanatory variable x, with E(xj) =

/j^ and

E(xf)
= fi4. Suppose that the variance of the residual for date t is given by

E(uf\\x,) = a + bxf. Then E(uJxJ)
= Ex[E{u}\\x,)-x)\\ = Ex[{a+ bx?)-x}]

= a^
+ fc/x4. Thus, ft, = ap^ + bfi4

= ft for all t. By the law of large numbers,
(l/T^I.Jl.iUfxfwill converge to the population moment ft. Assumption 8.6(c) al-
allows more general conditional heteroskedasticity in that E(ufxf) might be a func-

function of t, provided that the time average of (u}xf) converges.Assumption 8.6(d)
and (e) impose bounds on higher moments of x and u.

Consistency of b is established using the same arguments as in case 3. The

asymptotic variance is found from writing

Assumption 8.6(e) ensures that

Ul/T) 2
\302\253A'J
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for some nonsingular matrix Q. Similarly, x,u, satisfies the conditions of Proposition
7.9, from which

[A/VT)
2 \321\205,\320\270,1\320\233N@, ft).

The asymptotic distribution of the OLS estimate is thus given by

vT(br - p) \320\233
\320\233\320\223(\320\236,Q-41Q-1). [8.2.33]

White's proposal was to estimate the asymptotic variance matrix consistently

by substituting Or =
A/\320\251\302\243iMl and UT= (l/rJ\302\243iu?x,x; into [8.2.33], where

\320\271,denotes the OLS residual [8.1.4].Thefollowing result is established in Appendix

8.A to this chapter.

Proposition 8.3: With heteroskedasticity of unknown form satisfying Assumption
8.6, the asymptotic variance-covariance matrix of the OLS coefficient vector can be
consistently estimated by

^- [8.2.34]

Recalling [8.2.33], the OLS estimate brcan be treated as if

br

where

2
J

[8.2.35]

The square root of the row i, column i element of Vj/\320\223is known as a

heteroskedasticity-consistent standard error for the OLS estimate b(. We can, of

course, also use {VTIT) to test a joint hypothesis of the form RP = r, where R is

an (m x it) matrix summarizing m separate hypotheses about p. Specifically,

(Rbr - r)'[R(<yr)R']-l(Rbr- r) [8.2.36]

has the same asymptotic distribution as

[VT(Rbr
- r)]'(RQ-1ftQ-1R')\021[vT(Rbr- r)],

which, from [8.2.33], is a quadratic form of an asymptotically Normal (m x 1)
vector vT(Rbr - r) with weighting matrix the inverse of its variance-covariance

matrix, (RQ-'HQ^R1). Hence, [8.2.36]has an asymptotic ^distribution with m

degrees of freedom.
It is also possibleto develop an estimate of the asymptotic variance-covariance

matrix of br that is robust with respect to both heteroskedasticity and autocorre-
autocorrelation:
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Here q is a parameter representing the number of autocorrelations used to ap-

approximate the dynamics for ut. The square root of the row i, column i element of

(Vr/r) is known as the Newey-West A987) heteroskedasticity- and autocorrelation-

consistent standard error for the OLS estimator. The basisfor this expression and
alternative ways to calculate heteroskedasticity- and autocorrelation-consistent
standard errors will be discussed in Chapter 10.

8.3. Generalized Least Squares
The previous section evaluated OLS estimation under a variety of assumptions,

including \302\243(uu') \320\244a2IT. Although OLS can be used in this last case, generalized
least squares (GLS) is usually preferred.

GLS with Known Covariance Matrix

Let us reconsider data generated according to Assumption 8.5, under which

u|X
~ N@, cr2V) with V a known (\320\223\321\205\320\223)matrix. Since V is symmetric and positive

definite, there exists a nonsingular (\320\223\321\205\320\223)matrix L such that8

V\021 = L'L. [8.3.1]

Imagine transforming the population residuals u by L:

\320\277= Lu.
(\320\223\320\2451)

This would generate a new set of residuals \320\277with mean 0 and variance conditional

on X given by

\302\243(\320\277\320\277'|\320\245)
=

L-\302\243(uu'|X)L'
= Lo-2VL'.

But V = [V-1]\021
= [L'L]\021,meaning

\302\243(uu'|X)
=

o-^L'LJ-'L' =
\321\201\320\263\320\247\321\202. [8.3.2]

We can thus take the matrix equation that characterizes the basic regression model,

\321\203
= XP + u,

and premultiply both sides by L:

Ly = LXP + Lu,

to produce a new regression model

\321\203
= X3 + \320\277, [8.3.3]

where

\321\203
= Ly X = LX \320\277= Lu [8.3.4]

with \320\277|\320\245
~

N@, cr2lr). Hence, the transformed model [8.3.3] satisfies Assumption

8.2, meaning that all the results for that case apply to [8.3.3]. Specifically, the
estimator

b = (X'X^X'y =
(X'L'LX)\021X'L'Ly

= (X'V'Xj-'X'V-'y [8.3.5]

eWe know that there existsa nonsingular matrix P such that V = PP' and so V\021 =
[\320\240']\021\321\200->.

Take L = P\021 to deduce [8.3.1].
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is Gaussian with mean 3 and variance cr^X'X)\021
= cr2(X'V~1X)~1 conditional

on X and is the minimum-variance unbiased estimator conditional on X. The es-
estimator [8.3.5] is known as the generalized least squares (GLS) estimator. Similarly,

(\321\203,
- x;6J [8.3.6]

has an exact [cr2/(T
- k)]-x2(T-K) distribution under Assumption 8.5, while

(Rb
- ryf^RCX'V-'XJ-'R'J-'CRb -

r)/m

has an exact F(m, T -
k) distribution under the null hypothesis Rp = r.

We now discuss several examples to make these ideasconcrete.

Heteroskedasticity

A simple case to analyze is one for which the variance of u, is presumed to

be proportional to the square of one of the explanatory variables for that equation,
say, x\\,\\

\302\243(uu'|X)
= o-2

\320\236\321\205\\2

0 0 r2

= o-2V.

Then it is easy to see that

L =

\342\226\240\320\246\321\205\320\277\\\320\236

\320\236 1/1*!

\320\236 \320\236

satisfies conditions [8.3.1] and [8.3.2]. Hence, if we regress y,/\\xu\\ on \321\205(/|\320\264\321\2011(|,all

the standard OLS output from the regression will be valid.
'

Autocorrelation

As a second example, consider

u,
= P\",-i + \302\243,,

where \\p\\ < 1 and s, is Gaussian white noise with variance a2. Then

[8.3.7]

\302\243(uu'|X)
=

- \320\27721 -
\321\200

1

= o-2V. [8.3.8]

\321\200\320\263-\320\267
... ! _
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Notice from expression [5.2.18] that

L =

~
Vl -

p2

-p

0

L 0

the matrix

0

1

-P

0

0 \342\200\242\342\200\242

0 \342\200\242\342\200\242

1 \342\200\242\342\200\242

0 \342\226\240\342\200\242

0

0

0

-p

0

0

0

1

[8.3.9]

satisfies [8.3.1]. The GLS estimates are found from an OLS regression of \321\203
= Ly

on X = LX; that is, regress yiVl -
p2 on jqVl

-
p2 and y,

-
py,_i on x,

-

px,_! forr = 2,3, . . . , T.

GLS and Maximum Likelihood Estimation

Assumption 8.5 asserts that y|X
-

N(XP, o-2V).Hence, the log of the like-
likelihood of \321\203conditioned on X is given by

(-\320\223/2) 1\320\276\321\221B\321\202\320\263)
-

A/2) logKV| -
(l/2)(y

-
X3)'(<r2V)-4y

- XP).

[8.3.10]
Notice that [8.3.1] can be used to write the last term in [8.3.10] as

-(l/2)(y
- Xp)VV)-4y -

XP)

= -[l/B<r2)](y
- Xp)'(L'L)(y -

XP)

= -[l/B<r2)](Ly
- LXp)'(Ly -

LXP)

= -[l/B<r2)](y
- XP)'(y -

XP).

Similarly, the middle term in [8.3.10] can be written as in [5.2.24]:
-

A/2) log|o-2V|
= -G72)log(o-2) + log|det(L)|, [8.3.12]

where |det(L)| denotes the absolute value of the determinant of L. Substituting

[8.3.11] and [8.3.12] into [8.3.10], the conditional log likelihood can be written as

-(\320\223/2) 1\320\276\321\221B\321\202\320\263)
- G72)log(o-2) + log|det(L)|

-
[l/B<r2)](y

-
Xp)'(y - XP). [8.3.13]

Thus, the log likelihood is maximized with respect to p by an OLS regression of
\321\203on X,9 meaning that the GLS estimate [8.3.5]is also the maximum likelihood
estimate under Assumption 8.5.

The GLS estimate b is still likely to be reasonable even if the residuals u are
non-Gaussian. Specifically, the residuals of the transformed regression [8.3.3]have

mean 0 and variance cr2lr, and so this regression satisfies the conditions of the
Gauss-Markov theorem\342\200\224even if the residuals are non-Gaussian, b will have min-
minimum variance (conditional on X) among the class of all unbiased estimators that

are linear functions of y. Hence, maximization of [8.3.13], or quasi-maximum

likelihood estimation, may offer a useful estimating principle even for non-Gaussian

[8.3.11]

GLS When the Variance Matrix of ResidualsMust

Be Estimated from the Data

Up to this point we have been assuming that the elements of V are known a

priori. More commonly, V is posited to be of a particular form VF), where 6 is a

This assumes that the parameters of L do not involve C, as is implied by Assumption 8.S.

222 Chapter 8 \\ Linear Regression Models



vector of parametersthat must be estimated from the data. For example, with first-

order serial correlation of residuals as in [8.3.7], V is the matrix in [8.3.8] and 6
is the scalar p. As a second example, we might postulate that the variance of

observation t depends on the explanatory variables according to

\302\243(\320\270?|\321\205,)
=

o-2(l + axx\\t + a2xl),

in which case 6 = (alt a2)'\342\200\242

Our task is then to estimate \320\262and 3 jointly from the data. One approach is
to use as estimates the values of \320\262and 3 that maximize [8.3.13].Sinceone can

always form [8.3.13] and maximize it numerically, this approach has the appeal of

offering a single rule to follow whenever \302\243(uu'|X) is not of the simple form cr2lr.

However, other, simpler estimators can also have desirable properties.
It often turns out to be the case that

A VT(x'T[yT(%)]-lxT)-l(X'T[yT(e0)]-lyT),

where VrF0) denotes the true variance of errors and 6r is any consistent estimate

of \320\262.Moreover, a consistent estimate of \320\262can often be obtained from a simple
analysis of OLS residuals.Thus, an estimate coming from a few simple OLS and
GLS regressions can have the same asymptotic distribution as the maximum like-

likelihood estimator. Since regressions are much easier to implement than numerical

maximization, the simpler estimates are often used.

Estimation with First-Order Autocorrelation of Regression
Residuals and No Lagged Endogenous Variables

We illustrate these issues by considering a regression whose residuals follow

the ARA) process [8.3.7].For now we maintain the assumption that u|X has mean
zero and variance cr2V(p), noting that this rules out lagged endogenous variables;

that is, we assume that x, is uncorrelated with ut_s. The following subsection
comments on the importance of this assumption. Recalling that the determinant
of a lower triangular matrix is just the product of the terms on the principal diagonal,
we see from [8.3.9] that det(L) = VI -

p2- Thus, the log likelihood [8.3.13]for
this case is

-(\320\223/2) 1\320\276\321\221B\321\202\320\263)
-

(\320\223/2)log(o-2) + A/2) log(l -p2)
-

[A
-

fW^Myi
- *;PJ [8-3.14]

)] 2 i(y.
-

*;p) - p(y.-i - *;-iP)i2-
1=2

One approach, then, is to maximize [8.3.14] numerically with respect to p, p, and

cr2. The reader may recognize [8.3.14] as the exact log likelihood function for an

ARA) process (equation [5.2.9]) with (y,
-

/x) replaced by (y, - x,'P).
Just as in the ARA) case, simpler estimates (with the same asymptotic dis-

distribution) are obtained if we condition on the first observation, seeking to maximize

logB7r)
-

[(\320\223
- l)/2] log(<r2)

2 [(\320\243,
~

\321\205;\321\200)
-

2

[83\320\2335]
2
(=2

If we knew the value of p, then the value of P that maximizes [8.3.15] could be
found by an OLS regression of (y, - py,-i)on (x,

- px,^) for < = 2, 3, . . . ,
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\320\223(call this regression A). Conversely,if we knew the value of p, then the value

of p that maximizes [8.3.15]would be found by an OLS regression of (y, -
x,'P)on (y,_,

- x,'_!P) for t = 2, 3, . . . , T (call this regression B). Wecan thus

start with an initial guess for p (often p = 0), and perform regression A to get an

initial estimate of p. For p
= 0, this initial estimate of P would just be the OLS

estimate b. This estimate of P can be used in regression \320\222to get an updated
estimate of p, for example, by regressing the OLS residual it,

= y, - x',b on its

own lagged value. This new estimate of p can be used to repeat the two regressions.
Zigzagging back and forth between A and \320\222is known as the iterated Cochrane-
Orcutt method and will converge to a local maximum of [8.3.15].

Alternatively, consider the estimate of p that results from the first iteration
alone,

\321\202

A/\320\223)2 \320\271,-\320\220

P
=

'-\320\246 , [8.3.16]

A/\320\223J\320\271?_,

where \320\271,
=

\321\203,
\342\200\224

x,'b and b is the OLS estimate of p. To simplify expressions, we

have renormalized the number of observations in the original sample to T + 1,
denoted y0, yL,. . . ,yT, so that \320\223observations are used in the conditional maximum
likelihood estimation. Notice that

A = (y, - P'x, + P'x,
- b'x,) =

u, + (P - b)'x,,

allowing the numerator of [8.3.16] to be written

=
(\320\243\320\242)2 \320\232+ \320\236

-
\320\254\320\243\321\205\320\224\320\270,.!+ (P

- b)'E,_J(-1
JL \321\202

[8.3.17]
= (i/r) 2 (\"<\",-1) + \302\273

- b)'(i/r) 2 (\302\253,\302\253,_!+ \320\270,_,\321\205.)

\342\226\240+(p
-

b){(i/r) 2 x,\302\253;-iI\302\273
-

\321\214).
L '=1 J

As long as b is a consistent estimateof P and boundedness conditions ensure that

plims of (l/rjZ,7\".!^,.!, (\320\270\320\251^\320\270,.^,, and (l/J^lJ.^x1,-! exist, then

=
(\320\243\320\242J(\302\253,+ pu.-du.-i. [8-\320\227\320\2338]

\342\226\2404p-Var(\302\253).

Similar analysis establishes that the denominator of [8.3.16] converges in probability
to Var(\302\253), so that p-^ p.

If u, is uncorrelated with xs for s = t \342\200\224
1, t, and t + 1, one can make the

stronger claim that an estimate of p based on an autoregression of the OLS residuals

\320\271,(expression [8.3.16]) has the same asymptotic distribution as an estimate of p
basedon the true population residuals u,. Specifically, if \321\200\320\235\321\202[A/\320\223)\320\225,\320\263_1\320\270,\321\205,_1]

=
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\321\200\320\230\321\210[A/\320\223J;,\320\263=1\320\270(_1\321\205(]
= 0, then multiplying [8.3.17] by Vf, we find

A/VT)

= A/Vf) 2 (\302\253A-i) + Vf(P
-

\320\254)'A/\320\223)2 (\302\253A-i + \320\270,-A)
i

Vf(P
-

\321\214)-

(=1

Vf (p
-

\321\214)'

t) + Vf (p - b)'o

\321\202

[8.3.19]

Si
(=1

Hence,

Vf
\320\236'\320\2372

\320\263

2

Vf

A/\320\223)2 \302\253.-

2 \302\253?-i

[8.3.20]

The OLS estimate of p based on the population residuals would have an

asymptotic distribution given by [8.2.30]:

Vf
2 \320\271,.,\320\271,

- p

A/7)

\320\233Mo, (i
- P2))- [8.3.21]

Result [8.3.20] implies that an estimate of p has the same asymptotic distri-
distribution when based on any consistent estimate of p. If the Cochrane-Orcutt iter-
iterations are stopped after just one evaluation of p, the resulting estimate of p has

the same asymptotic distribution as the estimate of p emerging from any subsequent

step of the iteration.
The samealsoturns out to be true of the GLS estimate b.

Proposition 8.4: Suppose that Assumption 8.5{a) and (b) holds with V given by

[8.3.8] and \\p\\ < 1. Suppose in addition that (\\1\320\242)'\320\246^1\321\205/\320\263,-4 0 for all s and that

(l/rjZZL^x; and (l/^Sr.iXjX,'.! have finite plims. Then the GLS estimate b
constructed from V(p) for p given by [5.5.16] has the same asymptotic distribution

as b constructed from V(p) for the true value of p.

Serial Correlation with Lagged Endogenous Variables

An endogenous variable is a variable that is correlated with the regression
error term u,. Many of the preceding results about serially correlated errors no
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longer hold if the regression contains lagged endogenous variables. For example,
consider estimation of

\320\243,
=

\320\240\320\243.-1+ \320\243\321\205,+ \320\251, [8.3.22]

where u, follows an ARA) process as in [8.3.7]. SinceA) u, is correlated with u,_,

and B) \320\272,_!is correlated with y,_l5 it follows that u, is correlated with the explana-
explanatoryvariable >>,_!\342\200\242Accordingly, it is not the case that plim[(l/r)S,11x,wJ = 0,
the key condition required for consistency of the OLS estimator b. Hence,p in

[8.3.16] is not a consistent estimate of p.
If one nevertheless iterates on the Cochrane-Orcutt procedure, then the al-

algorithm will converge to a local maximum of [8.3.15]. However, the resulting GLS

estimate 6 need not be a consistent estimate of p. Notwithstanding, the global
maximum of [8.3.15]should provide a consistent estimate of p. By experimenting
with start-up values for iterated Cochrane-Orcutt other than p

= 0, one should

find this global maximum.10
A simple estimate of p that is consistent in the presence of lagged endogenous

variables was suggested by Durbin A960). Multiplying [8.3.22] by A
- pL) gives

2 + \321\203\321\205,
- pyx,., + e,. [8.3.23]

This is a restricted version of the regression model

\"
\320\243,

=
<*\\\320\243,-\\+ *\320\263\320\243,-\320\263+ <*3\321\205,+ \320\276\321\206\321\205,-1+ \320\265\342\200\236 [8.3.24]

where the four regression coefficients (a,, a2, a3, a4) are restricted to be nonlinear
functions of three underlying parameters (p, /3, y). Minimization of the sum of
squared e's in [8.3.23] is equivalent to maximum likelihood estimation conditioning
on the first two observations. Moreover, the error term in equation [8.3.24]is
uncorrelated with the explanatory variables, and so the a's can be estimated con-

consistently by OLS estimation of [8.3.24].Then -
&Ja3 provides a consistent estimate

of p despite the presence of lagged endogenous variables in [8.3.24].
Even if consistent estimates of p and P are obtained, Durbin A970) empha-

emphasizedthat with lagged endogenous variables it will still not be the case that an
estimate of p based on (y,

- x,'j$) has the same asymptotic distribution as an

estimate based on (y, -
x', P). To see this, note that if x, contains lagged endogenous

variables, then [8.3.19] would no longer be valid. If x, includes y,_i, for example,
then x, and \320\274,_!will be correlated and plimKl/rjZ^M^x,] \320\2440, as was assumed
in arriving at [8.3.19]. Hence, [8.3.20]will not hold when x, includes lagged en-

endogenous variables. Again, an all-purpose procedurethat will work is to maximize

the log likelihood function [8.3.15] numerically.

Higher-Order Serial Correlation11

Considernext the case when the distribution of u|X can be describedby a

pth-order autoregression,

u, = PiU,^ + p2\",-2 + \342\226\240\342\226\240\342\226\240+ ppu,_p + e,.

10See Betancourt and Kelejian A981).

\"This discussion is based on Harvey A981, pp. 204-6).

226 Chapter 8 | Linear Regression Models



The log likelihood conditional on X for this case becomes

-G72) logB7r) -
(\320\223/2)log(<r2)

- A/2) log|Vp|

-
[l/B<r2)](yp

-
\320\245\342\200\236\320\255)'\320\243-1(\320\243\320\240

-
\320\245\320\240\320\255)

-
pp(y,-p

- ) I ,

where the (p x 1) vector yp denotes the first p observations on y, Xp
is the (p x k)

matrix of explanatory variables associated with these first p observations, and

cr2Vp is the (p x p) variance-covariance matrix of (yp|Xp). The row i, column j
element of

cr2Vp
is given by \320\243|;_\320\264for yk the fcth autocovariance of an AR(p) process

with autoregressive parameters pu p2, \342\226\240. \342\226\240, pp and innovation variance cr2. Letting

Lp denote a (p x p) matrix such that LpLp
= Vpl, GLS can be obtained by

regressing yp
= Lpyp on Xp

=
LpXp and y, =

y,
- piy,-i

-
\320\240\320\263\320\243,-2

- \342\226\240\342\226\240\342\226\240-

\320\240\320\240\320\243,-\320\240
on x, = xr -

\320\240!\320\245,_!
-

p2x,_2
- \342\200\242\342\226\240\342\200\242-

ppx,_p for t = p + \\,p + 2, . . . ,

T. Equation [8.3.14] is a specialcaseof [8.3.25] withp = 1, Vp
= 1/A

- p2), and

Lp
= VT=^.

If we are willing to condition on the first p observations, the task is to choose
\320\255and pi, p2, . . \342\226\240, pp so as to minimize

\320\201\\(\320\243,
~

x,'P)
- Pi(y,-i ~ x;_!P)- p2(y,-2

~
\320\245\320\263'-\320\263\320\255)

i-p+i I

- \342\226\240\342\226\240\342\226\240-
pP{y,-p

-
\321\205;-\342\200\236\321\215I\342\226\240

Again, in the absence of lagged endogenous variables we can iterate as in Cochrane-

Orcutt, first taking the p,'s as given and regressing y, on x,, and then taking p as

given and regressing u, on \320\271,^\320\270\320\271,_2,. . . , \320\271\320\263_\321\200.

Any covariance-stationary process for the errors can always be approximated

by a finite autoregression, provided that the order of the approximating auto-

regression (p) is sufficiently large. Amemiya A973) demonstrated that by letting
p go to infinity at a slower rate than the sample size T, this iterated GLS estimate
will have the same asymptotic distribution as would the GLS estimate for the case

when V is known. Alternatively, if theory implies an ARMA(p, q) structure for

the errors with p and q known, one can find exact or approximate maximum
likelihood estimates by adapting the methods in Chapter 5, replacing \321\206.in the

expressions in Chapter 5 with x,'p.

Further Remarks on Heteroskedasticity
Heteroskedasticity can arise from a variety of sources, and the solution de-

depends on the nature of the problem identified. Using logs rather than levels of

variables, allowing the explanatory variables to enter nonlinearly in the regression
equation, or adding previously omitted explanatory variables to the regression may
all be helpful. Judge, Griffiths, Hill, and Lee A980) discussed a variety of solutions

when the heteroskedasticity is thought to be related to the explanatory variables.
In time series regressions,the explanatory variables themselves exhibit dynamic
behavior, and such specifications then imply a dynamic structure for the conditional

variance. An example of such a model is the autoregressive conditional hetero-

heteroskedasticity specification of Engle A982). Dynamic models of heteroskedasticity
will be discussed in Chapter 21.
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APPENDIX 8.A. Proofs of Chapter8 Propositions

\342\226\240Proof of Proposition 8.2. The restricted estimate b* that minimizes [8.1.2] subject to

[8.1.27] can be calculated using the Lagrangean:

Here \\ denotes an (m x 1)vector of Lagrange multipliers; A, is associated with the constraint

represented by the ith row of R0 = r. The term Hs a normalizing constant to simplify the

expressions that follow. The constrained minimum is found by setting the derivative of

[8.A.I] with respect to fS equal to zero:12

X'R = 0',

Taking transposes,

\342\204\226

b

x,x; Ib* =

\320\223

/a xrxi
r-l

2j \321\205-\321\202\320\243\320\263
~ **

2r-l

'X

b* =
[S x,xf'J \320\246\321\205\320\233]

-
[i x,x;j

R'\\ [8.A.2]

= b - (X'X)-'R'X,

where b denotes the unrestricted OLS estimate. Premultiplying [8.A.2] by R (and recalling
that b* satisfies Rb* = r),

Rb - r = R(X'X)-!R'\\
or

\\ = [R(X'X)-lR']-!(Rb -
\320\263). [8.\320\220.\320\227]

Substituting [8.A.3] into [8.A.2],
b - b* = (X'X)-'R'[R(X'X)-1R']-1(Rb -

\320\263). [8.\320\220.4]

Notice from [8.A.4] that

(b
- b*)'(X'X)(b -

b*)
= {(Rb

- r)'[R(X'X)-1R']-1R(X'X)-1}(X'X)
X {(X'X)-'R'[R(X'X)-1R']-1(Rb

- r)}
=

(Rb
-

rJ'IRCX'Xj-'R'J-'tRCX'X)-^'] [8.A.5]
X [R(X'X)-!R']-4Rb

- r)
=

(Rb
- OWX'XJ-'R'J-'CRb - r).

Thus, the magnitude in [8.1.32]is numerically identical to

(b
- b*)'X'X(b -

b*)/m _ (b -
b*)'X'X(b

-
b*)/m

s2 RSS^T
-

k)

Comparing this with [8.1.37], we will have completed the demonstrationof the equivalence
of [8.1.32] with [8.1.37] if it is the case that

RSSa
-

RSSX
= (b - b*)'(X'X)(b- b*). [8.A.6]

12We have used the fact that \320\262\321\205,'\321\200/\320\262\320\255'= \321\205,'.See the Mathematical Review (Appendix A) at the
end of the book on the use of derivatives with respect to vectors.
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Now, notice that

RSS0 =
(y

- Xb*)'(y -
Xb*)

= (y - Xb + Xb -
\320\245\320\254*)'(\320\243

- Xb + Xb -
Xb*) [8.A.7]

=
(y

- Xb)'(y -
Xb) + (b - b*)'X'X(b -

b*),

where the cross-product term has vanished, since (y - Xb)'X = 0 by the least squares
property [8.1.10]. Equation [8.A.7] states that

RSSa = RSSi + (b -
b*)'X'X(b

-
b*), [8.A.8]

confirming [8.A.6]. \342\226\240

\342\226\240Proof of Proposition 8.3. Assumption 8.6(e) guarantees that dT -* Q. so the issue is
whether UT gives a consistent estimate of ft. Define ft? = {VTJJ,lufx,x'l, noting that

ft? converges in probability to ft by Assumption 8.6(c). Thus, if we can show that

ft,-
- ft? \320\2330, then UT A ft. Now,

UT
- ft*. =

A/\320\223)2 (\320\231?
-

u?)x,x,\\ [8.A.9]

But

{uj
-

uj)
=

(\320\231,+ \320\270,)(\320\271,
-

\320\270,)

=
[{\320\243,

~
\320\232*,)+ {\321\203,

-
\320\255'\321\205,)][(\320\273

-
\320\252'\321\202\321\205,)

-
{\321\203,

-
\320\255'\321\205,)]

=
[2{\321\203,

-
\320\255'\321\205,)

-
[\320\254\321\202

-
\320\255)'*,1[-(\320\254\320\263

-
P)'\302\253J

= -2\320\270,(\320\254\321\202
-

\320\255)'\321\205,+ [(\320\254\321\202
-

\320\240)'\321\205,]\320\263,

allowing [8.A.9] to be written as

UT
- ft? = {-UT) 2 ufbT

- P)'x,(x,x,') + A/\320\223)2 [{bT
-

\320\255)'\321\205,]2(\321\205,\321\205,').[8.\320\220.10]

The first term in [8. A. 10] can be written

\321\202 \320\272 \320\223 \321\202 1

{-\320\270\321\202)2 \320\270,{\321\212\321\202
- p)'x,(x,x;) = -2 2 {\321\2141\320\242

- a) 0-iT)2 w,(\302\253,i;) . [s.a.ii]
r-I /-1 1_ r-1 J

The second term in [8.A.11] has a finite plim by Assumption 8.6(e), and {hlT
- ft) A 0

for each /. Hence, the probability limit of [8.A.11] is zero.

Turning next to the second term in [8.A. 10],

(VT) i [(br
- p)'x,p(x,x;) = 2 i {biT-

which again has plim zero. Hence, from [8.A.10],

ft7.-ft?Ao. \342\226\240

\342\226\240Proof of Proposition 8.4. Recall from [8.2.6] that

VT{bT~ P) -
[A/\320\223)

2
M,'] [A/VT)

2

=
[A/\320\223)

2 (\302\253,
-

\342\204\226-,)(x,
-

px,-,)']
[8.A.12]

2 (x' - \342\204\226-0(\",
~ P\",-,

We will now show that [A/\320\223J,\321\202.,(\321\205,
-

px,_,)(x,
- px,_,)'] has the same plim as

[A/\320\223J;'_,(\321\205,
-

px,_,)(x,
- px,_,)'] and thatKl/VT^Cx,

-
px,-i)(\302\253,

~
P\"-i)l has

the same asymptotic distribution as [(l/VTJ,7.,(x, -
\321\200\321\205,_,)(\320\270,

-
pM,_i)l-
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Considerthe first term in [8.A.12]:

\302\243(x,
-

px,M)(x,
- px,_,)'

t

(P
- pK-i]k -

PX,-i + (P
- pK-i]'

+ (p -
\321\200)-A/\320\223)2 (x,

-
/\302\253,_,)\302\253,'-, [8.A.13]

l

x,.1(x,-px,.,)'

r-t

But (p
- p)-4 0, and the plims of (l/rjS^x^x,'., and (l/rjEf.^x,'., are assumed to

exist. Hence [8.A.13]has the same plim as A/TJ\302\243.,(x,
- px,.,)(x, - px,_,)'.

Consider next the second term in [8. A. 12]:

(x.-px.-\302\273)(\302\253.-Pu.-i)
l

= A/VD 2) I\321\205-
-

\342\204\226->+ (P
- P)x-.][\",- P\302\253,-i+ (P - P)\",-,] [8.A.14]

V7V
-

\321\200)|A/\320\223)
2 (x, -

\321\200\321\205,_,)\",-.]

But [8.3.21] established that VT(p
-

p) converges in distribution to a stable random vari-
variable. Since phm[(l/TJ,3\".iX,\302\253,]

= 0, the last three terms in [8.A.14] vanish asymptotically.
Hence,

(i/VT)J; (x,
-

px,-.)(\302\253,
-

\320\274-)-2\302\273(i/VT) 2 (x, -
Px,_o(\302\253,

-
p\302\253,-,).

which was to be shown.

Chapter 8 Exercises

8.1. Show that the uncentered Rl [8.1.13]can equivalently be written as

for \320\231,the OLS sample residual [8.1.4]. Show that the centered \320\251can be written as

ChnntPr \320\257I \320\242.\320\2530\320\233\320\223Rfforffvvirtrt hAnAolv



8.2. Consider a null hypothesis Ha involving m = 2 linear restrictionson p. How large a
sample size T is needed before the 5% critical value based on the Wald form of the OLS
F test of Ho is within 1% of the critical value of the Wald form of the OLS x2 test of Ho?

8.3. Derive result [8.2.28].
8.4. Consider a covariance-stationary process given by

y, =
/\"\342\226\240+ 2 M-/>

;-\302\260

where {e,} is an i.i.d. sequencewith mean zero, variance cr2, and finite fourth moment and

where 2*_0 |i^| < \302\260o.Consider estimating a pth-order autoregressionby OLS:

y,= \321\201+ \321\204,\321\203,_1+ \321\2042\321\203,_\320\263+ \342\200\242\342\200\242\342\200\242+ \321\204\321\200\321\203,-\321\200+ \320\270,.

Show that the OLS coefficients give consistent estimates of the population parameters that
characterize the linear projection of y, on a constant and p of its lags\342\200\224thatis, the coefficients
give consistent estimates of the parametersc, \321\2041,. . . , \321\204\321\200defined by

%k-ij,-a, \342\200\242\342\200\242\342\200\242,y,-P)
= \321\201+ \321\2041\321\203,^1+ \321\2042\321\203,.2+ \342\200\242\342\200\242\342\200\242+ \321\204,\320\243,-\321\200

(HINT: Recall that \321\201,\321\204\320\270. . . , \321\204\321\200\321\217\320\263\320\265characterized by equation [4.3.6]).
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Linear Systems

of Simultaneous Equations

The previous chapter described a number of possible departures from the ideal

regression model arising from errors that are non-Gaussian, heteroskedastic, or

autocorrelated. We saw that while these factors can makea difference for the small-

sample validity of t and F tests, under any of Assumptions 8.1 through 8.6, the

OLS estimator bT is either unbiased or consistent. This is becauseall these cases

retained the crucial assumption that u,, the error term for observation t, is uncor-

related with x,, the explanatory variables for that observation. Unfortunately, this

critical assumption is unlikely to be satisfied in many important applications.
Section 9.1 discusseswhy this assumption often fails to hold, by examining a

concrete example of simultaneous equations bias. Subsequent sections discuss a
variety of techniques for dealing with this problem. These results will be used in
the structural interpretation of vector autoregressions in Chapter 11 and for under-

understanding generalized method of moments estimation in Chapter 14.

9.1. Simultaneous Equations Bias

To illustrate the difficulties with endogenous regressors, consider an investigation
of the public's demand for oranges. Let p, denote the log of the price of oranges
in a particular year and qf the log of the quantity the public is willing to buy. To

keep the example very simple, suppose that price and quantity are covariance-
stationary and that each is measured as deviations from its population mean. The
demand curve is presumed to take the form

qf = /3p, + ef, [9.1.1]
with /3 < 0; a higher price reduces the quantity that the public is willing to buy.
Here ef represents factors that influence demand other than price. These are
assumed to be independent and identically distributed with mean zero and variance

crl.
The price also influences the supply of oranges brought to the market,

4s,
= IP, + \302\253J, [9.1.2]

where \321\203> 0 and e*represents factors that influence supply other than price. These

omitted factors are again assumed to be i.i.d. with mean zero and variance oj,
with the supply disturbance e* uncorrelated with the demand disturbance ef.

Equation [9.1.1] describes the behavior of buyers of oranges, and equation
[9.1.2]describesthe behavior of sellers. Market equilibrium requires qf = q*,,or

Pp, + ef =
yp, + ej.
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Rearranging,

Substituting this back into [9.1.2],

qt
=

\321\203
s'

~ s' + \302\243f
=

\320\243_ef
\342\200\224

\320\263\\. [9-1-4]

Consider the consequences of trying to estimate [9.1.1] by OLS. A regression
of quantity on price will produce the estimate

(VT) \302\243p,q,

bT =
\320\251 . [9.1.5]

(\320\243\320\242)2 Pf

Substituting [9.1.3]and [9.1.4] into the numerator in [9.1,5] results in

\320\223 \321\203

+ for?

Similarly, for the denominator,

Hence,

OL5 regression thus gives not the demand elasticity /3 but rather an average
of /3 and the supply elasticity y, with weights depending on the sizes of the variances
cr\\ and cr] \342\226\240If the error in the demand curve is negligible (cr\\

\342\200\224*0) or if the error
term in the supply curve has a big enough variance {cr] \342\200\224*

\302\253),then [9.1.6] indicates
that OLS would give a consistent estimate of the demand elasticity /3. On the other

hand, if cr\\ \342\200\224>\302\273or cr] \342\200\224>0, then OLS gives a consistent estimate of the supply
elasticity y. In the cases in between, one economist might believe the regression
was estimating the demand curve [9.1.1] and a second economist might perform
the same regression calling it the supply curve [9.1.2].The actual OLS estimates

would represent a mixture of both. This phenomenon is known as simultaneous

equations bias.
Figure 9.1 depicts the problem graphically.1 At any date in the sample, there

is some demand curve (determined by the value of ef) and a supply curve (deter-
(determined by ef), with the observation on (p,, qt) given by the intersection of these
two curves.For example, date 1 may have been associatedwith a small negative
shock to demand, producing the curve Du and a large positive shock to supply,

producing St. The date 1 observation will then be (p1; q{).Date2 might have seen

\342\226\240Economistsusually display these figures with the axes reversed from those displayed in Figure 9.1.
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FIGURE 9.1 Observations on price and quantity implied by disturbances to both

supply functions and demand functions.

a bigger negative shock to demand and a negative shock to supply, while date 3
as drawn reflects a modest positive shock to demand and a large negative shock
to supply. OLS tries to fit a line through the scatter of points {p,, g,},r_i.

If the shocks are known to be due to the supply curve and not the demand
curve, then the scatter of points will trace out the demand curve, as in Figure 9.2.
\320\232the shocks are due to the demand curve rather than the supply curve, the scatter
will trace out the supply curve, as in Figure 9.3.

The problem of simultaneous equations bias is extremely widespread in the

social sciences. It is rare that the relation that we would like to estimate is the only

possible reason why there might be a correlation among a group of variables.

Consistent Estimation of the Demand Elasticity

The above analysis suggests that consistent estimates of the demand elasticity

might be obtained if we could find a variable that shifts the supply curve but not
the demand curve. For example, let w, represent the number of days of below-

freezing temperatures in Florida during year t. Recalling that the supply disturbance
eJwas defined as factors influencing supply other than price, w, seems likely to be
an important component of e] . Define h to be the coefficient from a linear pro-
projection of ss, on w,, and write

ef =
hw, + u\\. [9.1.7]

Thus, u\\ is uncorrelated with w,, by the definition of h. Although Florida weather

is likely to influence the supply of oranges, it is natural to assume that weather
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FIGURE 9.2 Observations on price and quantity implied by disturbances to supply

function only.
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FIGURE 9.3 Observations on price and quantity implied by disturbances to de-
demand function only.
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matters for the public's demand for oranges only through its effect on the price.
Under this assumption, both w, and u] are uncorrelated with ef. Changes in price
that can be attributed to the weather represent supply shifts and not demand shifts.

Define p* to be the linear projection of p, on wt. Substituting [9.1.7] into

[9.1.3],

p, = E'
~

H\342\204\242'~
\"', [9.1.8]

and thus

P* =
\342\200\224\342\200\224\342\200\236*>,< [9.1.9]
\321\203

- p

since ef and uf are uncorrelated with wt. Equation [9.1.8] can thus be written

ef - ui

P<
= P* +

y- p>
and substituting this into [9.1.1],

where

Since us, and ej are both uncorrelated with w,, it follows that v, is uncorrelated

with p*. Hence, if [9.1.10] were estimated by ordinary least squares, the result

would be a consistent estimate of /3:

(\320\243\320\242)2 pfq,

(l/D 2 [p?]2

(i/\320\263)2 p,*(/3p,* + v.)

(i/\320\263)2 [\321\200\320\223\320\240
[9\320\233\320\2331]

i

= /3 +

The suggestion is thus to regress quantity on that component of price that is induced

by the weather, that is, regress quantity on the linear projection of price on the

weather.

In practice, we will not know the values of the population parameters h, y,
and /3 necessary to constructp* in [9.1.9]. However, the linear projection p* can
be consistently estimated by the fitted value for observation t from an OLS regres-
regressionof p on w,

P, =
brw,, [9.1.12]
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where

(\320\243\320\242)2 w,pt

The estimator [9.1.11] with p* replaced by \320\224is known as the two-stage least squares

BSLS) coefficient estimator:

(\320\243\320\242)2 Pa.
Pisls =

\321\2021 \342\200\242 [9.1.13]

(\320\243\320\242)2 \320\2502

Like J3$, the 2SLS estimator is consistent, as will be shown in the following section.

9.2. Instrumental Variables and Two-StageLeastSquares

General Description of Two-Stage Least Squares
A generalization of the previous exampleisasfollows. Suppose the objective

is to estimate the vector p in the regression model

y, = P'z, + \321\211, [9.2.1]

where z, is \320\260(\320\272x 1) vector of explanatory variables. Some subset \320\270s \320\272of the

variables in z, are thought to be endogenous, that is, correlated with \320\270,.The

remaining \320\272- n variables in z, are said to be predetermined, meaning that they
are uncorrelated with u,. Estimation of p requires variables known as instruments.
To be a valid instrument, a variable must be correlatedwith an endogenous ex-

explanatory variable in z, but uncorrelated with the regression disturbance \320\270,.In the

supply-and-demand example, the weather variable w, served as an instrument for

price. At least one valid instrument must be found for each endogenous explanatory
variable.

Collectthe predetermined explanatory variables together with the instruments

in an (r x 1) vector x,. For example, to estimate the demand curve, there were
no predetermined explanatory variables in equation [9.1.1] and only a single in-

instrument; hence, r = 1, and x, would be the scalar wt. As a second example,
suppose that the equation to be estimated is

In this example, z^ and zSl are endogenous (meaning that they are correlated with

m,), Z2, and z3, are predetermined (uncorrelated with \320\270,),and \302\243u,\302\2432,,and \302\2433,are

valid instruments (correlated with z4, and z5, but uncorrelated with \320\270,).Then r =

6 and x,' = A, z2l, z3l, $u, \302\2432\342\200\236\302\243,,).The requirement that there be at least as many
instruments as endogenous explanatory variables implies that \320\263\320\263\320\272.

Consider an OLS regression of zit (the ith explanatory variable in [9.2.1]) on

x,:

zu = 6,'x,+ eit. [9.2.2]

The fitted values for the regression are given by

i,,
=

6('\321\205\342\200\236 [9.2.3]
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\320\223
\321\202

1~\320\242
\321\202

1

L'-i J L'-i J

where

If zlt is one of the predetermined variables, then zit is one of the elements of x,

and equation [9.2.3] simplifies to

This is because when the dependent variable (zrt) is included in the regressors (x,),
a unit coefficient on zu and zero coefficients on the other variables produce a
perfect fit and thus minimize the residual sum of squares.

Collect the equations in [9.2.3] for i = 1, 2, . . . , \320\272in \320\260(\320\272x 1) vector

equation

t, = S'x,, [9.2.4]
where the (\320\272x r) matrix 8' is given by

\"\302\253\320\223

[9.2.5]
\320\224^\321\205\320\233\320\223\320\224

xfx;l .

The two-stage least squares BSLS) estimate of p is found from an OLS regression
of y, on t,:

=
[em;] [i*#]-

[9.2.6]

An alternative way of writing [9.2.6] is sometimes useful. Let iu denote the

sample residual from OLS estimation of [9.2.2]; that is, let

zu
= 5>, + eit

= tu + \321\221\342\200\236.

OLS causes this residual to be orthogonal to x,:
\320\263

S x,4 = 0,

meaning that the residual is orthogonal to zjt:

2 \320\263,-\320\260,
=

*; 2 xa = o.

Hence, if [9.2.7] is multiplied by z/t and summed over t, the result is

2 V* = 2 \320\250,
+ 4) = 2 V.t-i t-i (-1

for all i and /. This means that

T T

2 %\320\263[
= 2 M\302\273'>

i-i (-1

so that the 25L5 estimator [9.2.6] can equivalently be written as

[9.2.7]

[9.2.8]

9.2. Instrumental Variables and Two-Stage Least Squares 239



Consistency o/2SLS Estimator

Substituting [9.2.1] into [9.2.8],

\320\263

[9.2.9]

where the subscript \320\223has been added to keep explicit track of the sample size \320\223

on which estimation is based. It follows from [9.2.9] that

Ptsls.t ~ P =
[A/7) 2 **'] [A/7)

2
*,\302\253,]\342\200\242

[9.2.10]

Consistency of the 2SLS estimator can then be shown as follows. First note
from [9.2.4] and [9.2.5] that

2 \320\274;
=

*\320\2301/\320\263)2 xtz;

\320\223
'\"

1\320\223
\321\202

\320\223\320\242
- 1

[9211]
= (i/7) 2 \302\253*' (i/\320\263)2 **.' (i/r) 2 x,z; .

Assuming that the process (z,, x,) is covariance-stationary and ergodic for second

moments,
\320\263

A/\320\223)2 2,z,'-^Q, [9.2.12]

where

Turning next to the second term in [9.2.10],

[^A/\320\223)\320\224\302\253,\302\253,]=
8\320\2301/\320\223)2 x,\302\253,.

Again, ergodicity for second moments implies from [9.2.5] that

b'T-+ [EfoxOK-Efo*\302\273')]\021. [9.2.14]

while the law of large numbers will typically ensure that

\320\263

under the assumed absence of correlation between x, and u,. Hence,

\320\223
T 1

A/7) 2 *.\302\253.\320\22340. [9.2.15]
L '-i J

Substituting [9.2.12]and [9.2.15] into [9.2.10], it follows that
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Hence, the 2SLS estimator is consistent as long as the matrix Q in [9.2.13] is
nonsingular.

Notice that if none of the predetermined variables is correlated with zlt, then

the ith row of E{z,x[) contains all zeros and the corresponding row of Q in [9.2.13]
contains all zeros, in which case 2SLS is not consistent. Alternatively, if zu is
correlated with x, only through, say, the first element *,, and zjt is also correlated
with x, only through xu, then subtracting some multiple of the ith row of Q from
the /th row produces a row of zeros, and Q again is not invertible. In general,

consistency of the 2SLS estimator requires the rows of E(z,\\'t) to be linearly in-

independent. This essentially amounts to the requirement that there be a way of

assigning instruments to endogenous variables such that each endogenous variable

has an instrument associatedwith it, with no instrument counted twice for this

purpose.

Asymptotic Distribution o/2SLS Estimator

Equation [9.2.10] implies that

Vt($2SLS,t - p) = I (i/\320\263)2 4,2; 1 ui/vT) 2 t,uA, [9.2.16]

where

\320\223(i/VT) 2 *,\302\253.]
= Sr (i/VT) 2 *.\302\253,.

L <=i J <-i

Hence, from [9.2.12] and [9.2.14],

VTffitsLs.T -
P) \342\200\242*\342\226\240

Q-1-[\302\243(\302\253,x,')][\302\243(x,x,')]-1((lA/f)
2

*<\"<)\342\200\242
[9.2.17]

Suppose that x, is covariance-stationary and that {\302\253,}is an i.i.d. sequence with

mean zero and variance a2 with u, independent of xs for all s\302\243(. Then {\321\205,\320\274,}is a

martingale difference sequence with variance-covariance matrix given by

\320\260\320\263\320\263-\320\225{\321\205,\321\205',).If u, and x, have finite fourth moments, then we can expect from

Proposition 7.9 that

\320\224 )
N@, cr2-E(x,x',)). [9.2.18]

Thus, [9.2.17] implies that

VT(lWr - p) \320\233iV@, V), [9.2.19]

where

V = Q- \320\247\320\225^\321\205\320\236\320\232\320\225^\321\205,')]
-

V\302\243(x,x,')][\302\243(x,x,')]\" l[E(x,z',)]Q-l

= o-HT'-Q-Q-1 [9.2.20]
= ^Q\021

for Q given in [9.2.13]. Hence,

p25L5.r
= N(P, (l/r)o-2Q-i). [9.2.21]
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Since $2sls is a consistent estimate of p, clearly a consistent estimate of the

population residual for observation t is afforded by

\302\253..r-y.-^uu.^H. [9-2.22]

Similarly, it is straightforward to show that \321\201\320\263\320\263can be consistently estimated by

&\\ =
A/\320\223)2 (\320\243.

~
\302\253tfawJ [9-2.23](-1

(see Exercise9.1).Note well that although $2sls can be calculatedfrom an OLS

regression of y, on z,, the estimates \320\271,and fr2 in [9.2.22] and [9.2.23] are not based

on the residuals from this regression:

\320\251\320\244\321\203,
-

i (\321\203,
~

V
1

The correct estimates [9.2.22] and [9.2.23] use the actual explanatory variables z,
rather than the fitted values tt.

A consistent estimate of Q is provided by [9.2.11]:

Qr =
A/\320\223)2 4\320\224'

\320\263 '% ir r -,-ir r -,
^24]' =

I (i/70
^2

z,x; 11 (i/\320\263)2 x,x; I Uvt) 2 x,z; I.

Substituting [9.2.23] and [9.2.24] into [9.2.21],the estimated variance-covariance
matrix of the 2SLS estimator is

[9225]

A test of the null hypothesis Rp = r can thus be based on

(R(Wr - OWVW'OR&mu.t -
r), [9.2.26]

which, under the null hypothesis, has an asymptotic distribution that is x2 with

degrees of freedom given by m, where m represents the number of restrictions or
the number of rows of R.

Heteroskedasticity- and autocorrelation-consistent standard errors for 2SLS

estimation will be discussed in Chapter 14.

Instrumental Variable Estimation

Substituting [9.2.4] and [9.2.5] into [9.2.8],the 2SLS estimator can be written as

[9.2.27]
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Consider the special case in which the number of instruments is exactly equal to
the number of endogenous explanatory variables, so that r = k, as was the case

for estimation of the demand curve in Section 9.1. Then 2T,iZ,xj is a (A: x k)
matrix and [9.2.27]becomes

x
{[S \302\253A'][2 x,x,'j [\320\224V,]]

[9.2.28]

Expression [9.2.28]is known as the instrumental variable (IV) estimator.
A key property of the IV estimator can be seenby premultiplying both sides

of [9.2.28]by S,7\".!^;.-

implying that

2 x,(y,
- z;p/v) = 0. [9.2.29]i1-1

Thus, the IV sample residual (y, -
z't (J/v) has the property that it is orthogonal

to the instruments xt, in contrast to the OLS sample residual (y, - z,'b),which is

orthogonal to the explanatory variables z,. The IV estimator is preferred to OLS

because the population residual of the equation we are trying to estimate (\320\270,)is

correlated with z, but uncorrelated with x,.
Since the IV estimator is a special case of 2SLS,it shares the consistency

property of the 2SLS estimator. Its estimated variance with i.i.d. residuals can be
calculated from [9.2.25]:

[IP]
. [9.2.30]

9.3. Identification
We noted in the supply-and-demand example in Section 9.1 that the demand
elasticity f$ could not be estimated consistently by an OLS regression of quantity

on price. Indeed, in the absence of a valid instrument such as wt, the demand
elasticity cannot be estimated by any method! To see this, recall that the system
as written in [9.1.1] and [9.1.2] implied the expressions [9.1.4] and [9.1.3]:

\321\203-/!'
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If ef and e{ are i.i.d. Gaussian, then these equations imply that the vector (q,,p,)'
is Gaussian with mean zero and variance-covariance matrix

This matrix is completely describedby three magnitudes, these being the variances

of q and p along with their covariance. Given a large enough sample, the values
of these three magnitudes can be inferred with considerable confidence, but that
is all that can be inferred, because thesemagnitudes can completely specify the
process that generated the data under the maintained assumption of zero-mean
i.i.d. Gaussian observations. There is no way to uncover the four parameters of
the structural model (/3, y, a\\, a)) from these three magnitudes. For example, the
values (J$,y, a\\, a)) = A, 2, 3, 4) imply exactly the same observableproperties

for the data as would (fi, y, a\\, a)) = B, 1,4, 3).

If two different values for a parameter vector 6 imply the same probability
distribution for the observed data, then the vector 6 is said to be unidentified.

When a third Gaussian white noise variable w, is added to the set of obser-

observations, three additional magnitudes are available to characterize the process for

observables, these being the variance of w, the covariance between w and p, and
the covariancebetween w and q. If the new variable w enters both the demand
and the supply equation, then three new parameters would be required to estimate

the structural model\342\200\224the parameter that summarizes the effect of w on demand,
the parameter that summarizes its effect on supply, and the variance of w. With

three more estimable magnitudes but three more parameters to estimate, we would
be stuck with the same problem, having no basis for estimation of /3.

Consistent estimation of the demand elasticity was achieved by using two-
stage least squares because it was assumed that w appeared in the supply equation
but was excluded from the demand equation. This is known as achieving identi-
identification through exclusion restrictions.

We showed in Section 9.2 that the parameters of an equation could be esti-
estimated (and thus must be identified) if A) the number of instruments for that

equation is at least as great as the number of endogenous explanatory variables

for that equation and B) the rows of \302\243(z,xj) are linearly independent. The first

condition is known as the order condition for identification, and the secondis
known as the rank condition.

The rank condition for identification can be summarized more explicitly by

specifying a complete system of equations for all of the endogenous variables. Let

y, denote an (\320\270x 1) vector containing all of the endogenous variables in the

system, and let x, denote an (m x 1) vector containing all of the predetermined
variables. Supposethat the system consists of \320\270equations written as

By, + \320\223\321\205,
=

\342\200\236\342\200\236 [9.3.1]

where \320\222and \320\223are (\320\270\321\205\320\270)and (\320\270\321\205m) matrices of coefficients, respectively, and

u, is an (\320\270x 1) vector of disturbances. The statement that x, is predetermined is
taken to mean that \302\243(x,u,')

= 0. For example, the demand and supply equations
consideredin Section 9.1 were

q, = Pp, + uf (demand) [9.3.2]

q, =
\320\243\320\240,+ hw, + Mf (supply). [9.3.3]
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For this system, there are \320\270= 2 endogenous variables, with y, = (qt, p,)'; and

m = 1 predetermined variable, so that x,
= wt. This system can be written in the

form of [9.3.1] as

Supposewe are interested in the equation represented by the first row of the

vector system of equations in [9.3.1]. Let ya be the dependent variable in the first

equation, and let ylr denote an (nj x 1) vector consisting of those endogen
variables that appear in the first equation as explanatory variables. Similarly,

ousequation, and let ylr denote an (nj x 1) vector consisting of those endogenous
variables that appear in the first equation as explanatory variables. Similarly, let

xu denote an (mv x 1) vector consisting of those predetermined variables that

appear in the first equation as explanatory variables. Then the first equation in the
system is

\320\243\321\213+ \320\22201\320\2431,
= uOl,

where B01is a A x nj vector and \320\22301is a A x m{) vector.Let y2, denote an

(n2 x 1) vector consisting of those endogenous variables that do not appear in the

first equation; thus, y'r
= (yOr, y'ln y'2t) and 1 + \320\270,+ n2 = n. Similarly, let x2,

denote an (m2 x 1) vector consisting of those predetermined variables that do not

appear in the first equation, so that x,' = (\\'u, x'2r) and mx + m2 = m. Then the

system in [9.3.1] can be written in partitioned form as

[9.3.5]

Here,for example, B12 is an (nt x n2) matrix consisting of rows 2 through (\302\253i+ 1)
and columns (nx + 2) through n of the matrix B.

An alternative useful representation of the system is obtained by moving \320\223\321\205,

to the right side of [9.3.1]and premultiplying both sides by B\021:

1

\320\222\321\210

\320\26220

Bqi

B,i

\320\26221

0'

Bi2

\320\26222.

>\320\276/

\320\243if

.\320\243\320\275.

+

\320\242\320\276,

\320\223\321\206

\320\26321

0'

\320\223,2

\320\263\320\274.
LX2fJ

'\"\320\260'

\"\320\270

where

\321\203,
=

-\320\222-'\320\223\321\205,+ \320\222^\320\270,
=

\320\237'\321\205,+

\320\237'= -\320\222\320\242

v,
=

\320\222-'\320\270,.

[9.3.6]

[9.3.7]

[9.3.8]

Expression [9.3.6]is known as the reduced-form representation of the structural

system [9.3.1]. In the reduced-form representation, each endogenous variable is
expressedsolely as a function of predetermined variables. For the example of

[9.3.4], the reduced form is

[9.3.9]
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yoi

\320\243\320\270

.\320\243\321\212.

=

\"IT IT
\0201 \0202

\320\277\320\270\320\27712

\320\23721\320\237\321\212

\320\235+1*2,1
\321\203\320\270

\320\243\321\212.

The reduced form for a general system can be written in partitioned form as

[9.3.10]

where, for example, \320\23712denotes an (nx x m2)matrix consisting of rows 2 through

(ni + 1) and columns {mx + 1) through m of the matrix IT.

To apply the rank condition for identification of the first equation stated

earlier, we would form the matrix of cross products between the explanatory var-
variables in the first equation (\321\205\342\200\236and yu) and the predetermined variables for the

whole system (xu and X2,):

M
\320\223E(\\u\\'u)

[9.3.11]

In the earlier notation, the explanatory variables for the first equation consist of
zt

= (x'u, yl,)', while the predetermined variables for the system as a whole consist
of x, =

(x'u, xy1. Thus, the rank condition, which required the rows of E(z,x't)
to be linearly independent, amounts to the requirement that the rows of the

[(mi + \320\273,)x m] matrix M in [9.3.11] be linearly independent. The rank condition

can equivalently be stated in terms of the structural parameter matrices \320\222and \320\223

or the reduced-form parameter matrix \320\237.The following proposition is adapted

from Fisher A966) and is proved in Appendix 9. A at the end of this chapter.

Proposition 9.1: If the matrix \320\222in [9.3.1] and the matrix of secondmoments of the

predetermined variables E(\\tx't) are both nonsingular, then the following conditions

are equivalent:

if)

(b)

(c)

Therows of the [(m i + \320\270,)\321\205m]matrixMin[9.3.11]are linearly independent.
The rows of the [(nl + n2) x (m2 + n2)] matrix

\320\223\320\26312
\320\26212]

1.\320\22322Bj
[9.3.12]

are linearly independent.

The rows of the (nx x m2) matrix Tln are linearly independent.

For example, for the system in [9.3.4], no endogenous variables are excluded
from the first equation, and so \321\203\321\210

=
<?\320\276\320\243\320\270

= Pi, and y2, contains no elements.

No predetermined variables appear in the first equation, and so xu contains no
elements and Xj,

= wt. The matrix in [9.3.12] is then just given by the parameter
\320\223\320\277.This represents the coefficient on X2, in the equation describing \321\203\320\270and is equal
to the scalar parameter \342\200\224h.Result (b) of Proposition 9.1 thus states that the first

equation is identified provided that h \320\2440. The value of ni2 can be read directly
off the coefficient on w, in the second row of [9.3.9] and turns out to be given by

ft/(/3
- 7). Since \320\222is assumed to be nonsingular, (/3

- 7) is nonzero, and so \320\223\320\277

is zero if and only if ni2 is zero.

Achieving Identification Through Covariance Restrictions

Another way in which parameters can be identified is through restrictions on
the covariances of the errors of the structural equations. For example, consider
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again the supply and demand model,[9.3.2]and [9.3.3]. We saw that the demand

elasticity /3 was identified by the exclusion of w, from the demand equation. Con-
Consider now estimation of the supply elasticity y.

Suppose first that we somehow knew the value of the demand elasticity /3

with certainty. Then the error in the demand equation could be constructed from

Ut
= 4, ~ PP.-

Notice that uf would then be a valid instrument for the supply equation [9.3.3],
sinceuf is correlated with the endogenous explanatory variable for that equation
(pr) but uf is uncorrelated with the error for that equation (mJ). Since wt is also
uncorrelated with the error u], it follows that the parameters of the supply equation
could be estimated consistently by instrumental variable estimation with x,

=

(uf, w,I:

\320\250 [2wlPt 2w?J |_2*\320\233,.\320\223\320\272\320\223
l J

where 2 indicates summation over t = 1,2,. . . , T.

Although in practice we do not know the true value of /3, it can be estimated
consistently by IV estimation of [9.3.2]with w, as an instrument:

/3
= Bw,p,)-\\2w,qt).

Then the residual uf can be estimated consistently with uf = q, -
ftp,. Consider,

therefore, the estimator [9.3.13]with the population residual uf replaced by the

IV sample residual:

[!;]
-

\320\236

It is straightforward to use the fact that /3 -* /3 to deduce that the difference between

the estimators in [9.3.14] and [9.3.13] converges in probability to zero. Hence, the

estimator [9.3.14] is also consistent.

Two assumptions allowed the parameters of the supply equation (y and h)
to be estimated. First, an exclusion restriction allowed /3 to be estimated consis-
consistently. Second, a restriction on the covariance between uf and us, was necessary.
If uf were correlated with mJ, then uf would not be a valid instrument for the

supply equation and the estimator [9.3.13] would not be consistent.

Other Approaches to Identification

A good deal more can be said about identification. For example, parameters
can also be identified through the imposition of certain restrictions on parameters
such as /3i + /32 = 1. Useful references include Fisher A966), Rothenberg A971),
and Hausman and Taylor A983).

9.4. Full-Information Maximum Likelihood Estimation

Up to this point we have consideredestimation of a single equation of the form

y, = p'z, + u,. A more general approach is to specify a similar equation for every

endogenous variable in the system, calculate the joint density of the vector of all

of the endogenous variables conditional on the predetermined variables, and max-

maximize the joint likelihood function. This is known as full-information maximum
likelihood estimation, or FIML.
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For illustration, suppose in [9.3.1] that the (n x 1) vector of structural dis-

disturbances u, for date t is distributed iV@, D). Assume, further, that u, is independent
of uT for t \320\244\321\202and that u, is independent of xT for all t and \321\202.Then the reduced-
form disturbance v,

= B-1u, is distributed iV@, B~1D(B~1)'), and the reduced-
form representation [9.3.6] implies that

-'yj
=

tf(-\320\222^\320\223\321\205,,B-y,|x,
-

The conditional log likelihood can then be found from

, \320\223,D)

= 2 log/(y,|x,; \320\222,\320\223,D)

= -Gn/2)k>gBir) - (T/2)log\\*-lD(b-ly\\
[9.4.1]

-
(i/2) 2 [\321\203,+

f-1

But

[\321\203,+ \320\262-'

Furthermore,

-'^ + B-TxJ
=

[y, + B-Tx,]'[B'D-'B][yf + B-Tx,]
=

[B(y, + B-\302\253rx,)]'D-\302\253[B(y, + \320\222^\320\223\321\205,)][9.4.2]
= [By, + TxJ'D-\320\247\320\222\321\203,+ \320\223\321\205,].

)'!
= |B-4-|D|-|B-4 [9.4.3]

Substituting [9.4.2] and [9.4.3] into [9.4.1],

, \320\223,D)
= -Gn/2) logB7r) + (\320\223/2)log|B|2 [9.4.4]

-
(\320\223/2)log|D|

- A/2) 2 [By, + rx,]'D-\302\253[By, + \320\223\321\205,].

The FIML estimates are then the values of \320\222,\320\223,and D for which [9.4.4] is max-
maximized.

For example, for the system of [9.3.4],the FIML estimates of /3, y, h, cr\\,

and a] are found by maximizing

<\302\243<fi,y, h, oi, o-J)
T= -riogBir)+xlog
Z

1 -fl

1 \342\200\224
\321\203

T

I

<\321\202\\\320\236

0 aj

O

= -
riogB7r) + riogG

-
/3)

-
(\320\223/2)log(o-J)

- G72) log(<r?)
-

A/2) 2 (q, -

[9.4.5]
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The first-order conditions for maximization are

\320\263

,\342\200\236 _ 2 (q, - Pp,)p,

\320\264\321\203\321\203
- /3

\320\263

2 (tfr
-

\320\243\320\240,
~

hwt)p,
^ = 0 [9.4.7]

or1
l J

\320\263

2 (\320\257,
-

\320\243\320\240,
-

hw,)wt

+

\320\263

S (
- TP,

The last two equations characterize the maximum likelihood estimates of the
variances as the average squared residuals:

6-1 =
(i/\320\263)2 to, - Pp.J [9-4.il]

[9.4.12]r-1
Multiplying equation [9.4.7] by (/3

- y)IT results in

\320\263

\320\276= -l + 2 {q<
-

ypt
-

hwt)(Pp,
-

yp,)KTcr2)
'-' [9.4.13]

T

- -i + 2 (q-
-

yp<
-

hwt)(Pp, -
q< + q,- yp,V(T<r2).

If [9.4.8] is multiplied by hIT and subtracted from [9.4.13], the result is

\320\263

0 = -1 + 2 (qt
- yPt

~
hw,)(Pp,

-
q, + q, -

yp,
- hw,)/(T(r2)

\321\202

= -1 + 2 (qt
~

TPr
- hw,)(f}p, - q,)/(Tcr2)

(-1

\320\263

+ 2 (qt ~
yPt

~
hwJl{Tcr2)

= -1 - 2 {q,
~

\320\243\320\240,-hw,)(q,
~

Pp,V(Ta2) + 1,

by virtue of [9.4.12]. Hence, the MLEs satisfy

2 (q, -
\320\243\320\240'

- **')(*
-

Pp>)
= \302\260- [9-4\320\2334]

.4. Fl4.ll-Infnrmati.nn M/irinturtt TilreliUnn/i Wcti\\



Similarly, multiplying [9.4.6] by (y
- /3)/T,

\321\202

\320\276= -i + 2 (q, -
\320\240\321\200,)(\321\203\321\200,

- q, + q,- Pp,t-l
T T

1-1 ,-l

Using [9.4.11],
\320\263

2 (q,
-

&>,)(<?,
-

\320\243\320\240.)
= 0. [9.4.15]

Subtracting [9.4.14]from [9.4.15],

\320\263 \320\263

0 = 2 {qt
-

Ppt)[(q,
-

ypd
- (q, -

yp,
-

hw,)] = k 2 (q, -
pp,)*,-

t-l r-l

Assuming that h \320\2440, the FIML estimate of /3 thus satisfies

\320\263

B
(q, - Pp.)*,= 0;

that is, the demand elasticity is chosen so as to make the estimated residual for

the demand equation orthogonal to w,. Hence, the instrumental variable estimator

/3/v turns out also to be the FIML estimator. Equations [9.4.8] and [9.4.14] assert

that the parameters for the supply equation (y and h) are chosenso as to make
the residual for that equation orthogonal to w, and to the demand residual uf =

q, - Pp,. Hence, the FIML estimates for these parameters are the same as the
instrumental-variable estimates suggested in [9.3.14].

For this example, two-stage least squares, instrumental variable estimation,

and full-information maximum likelihood all produced the identical estimates. This

is because the model is just identified. A model is said to be just identified if for

any admissible value for the parameters of the reduced-form representation there

exists a unique value for the structural parameters that implies those reduced-form
parameters.A model is said to be overidentified if some admissible values for the

reduced-form parameters are ruled out by the structural restrictions. In an over-
identified model, IV, 2SLS, and FIML estimation are not equivalent, and FIML

typically produces the most efficient estimates.

For a general overidentified simultaneous equation system with no restrictions

on the variance-covariance matrix, the FIML estimates can be calculated by iter-

iterating on a procedure known as three-stage least squares; see, for example,Maddala

A977, pp. 482-90). Rothenberg and Ruud A990) discussed FIML estimation in

the presence of \321\201\320\276variance restrictions. FIML estimation of dynamic time series

models will be discussed further in Chapter 11.

9.5 Estimation Based on the Reduced Form
If a system is just identified as in [9.3.2] and [9.3.3] with \320\270?uncorrelated with u\\,
one approach is to maximize the likelihood function with respect to the reduced-
form parameters. The values of the structural parameters associated with these

values for the reduced-form parameters are the same as the FIML estimates in a

just-identified model.
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The log likelihood [9.4.1] can be expressedin terms of the reduced-form
parameters \320\237and ft as

\320\263

2(\320\237,ft)
= 2 log/(y,|x,;n,ft)

= -GV2)logBir)- G72)log|ft| [9.5.1]

- A/2) S [\320\243,
-

n'xf]'ft-4y, -
\320\237'\321\205,],

t-\\

where ft =
E(\\,\\',)

= B\021D(B\021)'. The value of \320\237that maximizes [9.5.1] will be

shown in Chapter 11 to be given by

in other words, the ith row of \320\231'is obtained from an OLS regression of the <th

endogenous variable on all of the predetermined variables:

*; =

The MLE of ft turns out to be

ft =
A/\320\223)

[\320\224
(y,

- ft'x,)(y, -
ft'x,)'j.

For a just-identified model, the FIML estimates are the values of (\320\222,\320\223,D) for

which ft' = -B\"Tandft =
B\021D(B-1)'.

We now show that the estimates of \320\222,\320\223,and D inferred in this fashion from
the reduced-formparameters for the just-identified supply-and-demand example
are the same as the FIML estimates.Theestimate \321\211is found by OLS regression
of q, on wt, while \321\202\320\2632is the coefficient from an OLS regression of p, on w,. These

estimates satisfy

T
2 (\320\247,

-
*iwt)w, = 0 [9.5.2]1-1

2 (P,
-

*\320\263\302\273\320\234
= \320\236 [9.5.3]

and

\342\200\236\320\233\342\200\2361_

[9.5.4]

The structural estimatessatisfy Bft' = -For

5 KxtLmntinn R/ix*H nw% the



Multiplying [9.5.3] by /3 and subtracting the result from [9.5.2] produces

\320\263

0 = 2 (q, ~
\320\251\302\273>,

~
Pp, + \320\240*\320\263\302\273>,)\302\273>,

T T
= 2 (<?,

- pp,)w,
- 2 (#1

-
/\320\267%\320\232

\320\263

= 2 (?, -
/3p,)iv,,

1
2

by virtue of the first row of [9.5.5]. Thus, the estimate of /3 inferred from the

reduced-form parameters is the same as the IV or FIML estimate derived earlier.

Similarly, multiplying [9.5.3] by \321\203and subtracting the result from [9.5.2] gives .

\320\263

0 = 2 (q, -
b\\wt

-
ypi + rn-2w,)w,r-1

\320\263

= 2 [q, -
ypt

- (*i - t*!)w,Kr-i
\320\263

= 2 [qt - IP, -
hw,]w,,

t-l

by virtue of the second row of [9.5.5], reproducing the first-order condition [9.4.8]
for FIML. Finally, we need to solve D = \320\222\320\231\320\222'for D and \321\203(the remaining element
of B). Theseequations are

\320\276*o

j

[
1\320\223\342\200\236\320\273\320\270

of

-\342\204\226.-%&-** \302\273-\320\247-\321\215 -J}

= I \321\203f \\q>
~ Pp- ~ (*i -

/\320\267%)^1\320\223?,
-

pp,
- (#, -

/3ir2)w,l'l

\320\223^[[?,
-

7\320\233
-

(\321\211
~

y^w.jlq,
-

yp,
-

(\321\211
-

ytr2)wtJ J

The diagonal elements of this matrix system of equations reproduce the earlier
formulas for the FIML estimates of the variance parameters, while the off-diagonal

element reproduces the result [9.4.14].

9.6. Overview of SimultaneousEquationsBias
The problem of simultaneous equations bias is extremely widespread in the social

sciences. It is rare that the relation that we are interested in estimating is the only

possible reason why the dependent and explanatory variables might be correlated.
For example, consider trying to estimate the effect of military service on an indi-
individual's subsequent income. This parameter cannot be estimated by a regression
of incomeon a measure of military service and other observed variables. The error
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term in such a regression represents other characteristics of the individual that

influence income, and these omitted factors are also likely to have influenced the
individual's military participation. As another example,considertrying to estimate

the success of long prison sentences in deterring crime. This cannot be estimated

by regressing the crime rate in a state on the average prison term in that state,
becausesomestates may have adopted stiffer prison sentencesin response to higher
crime. The error term in the regression, which represents other factors that influ-

influence crime, is thus likely also to be correlated with the explanatory variable.

Regardless of whether the researcher is interested in the factors that determine
military service or prison terms or has any theory about them, simultaneous equa-
equations bias must be recognized and dealt with.

Furthermore, it is not enough to find an instrument x, that is uncorrelated

with the residual \320\270,.In order to satisfy the rank condition, the instrument x, must

be correlated with the endogenous explanatory variables \320\263,.The calculations by
Nelson and Startz A990) suggest that very poor estimates can result if x, is only
weakly correlated with \320\263,.

Finding valid instruments is often extremely difficult and requires careful
thought and a bit of good luck. For the question about military service, Angrist

A990) found an ingenious instrument for military service based on the institutional

details of the draft in the United States during the Vietnam War. The likelihood

that an individual was drafted into military service was determined by a lottery
based on birthdays. Thus, an individual's birthday during the year would be cor-
correlated with military service but presumably uncorrelated with other factors influ-

influencing income. Unfortunately, it is unusual to be able to find such a compelling
instrument for many questions that one would like to ask of the data.

APPENDIX 9. A. Proofs of Chapter 9 Proposition

\320\250Proof of Proposition 9.1. We first show that (a) implies (c). The middle blockof [9.3.10]
states that

Hence,

M = E

-
ft \320\277\342\200\236

since x, is uncorrelated with u, and thus uncorrelated with v,.

Suppose that the rows of M are linearly independent. This means that

[X \321\206']\320\234\320\2440' for any (ml X 1) vector A and any (\321\211x 1) vector \321\206.that are not both
zero. In particular, [

\342\200\224
\321\206.'\320\237\320\277\321\206']\320\234\320\2440'. But from the right side of [9.A.1], this implies

that

[-\321\206'\320\237\342\200\236
n'][^ n0J*(\302\273A')

=
[\320\236'\321\206'\320\23712]\302\243(\321\205,\321\205,')* 0'

for any nonzero (nl x 1)vector (i. But this could be true only if \321\206.'\320\237\320\2632\320\2440'. Hence, if the

rows of M are linearly independent,then the rows of \320\237\320\2632are also linearly independent.
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\320\242\320\276prove that (\321\201)implies (a), premultiply both sidesof [9. A.I] by any nonzero vector
\321\206'].The right side becomes

[X'
n1

E(x,x',) = [(V + \321\206'\320\237\320\277) \342\226\240n'\302\243(x,x,')>

where i\\' = [(X' + \321\206.'\320\237\342\200\236)\321\206'\320\23712].If the rows of \320\23712are linearly independent, then \321\206'
cannot be the zerovector unless both \321\206and X are zero. To seethis, note that if \321\206is nonzero,
then \321\206'\320\237\321\206cannot be the zero vector, while if \321\206

= 0, then \321\206will be zero only if X is also
the zero vector. Furthermore, since \302\243(x,x,')is nonsingular, a nonzero \321\206means that
\321\206'\302\243(\321\205,\321\205,')cannot be the zero vector. Thus, if the right side of [9.A.I] is premultiplied by
any nonzero vector(X', \321\206.'),the result is not zero. The same must be true of the left side:

[X' \321\206.']\320\234\320\2440' for any nonzero (X', \321\206.'),establishing that linear independenceof the rows
of \320\23712implies linear independence of the rowsof M.

To see that (b) implies (c), write [9.3\320\233]as

n01

\320\277\342\200\236

[n21

n,,2

n12

nj

= -B'
To,

\320\263\342\200\236

0'

r,2

\320\2232\320\267.

We also have the identity

\320\2231\321\201

0 r\",

\320\276\320\276

-\320\262-

1 \320\222\342\200\236\320\236'

\320\222,\320\276\320\222,,\320\22212

\320\222\302\273\321\200

[9.\320\220.2]

[9.\320\220.\320\227]

\320\237\320\276\320\267

\320\27712

\320\27722

0'

0

I-.,.

= \320\2621

\"
0'

-\320\26312

-\320\22322

0'
'

\320\26212

\320\26222.

The system of equations represented by the second block column of [9.A.2] and the third
block column of [9.A.3]can be collected as

[9.A.4]

If both sides of [9.A.4] are premultiplied by the row vector [0 (ij 0'] where p., is

any (\320\273,x 1) vector, the result is

[\321\206',\320\237\321\2060']
=

[0 |i; 0']B

[9.A.5]

']\320\222-'

\320\232]

0'

0' 0'

-\320\263\342\200\236\320\262,2

-] \320\263\342\200\236\320\262\342\200\236

0'

\320\262,\320\263

\320\222|

where

[\320\260\342\200\236\321\205;\321\205\321\203
=

[\320\276\321\206.;\320\276\320\263]\320\262-',

implying

[\320\276\321\206;\321\201]
=

[\320\220\320\276\321\205;\321\205\321\203\320\262. [9.\320\220.6]

Suppose that the rows of the matrix [fjj |J|] are linearly independent.Then the only
values for X, and X2 for which the right side of [9.A.5] can be zero are X! = 0 and X2

=

0. Substituting these values into [9.A.6], the only value of \321\211for which the left side of

[9. A.5] can be zero must satisfy

[0 \321\206',0'] =
[Ao 0' 0']B

=
[Ao A0B01 0'].

Matching the first elements in these vectorsimplies Ao
= 0, and thus matching the second

elements requires \321\206.,
= 0. Thus, if condition (b) is satisfied, then the only value of \321\206,for
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which the left side of [9.A.5] can be zero is (\320\274
= \320\236,establishing that the rows of \320\237,,are

linearly independent. Hence, condition (c) is satisfied whenever (b) holds.

Conversely, to see that (c) implies (b), let X[ and X2 denote any (nl x 1) and (\321\211X 1)
vectors, and premultiply both sides of [9.A.4]by the row vector [0 X; \320\245\320\224\320\222:

[0 Xi

[(\"\342\226\240\320\276

X2]B

\320\27702

\320\277,2

\320\277\320\270

\320\277,2

0'

0

0'
0
I.

=
[\320\276\321\205;

'-*

\320\232]

4

0'
-\320\26312

.-\320\263\320\276

0'

\320\262,2

\320\262\320\270

\320\262\342\200\2361

where

fao \320\270!\320\270\320\243
=

[\320\276\321\205;\321\2052]\320\262.

Premultiplying both sides of equation [9.A.4] by \320\222implies that

[9.A.7]

[9.A.8]

1
B,o
B20

Boi

\320\262\342\200\236

\320\2622,

0'

\320\262\342\200\236

Bj

n12

n22

0'
0

I.,.

=
0'

.-ra

0'
B12

B22.

The upper left element of this matrix system asserts that

n02 + \320\262\342\200\236,\320\27712
= \321\201.

Substituting [9.A.9] into [9.A.7],

\320\23712

[9.A.9]

9.\320\220.10]

to order for the left side of [9.A.10]to be zero, it must be the case that \321\2062= 0 and that

-/\320\2600\320\22201\320\23712+ \321\206.|\320\23712
=

(\321\206.;
-

/UoBOi)ni2
= 0'. [9.A.11]

But if the rows of \320\237\320\277are linearly independent, [9.A. 11] can be zero only if

Hi =
\320\233,\320\222\342\200\236,. [9. A. 12]

Substituting these results into [9.A.8],it follows that [9.A.10] can be zero only if

[o x; \321\2052]\320\262
= [fi0 jtoBo, o']

1 Bel \320\241

0' 0'] M B12

2i B22i

[9. A. 13]

[fi0 0' 0']B.

Since \320\222is nonsingular, both sides of [9.A.13]can be postmultiplied by B~! to deduce that

[9.A. 10] can be zero only if

[o x; x2] =
[fi0 \321\201\321\201].

Thus, the right side of [9. A. 10] can be zero only if X, and X2 are both zero, establishing
that the rows of the matrix in [9.3.12] must be linearly independent. \342\226\240

Chapter 9 Exercise

9.1. Verify that [9.2.23] gives a consistentestimate of a-2.
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10

Covariance-Stationary

Vector Processes

This is the first of two chapters introducing vector time series. Chapter 10is devoted

to the theory of multivariate dynamic systems, while Chapter 11focuseson em-

empirical issues of estimating and interpreting vector autoregressions. Only the first
section of Chapter 10is necessary for understanding the material in Chapter 11.

Section 10.1 introduces some of the key ideas in vector time series analysis.
Section 10.2 develops some convergence results that are useful for deriving the

asymptotic properties of certain statistics and for characterizing the consequences
ofmultivariate filters. Section 10.3 introduces the autocovariance-generating func-

functionfor vector processes, which is used to analyze the multivariate spectrum in

Section 10.4. Section 10.5 developsa multivariate generalization of Proposition
7.5, describing the asymptotic properties of the sample mean of a serially correlated
vector process. These last results are useful for deriving autocorrelation- and het-
eroskedasticity-consistent estimators for OLS, for understanding the properties of

generalized method of moments estimators discussed in Chapter 14,and for deriving
some of the tests for unit roots discussed in Chapter 17.

10.1. Introduction to Vector Autoregressions
Chapter 3 proposed modeling a scalar time series y, in terms of an autoregression:

\320\243,
= \321\201+ \321\204,\321\203\342\200\236,+ \321\204\320\263\320\243,-\320\263+ \342\226\240\342\226\240\342\226\240+

\320\244\342\200\236\320\243,-\320\240
+ \320\265\342\200\236[10.1.1]

where

\320\225(\320\265,)
= 0 [10.1.2]

[\320\256.1.3]
1.0 otherwise.

L J

Note that we will continue to use the convention introduced in Chapter 8 of using

lowercase letters to denote either a random variable or its realization. This chapter
describes the dynamic interactions among a set of variables collected in an (n x 1)
vector y,. For example, the first element of y, (denoted ylr) might represent the
level of GNP in year t, the second element (y2l) the interest rate paid on Treasury
bills in year t, and so on. A pth-order vector autoregression, denoted VAR(p), is

a vector generalization of [10.1.1]through [10.1.3]:

\321\203,
= \321\201+ \320\244,\321\203,_,+ \320\2442\321\203,_2+ \342\200\242\342\200\242\342\200\242+

\320\244\342\200\236\321\203,_\342\200\236
+ \320\265,. . [10.1.4]

Here \321\201denotes an (\320\270\321\2051) vector of constants and
\320\244;-

an (n x n) matrix of

autoregressive coefficients for / = 1,2, . . . ,p.The (\320\270\321\2051) vector e, is a vector
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generalization of white noise:

\320\226\320\265,)
= \320\236 [10.1.5]

[\320\256.1.6]
otherwise,

with ft an (\320\273x \321\217)symmetric positive definite matrix.
Let \321\201-,denote the ith element of the vector \321\201and let

\321\204
d̂enote the row i,

column j element of the matrix \320\244,.Then the first row of the vector system in

[10.1.4] specifies that

\320\243\320\277
=

\321\201,+ \320\244^\320\243\320\270-,+ \320\244^\320\243\320\263..-x+ \342\226\240\342\226\240\342\226\240+ \320\244\\)!\321\203\342\200\236.,-1

+ *\320\271>>,.,-2 + \320\244^\320\243\320\263.,-1+ \342\226\240\342\226\240\342\226\240+ \320\244^\320\243\342\200\236,-2 [10.1.7]

+ \342\200\242\342\200\242\342\200\242+
\320\244\\?\320\2431.,-\320\240

+
\320\244\\$\320\243\320\263.,-\320\240+ \342\200\242\342\200\242\342\200\242+

\320\244\\\"]\320\243,,,-\320\240
+ \320\265\342\200\236.

Thus, a vector autoregression is a system in which each variable is regressedon a

constant and p of its own lags as well as on p lags of each of the other variables

in the VAR. Note that each regression has the same explanatory variables.

Using lag operator notation, [10.1.4] can be written in the form

[I,, -
\320\244,\302\243

-
\320\244,\320\2542

- \342\226\240\342\200\242\342\200\242-
\320\244\342\200\236^]\321\203,

= \321\201+ e,

or

\320\244(^\321\203,
= \321\201+ e,.

Here \320\244(\320\246indicates an (\320\270\321\205\320\277)matrix polynomial in the lag operator L. The row

i, column j element of \320\244(\302\243)is a scalar polynomial in L:

where
8,/ is unity if i = / and zero otherwise.

A vector processy, is said to be covariance-stationary if its first and second
moments (\302\243[y,jand

\302\243[\321\203,\321\203,'_;],respectively) are independent of the date t. If the

process is covariance-stationary, we can take expectations of both sides of [10.1.4]
to calculate the mean \321\206of the process:

p. = \321\201+ \320\244^ + \320\2442|\321\205+ \342\200\242\342\200\242\342\200\242+ \320\244\321\200|\321\205,

\320\234.
=

A\342\200\236
-

\320\244,
-

\320\2442 \320\244\342\200\236)-'\321\201.

Equation [10.1.4] can then be written in terms of deviations from the mean as

(\321\203,
-

\320\274.)
=

\321\204.(\321\203,-.
-

\320\270)
[1018]

+ \320\2442(\320\243,-2
-

M.) + \342\200\242\342\200\242\342\200\242+
\320\244\342\200\236(\320\243,-\320\240

-
\320\234.)+ \320\265,.
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Rewriting a VAR(p) as a VARG)
As in the case of the univariate AR(p) process, it is helpful to rewrite [10.1.8]

in terms of a VARA) process. Toward this end, define

[10.1.9]

[10.1.10]

iff.
(up x

F
(up x ,

v,
(Hfl X

III

])

=

I3)

III

1)

\320\243,

\320\243/-1

\342\226\240\321\204,

I,

0

_ 0

0

b

\342\200\224
1

1
~~

\320\244,

0

\\\"

b

Jl

\320\244,

0

0

0

\321\204\321\200-1

0

0

I\302\273

\320\244

0

0

0

The VAR(p) in [10.1.8] can then be rewritten as the following VAR{\\):

t = Ffc_, + v,, [10.1.11]

where

for t = \321\202

otherwise

and

\"n \320\276 \320\276

0 0 0

E(y,y'T) =

Q
(up x i,p)

0 0 b

Conditions for Stationarity

Equation [10.1.11] implies that

\302\243,+.,
= v,+, + Fv,+S_, + F2v,+J_2 . [10.1.12]

In order for the process to be covariance-stationary, the consequencesof any given

e, must eventually die out. If the eigenvalues of F all lie inside the unit circle, then

the VAR turns out to be covariance-stationary.

The following result generalizes Proposition 1.1 from Chapter 1 (for a proof
seeAppendix 10.A at the end of this chapter).

Proposition 10.1: The eigenvalues of the matrix F in [10.1.10] satisfy

|I,,A\"
-

\320\244^\021
-

\320\2442\320\220\"-2
- \342\200\242\342\200\242\342\200\242-

\320\244\342\200\236|
= 0. [10.1.13]

Hence, a VAR(p) is covariance-stationary as long as |A| < 1 for all values of
A satisfying [10.1.13]. Equivalently, the VAR is covariance-stationary if all values

of z satisfying

|I,,
- 0jz -

\320\2442\320\2632
- \342\200\242\342\200\242\342\200\242-

\320\244^\320\263\321\200|
= 0

lie outside the unit circle.
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Vector MA(\302\260\302\260)Representation

The first n rows of the vector system represented in [10.1.12] constitute a

vector generalization of equation [4.2.20]:

y,+.,
= ft + e,+, + *.e,+.v-!+ *2e,+.v-2 + \342\200\242\342\200\242\342\200\242+ *\320\273_,\320\265/+,

(
+ F'V(y,

-
ft) + Ffe'Or,.,

-
ft) + \342\200\242\342\200\242\342\200\242+

F\302\243(y,-,,+ ,
-

ft).

Here V, = F^1and F([{> denotes the upper left block of F', where F' is the matrix
F raised to the y'th power\342\200\224that is, the (\320\273x \320\273)matrix F(,{' indicates rows 1 through

/i and columns 1 through \320\273of the (np x np) matrix F;. Similarly, F1^' denotes the

block of F' consisting of rows 1 through n and columns (\321\217+ 1) through 2/i, while

F(,\302\243'
denotes rows 1 through n and columns [\320\273(\321\200

- 1) + 1] through np of F'.
If the eigenvalues of F all lie inside the unit circle, then FJ \342\200\224\302\2730 as s \342\200\224\302\273x and

y, can be expressedas a convergent sum of the history of e:

y,
= ft + e, + \320\244.\320\265,.,+ \320\244,\320\265,_,+ \302\2453e,-3 + \342\200\242\342\200\242\342\200\242= ft + \302\245(L)e,, [10.1.15]

which is a vector MA(*) representation.
Note that y,_; is a linear function of e,_;, e,_y._,, . . . , each of which is

uncorrelated with e,+ , for/ = 0, 1, . . . . It follows that e,+ l is uncorrelated with

y,_;for any; 2 0. Thus, the linear forecast of y, + l on the basis of y,, y,_,, ... is
given by

y,+ ,|, =
ft + \320\244,(\321\203,

-
ft) + \320\2442(\321\203,_,

-
ft) + \342\200\242\342\200\242\342\200\242+

\320\244,,(\321\203,_,,+,
- ft),

and e,+ , can be inte\321\204reted as the fundamental innovation for \321\203,+\320\270that is, the
error in forecasting y,+, on the basis of a linear function of a constant and y,, y,_,,
.... More generally, it follows from [10.1.14] that a forecast of y,+v on the basis
of \320\243/'\320\243/-1.\342\200\242\342\200\242\342\200\242wiH take ^\320\265form

\321\203,+\320\264\342\200\236
= ft + Ftf(y, -

ft) + F#(y,_,
-

ft)

The moving average matrices \320\244)could equivalently be calculated as follows.

The operators \320\244(\302\243)and *(L) are related by

requiring

[I,,
-

\320\244
-̂

\320\2442L2 \320\244,^\"][1\342\200\236+ *,L + tp2L2 + \342\200\242\342\200\242\342\200\242]=I,,.

Setting the coefficient on L' equal to the zeromatrix, as in Exercise 3.3 of Chapter
3, produces

\320\244,
-

\320\244,
= 0. [10.1.17]

Similarly, setting the coefficient on L2 equal to zero gives

\342\226\240\320\2442
=

\320\244,\320\244,+ \320\2442, [10.1.18]

and in general for Z/,

\320\244.,.
=

\320\244,\320\244,_,+ \320\2442\320\244,-2+ \342\200\242\342\200\242\342\200\242+
\320\244\321\200^-\320\240fors = 1, 2 , [10.1.19]

with \320\244\342\200\236
= I,, and \320\244,

= 0 for s < 0.
Note that the innovation in the MA(x) representation [10.1.15] is e,, the

fundamental innovation for \321\203.There are alternative moving average representations

based on vector white noise processes other than e,. Let H denote a nonsingular
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(\321\217\321\205\320\277)matrix, and define

u, = He,. [10.1.20]
Then certainly u, is white noise. Moreover, from [10.1.15] we could write

y, = p. + H'He, + tiH-'He,., + \320\2442\320\2351\320\235\320\265,_,

+ \320\2443\320\235-'\320\235\320\265,_\320\267+ \342\200\242\342\226\240\342\200\242
[10.1.21]

=
[\320\233+ J(,U, + Jill,., + J2U,_2 + J,U,-3 + \342\200\242

,

where

For example, H could be any matrix that diagonalizes ft, the variance-covariance
matrix of e,:

HftH' = D,

with D a diagonal matrix. For such a choice of H, the elements of u, are uncorrelated

with one another:

\302\243(u,u,')
=

\302\243(He,e,'H')
= D.

Thus, it is always possible to write a stationary VAR(p) process as a convergent

infinite moving average of a white noise vector u, whose elementsare mutually

uncorrelated.

There is one important difference between the MA(&) representations [10.1.15]

and [10.1.21], however. In [10.1.15], the leading MA parametermatrix (*\320\240\342\200\236)is the

identity matrix, whereas in [10.1.21] the leading MA parameter matrix (J()) is not
the identity matrix. To obtain the MA representation for the fundamental inno-
innovations, we must impose the normalization \320\244,,

= I,,.

Assumptions Implicit in a VAR

For a covariance-stationary process, the parameters \321\201and \320\244,,. . . , \320\244\321\200
in

equation [10.1.4] could be defined as the coefficients of the projection of y, on a
constant and y,_, y,_p. Thus, e, is uncorrelated with y,_H . . . , y,_p by the
definition of \320\244, \320\244,,.

The parameters of a vector autoregression can accord-

accordinglybe estimated consistently with n OLS regressions of the form of [10.1.7]. The
additional assumption implicit in a VAR is that the e, defined by this projection is
further uncorrelated with

\321\203,_\321\200_,,y,_,,_2 The assumption that y, follows a

vector autoregression is basically the assumption that p lags are sufficient to sum-
summarize all of the dynamic correlations between elements of y.

10.2. Autocovariances and Convergence Results

for Vector Processes

The )th Autocovariance Matrix

For a covariance-stationary n-dimensional vector process, the /th autocovar-

autocovarianceis defined to be the following (n x n) matrix:

\320\223,
=

\320\257[(\320\243,
-

\321\206)(\321\203,_;.
-

\321\206)']. [10.2.1]

Note that although y,-
=

y_;- for a scalar process, the same is not true of a vector
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process:

\320\223\342\226\240\320\244\320\223\342\200\242

For example, the A, 2) element of \320\223;-gives the covariance between yb and y2.,-j-
The A, 2) element of \320\223_;-gives the covariance between yu and y2j+i- There is no

reason that these should be related\342\200\224the response of y{ to previous movements in

y2 could be completely different from the response of y2 to previous movements

Instead, the correct relation is

\320\223)
=

\320\223.,. [10.2.2]

To derive [10.2.2], notice that covariance-stationarity would mean that t in [10.2.1]
could be replacedwith t + j:

\320\223/
=

\302\243[(y,+/
-

M.)(y,,+/->-;
-

\320\274-)']
=

\321\217[(\321\203,+\321\203
-

\320\274\320\236(\321\203,
-

\320\274\320\236'\320\254

Taking transposes,

\320\223;
=

\302\243[(y,
-

ft)(y,+/
- ft)'] =

\320\223_\342\200\236

as claimed.

Vector MA(q) Process

A vector moving average process of order q takes the form

y, =
ft + e, + 0lE,_, + 02e,_2+ \342\200\242\342\200\242\342\200\242+ 04e,_4, [10.2.3]

where e, is a vector white noise process satisfying [10.1.5] and [10.1.6] and 0y
denotes an (\320\273x n) matrix of MA coefficients for j = 1, 2 q. The mean of

y, is |x, and the variance is

\320\223\302\273
= E[(y,

-
ft)(y,

- ft)']
=

\302\243[e,e,'] + 0,\302\243[e,.,e ,'_,]\302\251', + 02\302\243[e,_2e,'.2]02

= n + 0,n\302\251i

with autocovariances

; / + 0/+2n\302\2512 + +
\342\200\236;;

for;
= 1, 2 q

il@L, + 0,ft0'.y+l + 02ft\302\251'_/+2 + \342\200\242\342\200\242\342\200\242+ 0(/+/-ft0; [10.2.5]
for; = -1, -2, . . . , -q

0 for |/| > q,

where 0U
= I,,. Thus, any vector MA(q) process is covariance-stationary. !

Vector MA(\302\273) Process

The vector \320\234\320\233(\302\273)process is written

y,
= ft + e, + \320\244,\320\265,_,+ \320\2442\320\265,_2+ \342\200\242\342\200\242\342\200\242

[10.2.6]

for e, again satisfying [10.1.5] and [10.1.6].
A sequence of scalars{A\302\273}*__* was said to be absolutely summable if

2.\320\223=-^ |A,| < \302\260\302\260.For \320\235,an (n x m) matrix, the sequence of matrices {HJf_ _* is
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absolutely summable if each of its elements forms an absolutely summable scalar

sequence. For example, if
\321\204]\321\200

denotes the row i, column / element of the moving
average parameter matrix *\320\240,associated with lag s, then the sequence {*Jf=(, is
absolutely summable if

\342\226\240x.

E Wn\\ < \302\260\302\260for i = 1, 2, . . . , \320\270and;
= 1, 2 n. [10.2.7]

Many of the results for scalar MA(&) processes with absolutely summable
coefficients go through for vector processes as well. This is summarized by the

following theorem, proved in Appendix 10.A to this chapter.

Proposition10.2: Lety, be an (\321\217\321\2051) vector satisfying

y,
=

M. + 2 **\320\265,_\342\200\236

where e, is vector white noise satisfying [10.1.5] and [10.1.6]and{4?k} J.(l is absolutely
summable. Let yh denote the ith element ofy,, and let /x, denote the ith element of

fa. Then

(\321\217)the autocovariance between the ith variable at time t and the jth variable s

periods earlier, E(yit
-

\320\264.,-)(.\320\243\321\203.,-\320\233
-

/x,), exists and is given by the row i,
column j element of

\320\223,
= 2 *1 + ,.\320\237*:. fors

= 0,1,2, ... ;
I'-ll

(b) the sequence of matrices {\320\223,}\320\223,0is absolutely summable.

If, furthermore, {e,}*__x is an i.i.d. sequence with
\302\243|\302\243,,.,\302\243,,.,\302\253,,,e,4,|

< \302\273for i{, i2,

i}, i4
= 1, 2, . . . , n, then also,

(c) \320\225\\\320\243\320\277.\320\270\320\243\320\270.\342\200\236\320\243^\320\243\320\270\320\233
< <xf\302\260r'i- h' h, \302\2534

= 1, 2 n and for all f,, t2,

id) A/\320\223)2 \320\243\320\275\320\243,.,-,
\320\233

E(y,,yj.,-,) for i, j = 1,2, . . . , n and for all s.

Result (a) implies that the second moments of an MA(<*>) vector process with

absolutely summable coefficients can be found by taking the limit of [10.2.5] as

q\342\200\224>*>.Result (b) is a convergence condition on these moments that will turn out
to ensure that the vector process is ergodic for the mean (see Proposition 10.5later
in this chapter). Result (c) says that y, has bounded fourth moments, while result

(d) establishes that y, is ergodic for second moments.

Note that the vector MA(*>) representation of a stationary vector autoregres-
sion calculated from [10.1.4] satisfies the absolute summability condition. To see
this, recall from [10.1.14] that \320\244,is a block of the matrix F\\ If F has np distinct

eigenvalues (A|, A2,. . . , A,,p), then any element of *P,canbewritten as a weighted
average of these eigenvalues as in equation [1.2.20];

\320\241
= c,(i, \321\203)-Ai+ c2(i,j)-\\2 + \342\200\242\342\200\242\342\200\242+ cnp(i,j)-k*np,

where cv(i, j) denotesa constant that depends on v, i, and / but not s. Absolute

summability [10.2.7] then follows from the same arguments as in Exercise 3.5.
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Multivariate Filters

Suppose that the (\321\217x 1) vector y, follows an M/l(\302\273) process:

y, =
m.y + \302\245(L)e,, [10.2.8]

with {\320\247^}\302\243=(|absolutely summable. Let {\320\235*}^_* be an absolutely summable se-
sequence of (r x n) matrices and suppose that an (r x 1) vector x, is related to y,

according to

\342\226\240x.

x,
= H(L)y, = 2 \320\235,\320\243,.,. [10.2.9]

That is,

x, = H(L)[|xY+ *(L)e,]
=

H(l)|xY + R(LLf(L)z, [10.2.10]
=

M.x + B(L)e,,

where fnx
\342\200\224

H(l)fiY and B(L) is the compound operator given by

\342\226\240x.

B(^)
= X B,,Z/ = H(LLf(L). [10.2.11]

The following proposition establishes that x, follows an absolutely summable two-
sided AM (\320\266)process.

Proposition 10.3: Let {\302\245*}*_\320\276be an absolutely summable sequenceof (\321\217\321\205n)

matrices and let {HjJ_ _y.bean absolutely summable sequence of (r X n) matrices.

Then thesequenceofmatrices {BjJ, _ * associated with the operator B(Z.)= H(L)*(L)
is absolutely summable.

If {e,} in [10.2.8] is i.i.d. with finite fourth moments, then {x,} in [10.2.9] has

finite fourth moments and is ergodic for second moments.

Vector Autoregression
Next we derive expressions for the second moments for y, following a VAR(p).

Let ?, be as defined in equation [10.1.9]. Assuming that {= and \321\203are covariance-

stationary, let X denote the variance of {;,

\320\223\320\243'
~\"

= \302\243\342\226\240

x [(\321\203,
-

\320\274\320\236'(\321\203--i
-

\320\274

\342\200\242
\320\263\342\200\236_
\320\2231

\321\200-

\320\263\342\200\236\320\263,

\320\223' \320\2231 I \302\273\320\276

\320\223' [10.2.12]
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where \320\223;denotes the /th autocovariance of the original process y. Postmultiplying
[10.1.11] by its own transpose and taking expectations gives

v,)(Ffc v,)'] =

X = F2F' + Q. [10.2.13]

A closed-form solution to [10.2.13] can be obtained in terms of the vec op-
operator. If A is an (m x n) matrix, then vec(A) is an (mn x 1) column vector,

obtained by stacking the columns of A, one below the other, with the columns
ordered from left to right. For example,if

\320\223\302\2531|
\302\253I2\"|=

\302\25321\302\25322.

L\302\2533i\302\25332J

then

vec(A) =

\302\25321

\302\25312

\302\25322

[10.2.14]

Appendix 10.A establishes the following useful result.

Proposition10.4: Let A, B, and \320\241be matrices whose dimensions are such that the

product ABC exists. Then

vec(ABC) =
(\320\241\302\256A)-vec(B) [10.2.15]

where the symbol \302\256denotes the Kronecker product.

Thus, if the vec operator is applied to both sides of [10.2.13],the result is

vecB) = (F \302\256F)-vecB) + vec(Q) = si vecB) + vec(Q), [10.2.16]

where

i\302\253-(F\302\256F). [10.2.17]

Let r =
np, so that F is an (r x r) matrix and si is an (r2 x r2) matrix.

Equation [10.2.16]has the solution

=
[1\320\233:

- si]-1 vec(Q), [10.2.18]

provided that the matrix [Ir: - si] is nonsingular. This will be true as long as unity
is not an eigenvalue of si. But recall that the eigenvalues of F \302\256F are all of the

form A,A;, where A, and A; are eigenvalues of F. Since|A,| < 1 for all i, it follows

that all eigenvalues of si are inside the unit circle, meaning that [lri
- si] is indeed

nonsingular.

The first p autocovariance matrices of a VAR(p) process can be calculated
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by substituting [10.2.12] into [10.2.18]:

vec

\320\223\342\200\236\320\223,

\320\263; \320\263\342\200\236

\320\263;_, \320\263;_;_2

= [lr! -
st]\021 vec(Q). [10.2.19]

The /th autocovariance of {= (denoted Xj) can be found by postmuldplying

[10.1.11] by {=,'_, and taking expectations:

Thus,

or

\302\243(\302\243\302\243'_/)
= F \342\200\242\302\243(\302\243_,&'_,-) + \302\243(v,|,'_y).

X,
= FSy_, for/ = 1,2

S, = F'S for/
= 1,2,

[10.2.20]

[10.2.21]

The /th autocovariance \320\223;of the original process y, is given by the first n rows and

n columns of [10.2.20]:

+\320\244\342\200\236\320\223\320\243_,,for/= />, 2, [10.2.22]

10.3. The Autocovariance-Generating Function
for VectorProcesses

Definition of Autocovariance-Generating Function

for Vector Processes

Recall that for a covariance-stationary univariate process y, with absolutely
summable autocovariances, the (scalar-valued) autocovariance-generating function

g>-(z) is defined as

2

with

and z a complex scalar. For a covariance-stationary vector process y, with an

absolutely summable sequence of autocovariance matrices, the analogous matrix-
valued autocovariance-generating function GY(z) is defined as

Gy(z) -
X T,z>,

where

r/ =
\302\243[(y,

~
\320\234\320\236(\320\243<-/

-
\320\234-)']

and z is again a complex scalar.
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Autocovariance-Generating Function for a Vector Moving

Average Process

For example,for the vector white noise processe, characterized by [10.1.5]
and [10.1.6], the autocovariance-generating function is

Ge(z) = \320\237. [10.3.2]

For the vector MA(q)processof [10.2.3], the univariate expression [3.6.3]for the

autocovariance-generating function generalizes to

GY(z)
= (I,, + 0,z + 02z2+ \342\200\242\342\200\242\342\200\242+ \302\256qz\302\253)a [10.3.3]

x (i,, + \302\251iz-1 + &2z-2 + \342\200\242\342\200\242\342\200\242+ \302\251;,z-\302\253).

This can be verified by noting that the coefficient on z' in [10.3.3] is equal to
\320\223;

as given in [10.2.5].
For an MA(x) process of the form

y,
=

M. + %,\320\263,+ \320\244,\320\265,_,+ \320\2442\320\265,_,+ \342\200\242\342\200\242\342\200\242=
p. + 4F(L)e,,

with {\302\245*}*-(>absolutely summable, [10.3.3] generalizes to

GY(z)
=

[\320\244(*)]\320\237[\320\244(\320\263-')]'. [10.3.4]

Autocovariance-Generating Function

for a VectorAutoregression
Consider the VAR([) process g, =

Fg,_, + v, with eigenvalues of F inside

the unit circle and with \302\243,an (/\342\226\240x 1) vector and \302\243(v,v,')
= Q. Equation [10.3.4]

implies that the autocovariance-generating function can be expressedas

G{(z)
= [I,- Fz]\"'Q[I,. - F'z-1]-'
= [I,.+ Fz + F2z2 + FV + \342\200\242\342\200\242\342\200\242

]Q [10.3.5]

x [I,. + (F')z-1 + (F'Jz\022 + (FTz\023 + ...].

Transformations of Vector Processes

The autocovariance-generating function of the sum of two univariate proc-
processes that are uncorrelated with each other is equal to the sum of their individual

autocovariance-generating functions (equation [4.7.19]). This result readily gen-
generalizes to the vector case:

= X E[(x,-
>

[(, M)(,; \320\234]

= Gx(z) + Gw(z).
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Note also that if an (r x 1) vector \302\243,is premultiplied by a nonstochastic

(w x r) matrix H', the effect is to premultiply the autocovariance by H' and

postmultiply by H:

\302\243[(H'fc
-

H'^XH'S,-/
-

\320\235'\321\211)']
= H'E[(fc

- N)a-; -
ft{)']H,

implying

GH.{(z)
= H'G{(z)H.

Putting these results together, consider {=, the r-dimensional VARA) process
\302\243,

= F&_, + v, and a new process u, given by u, = H'g, + w, with w, a white
noise processthat is uncorrelated with \302\243,_,for all/. Then

Gu(z) = H'G{(z)H+ Gw(z),

or, if R is the variance of w,,

Gu(z) =
\320\235'[1\320\233

- Fz]-'Q[If
- F'z-'J-'H + R. [10.3.6]

More generally, consider an (n x 1) vector y, characterized by

y, =
|xY

where e, is a white noise process with variance-covariance matrix given by ft and
where V(L) =

2X_,,\302\245*L* with {\320\247?\320\272}%.\342\200\236absolutely summable. Thus, the auto-

covariance-generating function for \321\203is

GY(z) =
\320\244(\320\263)\320\237[\320\244(\320\263-')]'. [10.3.7]

Let {H/JJ, _* be an absolutely summable sequence of (r x n) matrices, and suppose
that an (r x 1) vector x, is constructed from y, according to

x, = H(L)y, = 2 H,y,_,= \320\274.\321\205+ B(L)e,,

where |xx =
H(l)p.Y and B(L) =

H(L)\302\245(L) as in [10.2.10] and [10.2.11].Then
the autocovariance-generating function for x can be found from

Gx(z) = B(z)ft[B(z\"')]' = [H(z)*(z)]n[*(z-')]'[H(*-')]'- [\320\256.3.8]

Comparing [10.3.8] with [10.3.7], the effect of applying the filter H(L) to y, is to
premultiply the autocovariance-generating function by H(z) and to postmultiply
by the transpose of H(z\"'):

Gx(z) =
[H(z)]GY(z)[H(z-\342\200\242)]'. [10.3.9]

10.4. The Spectrum for Vector Processes
Let y, be an (n x 1) vector with mean \302\243(y,)

=
fn and A:th autocovariance matrix

\320\243,-*
-

V)'] =
\320\223*. [10.4.1]

?>. -x 's absolutely summable and if z is a complex scalar, the autocovariance-

generating function of \321\203is given by

\342\226\240x.

G\302\273(z)
= X I\\z*. [10.4.2]*- -x
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The function GY(z) associates an (n x n) matrix of complex numbers with the

complex scalar z. If [10.4.2] is divided by 2\321\202\320\263and evaluated at z = e~'\",where

oj is a real scalar and /' = V-l, the result is the population spectrum of the
vector y:

\342\200\242\302\273M
= Bir)-'GY(e-4 = B*)-' 2 IV\"'-*. [10.4.3]*--\302\273

The population spectrum associates an (\320\273\321\205n) matrix of complex numbers with

the real scalar w.

Identical calculations to those used to establish Proposition 6.1 indicate that

when any element of sY(w) is multiplied by <?\"\"* and the resulting function of \321\210is

integrated from \342\200\224ir to \321\202\320\263,the result is the corresponding element of the Arth

autocovariance matrix of y:

Sy^y-* du> =
\320\223\320\272. [10.4.4]J \342\200\224IT

Thus, as in the univariate case, the sequence of autocovariances {I\\}J_ _* and the
function represented by the population spectrum sY(w) contain the identical in-

information.

As a special case, when \320\272= 0, equation [10.4.4] implies

sv(ui)d(o
=

\320\223\342\200\236. [10.4.5]J \342\200\224IT

In other words, the area under the population spectrum is the unconditional var-

iance-covariance matrix of y.

The /th diagonal element of \320\223*is E(y/t
-

\321\206;)(\320\243].,-\320\272
-

/\321\205;),the Arth auto-

autocovariance of yjr Thus, the/th diagonal element of the multivariate spectrum sY(w)
is just the univariate spectrum of the scalar yjr It follows from the properties of
the univariate spectrum discussed in Chapter 6 that the diagonal elementsof sY(w)

are real-valued and nonnegative for all u>. However, the same is not true of the

off-diagonalelementsof sY(w)\342\200\224ingeneral, the off-diagonal elements of sY(w) will

be complex numbers.
To gain further understanding of the multivariate spectrum, we concentrate

on the case of n = 2 variables, denoted

\320\243,
=

The Arth autocovariance matrix is then

\320\232\320\2331
~

\320\230\321\205)(\320\2331-\320\272
~

\320\230\321\205)\\\320\2331
~

\320\263'</\302\273\320\243wiA<X

^ 'Y \" VY \"\320\233'

[10-46]
_ \320\243xx\320\243\321\205\321\203
~

(*) (*)
'

\\_\320\243\321\203\321\205yyyj

Recall from [10.2.2] that \320\223*
=

\320\223-\320\272.Hence,

\320\243xx
=

\320\243(\321\205\321\205\320\272) [\320\256.4.7]

- (A) _ ( - \320\220) \320\2231\320\233\320\233Ci

[10.4.9]
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For this n = 2 case, the population spectrum [10.4.3] would be

2
=- -

2

2k- -

t)
- t-sin(ai&)}

y(^.{cos(a))t) -
isin(wJt)} 2 y(vK{cos(ttjJt)

- i-single)}

[10.4.10]

Using [10.4.7] and [10.4.8] along with the facts that sin(-wjfc) =
-sin(wjfc) and

sin@) = 0, the imaginary components disappear from the diagonal terms:

2n

However, since in general

complex numbers.

2

- i \342\200\242
sin(wA:)} 2 \320\243\321\203\321\203'

~ i-sin(a>k)}

[10.4.11]

*1. the off-diagonal elements are typically

The Cross Spectrum, Cospectrum, and Quadrature Spectrum
The lower left element of the matrix in [10.4.11] is known as the population

cross spectrum from X to Y:

sYA\") =
B7\320\223)\0212

k
[10.4.12]

The cross spectrum can be written in terms of its real and imaginary components
as

iqYX((o). [10.4.13]

The real component of the cross spectrum is known as the cospectrum between X
and Y:

\321\201\321\203\321\205(\321\210)
=

B7\320\223)\0212 Vyx cos(wJt). [10.4.14]
k= -x

One can verify from [10.4.9] and the fact that cos(
-

\321\210\320\272)
=

cos(w\302\243) that

[10.4.15]
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The imaginary component of the cross spectrum is known as the quadrature spec-
spectrum from X to \320\243:

:). [10.4.16]
k= -*

One can verify from [10.4.9] and the fact that sin(-wA:) = -sinfak) that the

quadrature spectrum from \320\243to A1 is the negative of the quadrature spectrum from
A\" to Y:

Recalling [10.4.13], these results imply that the off-diagonal elementsof sv(w) are

complex conjugates of each other; in general, the row /', column m element of

sY(w) is the complex conjugate of the row m, column / element of sY(aj).
Note that both cYX{.u>) and \320\247\321\203\321\205{\321\210)are real-valued periodic functions of w:

\321\201\321\203\321\205(\321\210+ 2\321\202\320\263/)
= cYX(u>) for/ = \302\2611,\302\2612,. . .

qYX(ai + 2irj) =
qyx(u>) for/ = \302\2611,\302\2612

It further follows from [10.4.14]that

\321\201\320\272\320\273-(-\321\210)
=

\321\201\321\203\320\273-(\321\210),

while [10.4.16] implies that

qYX(-\")
= -9VA-H. [10.4.17]

Hence, the cospectrum and quadrature spectrum are fully specified by the values
they assume as \321\210ranges between 0 and \321\202\321\202.

Result [10.4.5] implies that the cross spectrum integrates to the unconditional

covariance between X and \320\243:

J'va-H dui = E{Y, -
J -IT

Observe from [10.4.17] that the quadrature spectrum integrates to zero:

(ttj) dui = 0.
\320\223

Hence, the covariance between X and \320\243can be calculated from the area under

the cospectrum between X and Y:

\320\223cYX(o) dw = E(Y, -
fiyXX,

-
1\320\273\321\205). [10.4.18]J \342\200\224\320\242\320\223

The cospectrum between X and Y at frequency w can thus be interpreted as the

portion of the covariance between X and Y that is attributable to cycleswith

frequency \321\210.Since the covariance can be positive or negative, the cospectrum can
be positive or negative, and indeed, \321\201\320\243\320\245(\321\210)may be positive over somefrequencies
and negative over others.
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The Sample Multivariate Periodogram

To gain further understanding of the cospectrum and the quadrature spec-
spectrum, let \321\203h y2, . \342\226\240. , yTand xt, x2, \342\200\242\342\200\242\342\200\242, x T denote samples of T observations on
the two variables. If for illustration T is odd, Proposition 6.2 indicates that the
value of y, can be expressedas

\320\243,
=

\320\243+2 {<Vcosh(f
- 1)] + &,-sin[w,(f

- 1)]}, [10.4.19]

where \321\203is the sample mean of y, M =
(\320\223

- l)/2, w;
= 2irjlT, and

&j
= B/T) 2 j>,-oos[\302\253;(f

-
1)] [10.4.20]

\320\254,
=

B/\320\223)2 y,-M\"i(t
- 1)]. [10.4.21]

An analogous representation for x, is

x,
= x + 2 R-cosf^Cf - 1)]+ <Jy-sin[a)y(f

- 1)]} [10.4.22]

*,
= B/T) 2 x/-cos[w;(t- 1)] [10.4.23]

^
=

B/\320\223)2 x,-sinK(r
- 1)]. [10.4.24]

Recall from [6.2.11] that the periodic regressorsin [10.4.19] all have sample mean
zero and are mutually orthogonal, while

2 cos2[wy(f
- 1)] = 2 sin>y(r - 1)]= 772. [10.4.25]

Consider the sample covariancebetween x and y:
T

\320\242-12(\320\243,-\320\243)(\321\205,-\320\245). [10.4.26]

Substituting [10.4.19] and [10.4.22] into [10.4.26] and exploiting the mutual or-

orthogonality of the periodic regressorsreveal that

= 7\"-' 2 f X {d/-co8[W/(t
-

1)] +
Sysin[W/(f

-
1)]}

M \"I

x 2 {<Jy-cos[o.y(f
- 1)] + ^sin[wy(f

- 1)]H [10.4.27]

= 7\"\021 2 f X i&A-co^/it - 1)]+ 5y^sin>y(f
-

1)]}}'=i u-i J
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Hence, the portion of the sample covariance between x and \321\203that is due to their

common dependence on cycles of frequency w; is given by

(l/2)(dydy +
5\320\224). [10.4.28]

This magnitude can be related to the sample analog of the cospectrum with

calculations similar to those used to establish result (c) of Proposition 6.2. Recall

that since

2 cos[Wy(t
- 1)] = \320\236,

the magnitude dj in [10.4.20] can alternatively be expressed as

&<= B/\320\2332 (\320\243,-\320\243) cosK(f- 1)].

Thus,

=
D/\320\237 fi (*,

- I)cos[w;(r - 1)]+ i-2 (*,
-

x)-sin[Wy(f
-

1)]J

2 (\320\233
-

\320\257-\321\201\320\276\320\262\320\246\320\241\321\202
- 1)] - /'2 \320\241\320\243\321\202

-
^Jsin^Cr

-
1)][

=
D/\320\237 ft (x, -x)-exp[\302\253-Wy(t- l)]j fi (\320\233-\320\243)\320\265\321\205\321\200[-/\320\250/(\321\202-1)]}

x,
- x)(y, -

2
1=2

v

7--2

2 (*/ -

-
l)/Wy]

=
D/\320\223)

[yj?
+ f\302\273>-\302\253p[-'41 + ^;')

+ f^-expf-2/^] + \321\203<;2)-\320\265\321\205\321\200[2/\320\250/]

+ \320\243<\320\223\"-\320\265\321\205\321\200[-(\320\223
-

1)\320\246] + f.t;r+
-

l)iWy]J,
[10.4. 29]

where
yJ,J>

is the sample covariance between the value of \321\203and the value that x
assumed \320\272periods earlier:

A/\320\223)2 (*/
-

\321\205)(\320\243,+\320\272-\320\243) for \320\272= 0, 1, 2, . . . , T - 1i-i
7\"

A/\320\223) 2 (*,
-

\320\251\320\243,+\320\272
-

\320\243) for*=-l, -2 , -\320\223+1.
/- -\320\272\320\273

[10.4.30]

0.4. The Spectrum for Vector Processes 273



Result [10.4.29] implies that

[10.4.31]

where i^aij) is the sample cross periodogram from x to \321\203at frequency w;, or the
lower left element of the sample multivariate periodogram:

=
B\321\202\320\263)-

2 \342\204\226
\320\272= - T+ I

\321\202-\\

^ / v.v
it- -74- I

'

\320\272= - \320\223+I

7\"-l

Expression [10.4.31] states that the sample cross periodogram from x to \321\203at

frequency w; can be expressedas

The real component is the sample analog of the cospectrum, while the imaginary

component is the sample analog of the quadrature spectrum:

where

[10.4.32]

[10.4.33]

[10.4.34]

Comparing [10.4.33]with [10.4.28], the sample cospectrum evaluated at w;
is proportional to the portion of the sample covariance between \321\203and x that is
attributable to cycles with frequency ay

The population cospectrum admits an

analogous interpretation as the portion of the population covariance between Y

and X attributable to cycleswith frequency \321\210based on a multivariate version of
the spectral representation theorem.

What interpretation are we to attach to the quadrature spectrum? Consider

using the weights in [10.4.22] to construct a new series x* by shifting the phase of
eachof the periodic functions by a quarter cycle:

x? = x + 2 ty.-cos[w,(f
-

1) + (w/2)]
[10.4.35]

The variable x* is driven by the same cycles as \321\205\342\200\236except that at date t = 1 each

cycle is one-quarter of the way through rather than just beginning as in the case

of x,.
Sincesin[0 + (ir/2)]

= cos@) and since cos[0+ (ir/2)]
= -sin@), the variable

x* can alternatively be described as

\320\274

xi = x + 2 {d,-cos[a>tit
-

1)]
-

uj-sin[<Oj(t
-

1)]}. [10.4.36]
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As in [10.4.27], the sample covariance between y, and x* is found to be

\320\223\021X (y,
~ y)(xf - x) =

A/2) 2 (\302\253\320\224
-

*A).

Comparing this with [10.4.34], the sample quadrature spectrum from x to \321\203at

frequency w; is proportional to the portion of the sample covariance between x*

and \321\203that is due to cyclesof frequency \321\210;-.Cycles of frequency w; may be quite
important for both x and \321\203individually (as reflected by large values for $\321\205\321\205(\321\210)and

ivv(oj)) yet fail to produce much contemporaneous covariancebetween the variables

because at any given date the two series are in a different phase of the cycle. For

example, the variable x may respond to an economic recessionsoonerthan y. The

quadrature spectrum looks for evidence of such out-of-phase cycles.

Coherence, Phase, and Gain

The population coherence between X and \320\243is a measure of the degree to

which X and Y are jointly influenced by cycles of frequency w. This measure

combines the inferences of the cospectrum and the quadrature spectrum, and is

defined as'

\320\240+ [<7\320\272\320\273-\320\235]2

assuming that sYY(u>) and sxx(w) are nonzero. If sYY(w) or sxx(w) is zero, the

coherence is defined to be zero.It can be shown that 0 =s hYX(u) s 1 for all w as

long as X and Y are covariance-stationary with absolutely summable autocovariance

matrices.2 If hYX{oi) is large, this indicates that Y and X have important cyclesof
frequency w in common.

The cospectrum and quadrature spectrum can alternatively be described in

polar coordinate form. In this notation, the population cross spectrum from X to

Y is written as

sYX(ui) =
cYX(ui) + iqYX(w) =

\320\257(\321\210)\320\265\321\205\321\200[/\320\262(\321\210)],[10.4.37]

where

KM = {[cyxWY + [qyxMfV2 [10.4.38]

and \320\262(\321\210)represents the radian angle satisfying

cos[0H]

The function R(u>) is sometimes described as the gain while \320\262(\321\210)is called the

phase.3

'The coherence is sometimes alternatively defined as the square root of this magnitude. The sample
coherence based on the unsmoothed periodogram is identically equal to 1.

-See, for example, Fuller A976, p. 156).

The gain is sometimes alternatively defined as \320\233(\321\210)/$\320\273\321\205(\321\210).
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The Population Spectrum for Vector MA and AR Processes

Let y, be a vector \320\234\320\233(\302\260\302\260)process with absolutely summable moving average

coefficients:

y, = v. + V{L)b,,

where

for t = \321\202

(*i*r) in otherwise.

Substituting [10.3.4] into [10.4.3] reveals that the population spectrum for y, can
be calculated as

sy(uj) =
B\321\202\320\263)-'[\320\247\320\263(\320\265-\320\273\]\320\237[\320\244(\320\265'\")]'.")[10.4.40]

For example, the population spectrum for a stationary VAR(p) as written in [10.1.4]
is

I \342\226\240\342\200\242J

Estimating the Population Spectrum

If an observed time series y1; y2, \342\200\242\342\200\242. , yr can be reasonably described by a

pth-order vector autoregression, one good approach to estimating the population

spectrum is to estimate the parameters of the vector autoregression [10.1.4] by

OLS and then substitute these parameter estimates into equation [10.4.41].
Alternatively, the sample cross periodogram from x to \321\203at frequency wf

=

2-njlT can be calculated from [10.4.32] to [10.4.34], where &j, &,-, d,, and &, are as

defined in [10.4.20] through [10.4.24]. One would want to smooth these to obtain

a more useful estimate of the population cross spectrum. For example, one rea-
reasonable estimate of the population cospectrumbetween X and Y at frequency w;

would be

where cyx(uyj+m) denotes the estimate in [10.4.33] evaluated at frequency
u>J+,,,

= 2ir{j + m)/7\"andAisabandwidthparameterreflectinghowmanydifferent
frequencies are to be used in estimating the cospectrum at frequency w;.

Another approach is to express the smoothing in terms of weighting coeffi-

coefficientskJ to be applied to f* when the population autocovariances in expression

[10.4.3] are replaced by sample autocovariances. Such an estimate would take the

form
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where

= \320\263-1X (\321\203,
-

\321\203)(\321\203,-*
-

\321\203)'

\321\202

\320\243
= \320\223\"'2 \320\243,-

\320\263-1

For example, the modified Bartlett estimate of the multivariate spectrum is

(u) = B*)\"'
{f,,

+ 2 [l
-

^] fae-\342\204\242 +

f;**\342\200\242*]j.
[10.4.42]

Let x, be an r-dimensional covariance-stationary process with absolutely
summable autocovariances and with (/\342\226\240x r) population spectrum denoted sx(w).
Let {!!*}\302\243,,_\302\273be an absolutely summable sequenceof (n x r) matrices, and let

y, denote the n-dimensional vector processgiven by

\320\255\320\241

y,
= H(L)x, = 2 H*x,_A..

It follows from [10.3.9] that the population spectrum of \321\203(denoted sY(w)) is related
to that of x according to

[10.4.43]
{n xii) U<xr) (rxr) (rx,i)

As a special case of this result, let X, be a univariate stationary stochastic

process with continuous spectrum sx(u>), and let u, be a secondunivariate stationary
stochastic process with continuous spectrum Su(w), where X, and uT are uncorre-
lated for all t and \321\202.Thus, the population spectrum of the vector x, =

(A\",, u,)' is

given by

~\320\267\320\245\321\205(\321\210)0

0

Define a new series Y, according to

\320\243i
= X hkx<-k + \302\273,

= h(L)X, + \320\270\342\200\236 [10.4.44]

where {hk}^--*. is absolutely summable. Note that the vector y,
= (X,, Y,)' is

obtained from the original vector x, by the filter

\320\243,
= H(L)xM

where

10.4. The Spectrum for Vector Processes 277



It follows from [10.4.43] that the spectrum of \321\203is given by

, \321\207_ \320\223
1

\302\2601\320\223^(\321\210)
\302\260

1\320\2231
\320\220(\320\265'\321\210

'\302\253\320\250)
~

\320\253\320\265-*) iJL 0 ,w(W)JLo 1
[10445]

sxx(to) 1

where

\321\215\321\201

A(e-'\302\273)
= 2 V~'\"*- [10.4.46]

The lower left element of the matrix in [10.4.45] indicates that when Y, and X, are
related according to [10.4.44], the cross spectrum from X to Y can be calculated

by multiplying [10.4.46] by the spectrum of X.
We can also imagine going through these steps in reverse order. Specifically,

suppose we are given an observed vector y,
= (X,, Y,)' with absolutely summable

autocovariance matrices and with population spectrum given by

sv(w)- \320\223\321\205\321\205\320\232\320\250>iXYKU1>\\. [10.4.47]
lS() S()J

_

Then the linear projection of Y, on {A\",_ J J_ _\302\253exists and is of the form of [10.4.44],
where u, would now be regarded as the population residual associated with the

linear projection. The sequenceof linear projection coefficients {AJJ__,. can be
summarized in terms of the function of w given in [10.4.46]. Comparing the lower

left elements of [10.4.47]and [10.4.45], this function must satisfy

h{e-la)sxx{o>)
= syx(u>).

In other words, the function h(e~la) can be calculated from

Syx; |, [10.4.48]

assuming that sxx(u>) is not zero. When sxx(u>)
= 0, we set h{e'ia) = 0. This

magnitude, the ratio of the cross spectrum from A1 to \320\243to the spectrum of X, is
known as the transfer function from X to Y.

The principles underlying [10.4.4] can further be used to uncover individual

transfer function coefficients:

=
B\321\202\320\263)-1\320\223

J -it

In other words, given an observed vector (A1,,Y,)' with absolutely summable au-
autocovariance matrices and thus with continuous population spectrum of the form

of [10.4.47], the coefficient on A*,_A. in the population linear projection of Y, on
{A\",_JJ=_* can be calculated from

hk = B*)\"' \320\223\320\246^\320\265\"^. [10.4.49]
J-*Sxx\\M>)
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10.5. The Sample Mean of a Vector Process

Variance of the Sample Mean

Suppose we have a sample of size \320\223,{y,, y2, . . . , yT}, drawn from an n-

dimensional covariance-stationary process with

\302\243[(\320\243,
\"

|i)(y,-y
-

\320\246)']
=

\320\223,, [10.5.2]

Consider the properties of the sample mean,

\320\243\320\263
=

A/\320\223)X \321\203,. [10.5.3]

As in the discussion in Section 7.2 of the sample mean of a scalar process, it is

clear that \302\243(yY)
=

\321\206.and

\302\243[(\320\243\320\263
\"

\321\206)(\320\243\320\263
\"

V-)']
=

A/\320\223*)\320\225{(\321\203,
- |i)[(y,

-
\321\206)'+ (y2

- |O' + ' \342\200\242\342\226\240+ (\320\243\321\202-
- n)'l

+ (y2
-

\321\206)[(\321\203.
-

f*)' + (yi -
v-\320\243+ \342\200\242\342\226\240\342\200\242+ (\321\203\320\263

-
\321\206I]

+ (\320\243\320\273
-

\320\246)[(\320\2431
-

\320\246)'+ (\320\243\320\263
-

\320\246.)'+ \342\200\242\342\200\242\342\226\240+ (\321\203\320\263
-

\321\206)']

+ \342\200\242' \342\200\242+ (\320\243\320\263
-

\320\234-)[(\320\2431
-

V-\320\243+ (\320\243\320\263
-

V-\320\243+ \342\226\240\342\226\240\342\226\240+ (\320\243\320\263
-

V-)']}
=

A/\320\223){[\320\223\342\200\236+\320\223_,+
\342\226\240\342\200\242\342\200\242+

\320\223.(\320\223.\342\200\236] [\320\256.5.4]

+ [\320\223,+ \320\223\320\276+ \320\223.,+
\342\226\240\342\226\240\342\200\242+ \320\223.G..2)]

+ [\320\2232+ \320\223,+ \320\223\320\276+ \320\223.,+
\342\200\242\342\200\242\342\226\240+

\320\223.(\320\242._\342\200\236]

+ \342\200\242\342\226\240\342\226\240+ [\320\223\320\263.,+ \320\223\320\263_2+ \320\223\320\263.,+ \342\200\242\342\200\242\342\226\240+ \320\223,,]}

=
A/\320\223){7\320\242\342\200\236+ (\320\223

-
1)\320\223,+ (\320\223

-
2)\320\2232+

\342\226\240. . + \320\263\320\263_,

+ (\320\223
-

1)\320\223_,+ (\320\223
-

2)\320\223_2+ \342\200\242\342\200\242\342\226\240+ \320\223_(\320\242..\342\200\236}.

Thus,

\320\223\320\276+ [(\320\223
-

1)/\320\223]\320\223,+ [(\320\223
-

2)/\320\223]\320\2232+ \342\226\240\342\226\240\342\226\240

[105.5]
+ [1/\320\223]\320\223\320\263_,+ [(\320\223- 1\320\24371\320\223.,+ [(\320\223- 2)/\320\223]\320\223_2

As in the univariate case, the weights on Tk for \\k\\ small go to unity as \320\223-\302\273\302\260\302\260,

and higher autocovariances go to zero for a covariance-stationary process. Hence,
we have the following generalization of Proposition 7.5.

Proposition 10.5: Let y, be a covariance-stationary process with moments given by

[10.5.1] and [10.5.2]and with absolutely summable autocovariances. Then the sam-

samplemean [10.5.3] satisfies

(a) \321\203\321\202\320\233\\\321\205.

(b) lim {\320\223-\302\243[(\320\243\320\223
- |i)(yr

- |i)']} = 2 \320\223,..
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The proof of Proposition 10.5 is virtually identical to that of Proposition 7.5.
Consider the following (n x n) matrix:

2 \320\223,.
- r-E[(yr

-
n)(yV

- V-)'] = E \320\223\342\200\236+ 2 (\320\234/\320\223)\320\223,,[\320\256.5.6]

where the equality follows from [10.5.5]. Let
yj,'0

denote the row i, column/element
of \320\223,..The row /, column/ element of the matrix in [10.5.6] can then be written

2r};> 2 (-(r-l)

Absolutely summability of {\320\223,,}*\302\273.\302\273implies that for any e > 0 there exists a q
such that

iiJr';)|
< e/2-

Thus,

2 yf + 2 Mm? .(\342\226\240\320\276+ X (\\v\\/T)\\y)p
v--q

This sum can be made less than e by choosing T sufficiently large. This establishes
claim (b) of Proposition 10.5. From this result, E(y,_T

-
/u,J

-\302\2730 for each /,
implying that y, T

\342\200\224\342\231\246/x,.

Consistent Estimation of T Times the Variance

of the Sample Mean

Hypothesis tests about the sample mean require an estimate of the matrix in

result (b) of Proposition 10.5. Let S represent this matrix:

S - Hm T-E[(yT
- |i)(yr - |i)']. [10.5.7]

If the data were generated by a vector MA(q) process, then result (b) would

imply

S = 2 \320\223\342\200\236 [10.5.8]
v- -q

A natural estimate then is

S = f0 + 1 (f,. + f;,), [10.5.9]
1\342\200\2241

where

t =
A/\320\233 X (y,

- y)(y,_, -
\321\203)'. [\320\256.5.10]

As long as y, is ergodic for second moments, [10.5.9] gives a consistent es-

estimate of [10,5.8]. Indeed, Hansen A982) and White A984, Chapter 6) noted that

[10.5.9] gives a consistent estimate of the asymptotic variance of the sample mean
for a broad class of processesexhibiting time-dependent heteroskedasticity and
autocorrelation. To see why, note that for a process satisfying \302\243(y,)

=
\321\206.with
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time-varying second moments, the variance of the sample mean is given by

E[(JT
~ n)(?r -

\320\270)']

=

e[{VT)
2 (\321\203,

-

\321\206)][A/\320\223) j]
(\320\243,

-

I\302\273)]
[\320\256.5.11]

,
-

iO(y,\342\200\242-\320\270)']-

Suppose, first, that \302\243[(\321\203,
-

\321\206.)(\321\203\320\260
-

\321\206.)']
= 0 for |f

-
s\\ > q, as was the case for

the vector MA(q) process, though we generalize from the MA(q) processto allow

\302\243[(y,
-

\321\206.)(\321\203,
-

\321\206.)']to be a function of t for \\t
-

s\\
s q. Then [10.5.11]implies

2 \302\243[(y,
-

2

21-3

2 {\302\243[(\321\203-
-

rib,-,,
-

\321\206)']+ \302\243[(y,-,
-

\321\206)(\321\203,
-

\320\270)']}-
'=\321\207+ ' [10.5.12]

The estimate [10.5.9] replaces

A/\320\233 2 \302\243[(\320\243,
\"

\320\234\320\243,-
\"

Ml [10.5.13]

in [10.5.12] with

A/\320\233 2 (\320\243.
\"

\320\243\320\263)(\321\203,-\"\320\243\320\263)'. [10.5.14]
f-i'+i

and thus [10.5.9] provides a consistent estimate of the limit of [10.5.12] whenever

[10.5.14]convergesin probability to [10.5.13]. Hence, the estimator proposed in

[10.5.9]can give a consistent estimate of \320\223times the variance of the sample mean
in the presence of both heteroskedasticity and autocorrelation up through order q.

More generally, even if \302\243[(y,
-

\321\206.)(\321\203,
-

\321\206.)']is nonzero for all t and s, as
long as this matrix goes to zero sufficiently quickly as |f -

s\\
-*\342\226\240<*>, then there is

still a sense in which \302\247rin [10.5.9] can provide a consistent estimate of S. Specif-
Specifically,if, as the sample size T grows, a larger number of sample autocovariances
q is used to form the estimate, then Sr-^ S (seeWhite, 1984, p. 155).

The Newey-West Estimator

Although [10.5.9] gives a consistent estimate of S, it has the drawback that

[10.5.9] need not be positive semidefinite in small samples. If S is not positive
semidefinite, then some linear combination of the elements of \321\203is asserted to have
a negative variance, a considerable handicap in forming a hypothesis test!

Newey and West A987) suggested the alternative estimate

= t0 + t [l -
\342\200\224J-rl(t

+ f;.), [10.5.15]
\302\273-iL \321\217+ ij
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where f \342\200\236is given by [10.5.10]. For example,for q
= 2,

S = t \342\200\236+ s(f, + t[) + i(f2 + f^).
Newey and West showed that S is positive semidefinite by construction and has
the same consistency properties that were noted for S, namely, that if q and T
both go to infinity with qlTm -* 0, then S7 A S.

Application: Autocorrelation- and Heteroskedasticity'-Consistent
Standard Errors for Linear Regressions

As an application of using the Newey-West weighting, consider the linear

regression model

y,
= x;p + u,

for x, a (A: x 1) vector of explanatory variables. Recall from equation [8.2.6]that

the deviation of the OLS estimate bT from the true value \320\222satisfies

2 x,x;l 22 x,\302\253,. [10.5.16]

In calculating the asymptotic distribution of the OLS estimate bT, we usually assume

that the first term in [10.5.16] converges in probability to Q~':

[(i/r)|x,x;]
[10.5.17]

The secondterm in [10.5.16] can be viewed as VT times the samplemean of the

(k x 1) vector x,u;.

[10.5.18]

where y,
= x,u,. Provided that \302\243(u,|x,)

= 0, the vector y, has mean zero. We can
allow for conditional heteroskedasticity, autocorrelation, and time variation in the
secondmoments of y,, as long as

S = lim T- E(yTy'T)

exists. Under general conditions,4 it then turns out that

[A/VT)
X x, J =

VT-\321\203\321\202\320\233N@, S).

Substituting this and [10.5.17] into [10.5.16],

VT(bT
- P) \320\233N@, Q-'SQ-1). [10.5.19]

In light of the foregoing discussion, we might hope to estimate S by

Sr
=

f\302\253.r+ \302\243[l
-

-~] (.t.r + t;..r). [10.5.20]

4See, for example. White A984, p. 119).
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Here,

tr.T =
A/7\") X (\321\205,\320\231,.\320\233-,,\320\263\321\205;-\342\200\236),

\320\271,ris the OLS residual for date t in a sample of size T (\320\271,,\321\202
=

\321\203,
-

\\',\320\252\320\242),and q
is a lag length beyond which we are willing to assumethat the correlation between
x,u, and x,_,.\302\253,_,. is essentially zero. Clearly, Q is consistently estimated by
Qv = (l/rjS^jXjX,'. Substituting Qr and Sr into [10.5.19],the suggestion is to
treat the OLS estimate by as if

br-\\(p,(Vr))
where

=
(i/r)|x,x; (i/\320\263)\320\2232\320\271,2\321\205,\321\205;

+ 2 i
\342\200\224^\342\200\2242 (\321\205,\320\271,\320\271,.,.\321\205;.\342\200\236+ \321\205,_\342\200\236\320\271,_,.\320\271,\321\205;)

x \320\223A/\320\263J\321\205,\321\205;1,

that is, the variance of bT is approximated by

= X x,x; 2 \320\271,2\321\205,\321\205;

+ 2 \320\230\342\200\224it 2 (\321\205,\320\271,\320\271,_\342\200\236\321\205;.,.+ \321\205,_\342\200\236\320\271,_,\320\271,\321\205;)2 \302\253\320\273;

[10.5,21]

where u, is the OLS sampleresidual. The square root of the row /, column /' element

of \\TIT is known as a heteroskedastkity- and autocorrelation-consistent standard

error for the /th element of the estimated OLS coefficient vector. The hope is that

standard errors based on [10.5.21]will be robust to a variety of forms of heter-

heteroskedastkity and autocorrelation of the residuals u, of the regression.

Spectral-Based Estimators

A number of alternative estimates of S in [10.5.7] have been suggested in the

literature. Notice that as in the univariate case discussed in Section 7.2, if y, is

covariance-stadonary, then S has the interpretation as the autocovariance-gener-

ating function GY(z) =
2?__*\320\223,,\320\263\"evaluated at z = 1, or, equivalently, as 2v

times the population spectrum at frequency zero:
\320\255\320\241

S = 2 \320\223,.
= 2ttsy@).

Indeed, the Newey-West estimator [10.5.15] is numerically identical to 2n times

the Bartlett estimate of the multivariate spectrum described in [10.4.42] evaluated

at frequency \321\210= 0. Gallant A987, p. 533)proposed a similar estimator based on

a Parzen kernel,

= t0 + 1 k[v/(q + l)](f\\. + t,'.),
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where

{1

- 6z2 + 6z3 forO< z < i

2A - zK for i < z < 1

0 otherwise.

For example, for g = 2, we have

S = f0 + *(f, + f',) + s(f2 + fj).

Andrews A991)examined a number of alternative estimators and found the

best results for a quadratic spectral kernel:

... 3

*()

In contrast to the Newey-West and Gallant estimators, Andrews's suggestion makes

use of all T - 1 estimated autocovariance estimators:

4
Even though [10.5.22] makes use of all computed autocovariances, there is still a

bandwidth parameter q to be chosen for constructing the kernel. For example,for

4
= 2, r

t0 +
2J *(v/3)(f,. + t;.) = f0 + o.85(f, + f;)

+ o.5O(f2 + f;) + o.H(f4 + t;) + \342\200\242\342\200\242\342\200\242.

Andrews recommended multiplying the estimate by 77G\"
- k), where y, = x,u,

for tf, the sample OLS residual from a regression with \320\272explanatory variables.

Andrews A991) and Newey and West A992) also offered some guidance for choos-

choosingan optimal value of the lag truncation or bandwidth parameter q for each of
the estimators of S that have been discussed here.

The estimators that have been described will work best when y, has a finite

moving average representation. Andrews and Monahan A992) suggested an al-

alternative approach to estimating S that also takes advantage of any autoregressive

structure to the errors. Let y, be a zero-mean vector, and let S be the asymptotic
variance of the sample mean of y. For example, if we want to calculate hetero-

skedasticity- and autocorrelation-consistent standard errors for OLS estimation, y,

would correspond to x,tf, where x, is the vector of explanatory variables for the

regression and \320\271,is the OLS residual. The first step in estimating S is to fit a low-
order VAR for y,,

\320\243,
=

\320\244.\320\243,-1+ \320\2442\320\243,-2+ \342\200\242' \342\200\242+
\320\244\320\264,-\320\240

+ v,, [10.5.23]

where v, is presumed to have some residual autocorrelation not entirely captured
by the VAR. Note that since y, has mean zero, no constant term is included in

[10.5.23]. The jth row representedin [10.5.23] can be estimated by an OLS regres-
regressionof the ith element of y, on p lags of all the elements of y, though if any

eigenvalue of \\lnkp
- &xkp~' -

<\320\254\320\263\320\272\321\200~\320\263
\342\200\224\342\200\242\342\226\240\342\200\242-

\320\244\321\200|
= 0 is too closeto the unit

circle (say, greater than 0.97 in modulus), Andrews and Monahan A992, p. 957)
recommended altering the OLS estimates so as to reduce the largest eigenvalue.

The secondstep in the Andrews and Monahan procedure is to calculate an

estimate S* using one of the methods describedpreviously based on the fitted
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residuals v, from [10.5.23]. For example,

[\320\256.5.24]

where

f* =

and where q is a parameter representing the maximal order of autocorrelation

assumed for v,. The matrix Sf will be recognized as an estimate of 2ir-sv@), where

sv(w) is the spectral density of v:

sv(w) = Bir)\"'2 {\302\243(v,v,'_,.)}<?\"'\"''.

Notice that the original series y, can be obtained from v, by applying the following
filter:

Thus, from [10.4.43], the spectral density of \321\203is related to the spectral density of

v according to

sy(\302\253j)
= {[I,,

-
\320\244,\320\265-'\342\204\242

- \320\244,\320\265-2\"\"- \342\226\240\342\226\240\342\226\240-
\321\204\321\200\320\241-\"'\"]}-'sv(w)

x {[I,,
-

\320\244,\320\265'\321\210
-

\320\2442\320\2652'\321\210
- \342\226\240\342\226\240\342\226\240-

\320\2441,\320\265\"''\"]'}~1.

Hence, an estimate of 2n times the spectral density of \321\203at frequency zero is given

by

Sr = {[I,, -
\320\244,

-
\320\2442 \320\244\320\240]}-'\320\231? nn

. ,.,
\321\205{[1\342\200\236-\320\244,-\320\2442 \342\200\242,].}-'.

[10'5'25]

where Sf is calculated from [10.5.24]. The matrix SVin [10.5.25]is the Andrews-

Monahan A992) estimate of S, where

S = lim :

APPENDIX 10.A. Proofs of Chapter10Propositions

\342\226\240Proof of Proposition 10.1. Theeigenvalues of F are the values of A for which the following
determinant is zero:

(\320\244,
-

AI,,) \320\244, \320\244.,

I,, -AI,, 0
0 I,, -AI,,

6 6 6

\342\231\246,-.%
0 0
\320\276 \320\276

I,, -AI,,

[10.A.1]

Multiply each of the final block of n columns by (I/A) and add to the previous block.Multiply
each of the n columns of this resulting next-to-final block by (I/A) and add the result to the
third-to-last block of columns. Proceeding in this manner reveals [10.A.I] to be the same
as

\320\220, \320\233

0 -AI,,

where X, denotes the following (n x n) matrix:

X, -
(\320\244,

-
AI,,) + (\320\244,/\320\220)+ (\320\244

[10.A.2]
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and X, is a related [n x n(p - 1)] matrix. Let S denote the following {np x np) matrix:

-fcv].
and note that its inverse is given by

S- =
[,

\302\260

(

as may be verified by direct multiplication. Premultiplying a matrix by S and postmultiplying
by S~' will not change the determinant. Thus, [10.A.2]is equal to

\320\276
1,\342\200\236\342\200\236-\342\200\236]\320\223\321\205,

x2
]\320\223

\320\276
i.]I =

i. \320\276J[o -\320\2731\342\200\236(\342\200\236_\342\200\236\320\233_\320\270>-\342\200\236oj|

-AI.,,-,, 0
X,

,,-,, . [10.A.3]

Applying the formula for calculating a determinant [A.4.5]recursively, [10. A.3] is equal to

(-\320\233)\"<\"-\"|\320\245,|
=

(-\320\220)\302\273\"-'>|\320\244,
-

\320\2201\342\200\236+ (\320\2442/\320\220)+ (\320\244.,/\320\2203)+ \342\200\242\342\200\242\342\200\242+ (\320\244\321\200/\320\220\"-')|

Setting this to zero producesequation [10.1.13]. \342\226\240

\342\226\240Proof of Proposition 10.2. It is helpful to define z,(/, /) to be the component of >>\342\200\236that
reflects the cumulative effects of the /th element of e:

2,(i,0 =
i^!;\"e,, + iA!,\"e,./-i + \320\244'\320\223^\320\276-2+ \342\200\242\342\200\242\342\226\240= 2 ^\302\253'e,.,-,., [10.A.4]

where i^J,1' denotes the row /, column / element of the matrix V,.. The actual value of the
/th variable y,, is the sum of the contributions of each of the / = 1, 2, . . . , n components
of e:

\320\243i,
= ft + \320\201*,(/, 0- [10.A.5]

The results of Proposition 10.2 are all established by first demonstrating absolute summability
of the moments of 2,(/, /) and then observingthat the moments of y, are obtained from

finite sums of these expressions based on z,(i, I).

Proof of (a). Consider the random variable zl(i,l)'z,-,(J,m), where /,/,/, andm represent
arbitrary indices between 1 and n and where s is the order of the autocovariance of \321\203that
is being calculated. Note from [10. A.4] that

\302\243{2,(/,0-2,_,(/, m)} = E
\\ \302\243\321\204\320\246'\320\265,.,-,\\

X \302\243\321\204^\320\265,,,,,.,..
U'-11 J L-\302\273 JJ [10.A.6]

The expectation operator can be moved inside the summation here because

V V I , in . (in V V I i li-n I i li-il ) V I , I.-H I I V I ,
Z Z, \\\321\211\320\244\320\246,\320\273

- 2j 2/ \\\320\244\320\271\342\226\240I
\342\200\242

1\302\253\320\220/\320\233.I
= 1 2/ \\\320\244\"\\1* \\Zj \\\320\244

Now, the product of e's in the final term in [10.A.6] can have nonzero expectation only if

the e's have the same date, that is, if r = s + v. Thus, although [10.A.6] involves a sum
over an infinite number of values of r, only the value at r = i + v contributes to this sum:

)-2,.,0\\ m)} = 2 Wr'V>m'}\342\226\240\302\243{\302\243,.,-*-,.\302\243,\342\200\236.,-,-,.}
= E \320\244\320\275**'\320\244%]<\320\263\342\200\236\342\200\236,[10.\320\220.7]

where \320\276>\342\200\236,represents the covariance between e,,and \302\243,\342\200\236,and is given by the row /, column

in element of ft.

The row i, column / element of \320\223,gives the value of

7\321\207'
=

\320\225(\320\243\302\253
~

ft)(>V\302\273
~

ft)-
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Using [10.A.5] and [10. A.7], this can be expressed as

[10.A.8]
/-i m-i i\342\200\224n

= 2/ 2/ 2/ \320\244\302\273\320\244)\321\202<\321\2021;,-
/ r-ll /- J ///- 1

But 2,\"., 2;;,., \321\204'\320\223\"'\321\204'\321\202<\320\263\342\200\236\342\200\236'S the row /, column j element of \320\244\342\200\236+,\320\234\320\263,'\342\200\236Thus, [10.A.8]
states that the row i, column j element of \320\223,is given by the row i, column j element of
2\",\342\200\236*\320\240,+,!\342\204\226,',as asserted in part (a).

Proof of (b). Define A,( \342\200\242)to be the moment in [10. A.7J:

and notice that the sequence {\320\233\320\273(-)}/.,,is absolutely summable:

2 |/i,(', \320\243,', m)\\ sj) E 1\320\271\"'\"''|'1|/'\320\273./'\320\235\320\276>/\302\2731

-W

^\342\204\2261|\320\2621^1
[10A9]

2 K
I\342\200\22411..-I\302\273

Furthermore, the row /, column / element of \320\223,was seen in [10. A.8] to be given by

US'
= 2 2 *.('. /.'. \302\253)\342\226\240

Hence,

2 Wl * 2 2 2 l*.(\302\253.A '\342\200\242\0201
= 222 \320\272(\320\273\320\243.'-\0201- [io.a.ioj

From [10. A.9], there exists an M < \302\253=such that

t |A,(i, \320\243,/, m)\\ < M

for any value of/, ;', /, or m. Hence, [10.A. 10] implies

2 It'l < 2 2 M =\022M < M-
\\- \320\236 f =\342\226\2401 \302\253i= 1

confirming that the row /, column j element of {\320\223,}*,,,is absolutely summable, as claimed

by part (b).
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Proof of (c). Essentially the identical algebra as in the proofof Proposition 7.10 establishes
that

= \302\243

i-ii<\302\273

[10. A. 11]

Now,

< =0.

^1.,J
= E + i *\342\200\236(\302\253\342\226\240

ft,

+ 2 *\320\230A\320\233.\320\243
\320\254- I

But this is a finite sum involving terms of the form of [10,A.11]\342\200\224which were seen to be
finite\342\200\224alongwith terms involving first through third moments of z, which must also be
finite.

Proof of (d). Notice that

The same argument leading to [7.2.14]can be used to establish that

A/\320\223)i 2,(i, /)-2, .,(/,m) \320\233
\302\243{\320\263,(/,0-2, ,(/. \321\210)}.

>
[10.\320\220.12]

To see that [10.A.12]implies ergodicity for the second moments of y, notice from

[10.A.5] that

A/\320\223)2 \320\243\320\234.,-,
= A/r) E I ft + E \320\263,(/,01L + 2 2,.,(/, m) 1

,.1 ,-i L '-i \342\226\240JL '\"-1 J
\"

\320\223
r 1 \"

\320\223
T 1

ft E (l/T) E 2,.,(/,m) + ft E A/\320\223)\320\2252,(\302\253,/)
\302\273,-iL '-1 J '-1 L '-i J

= ftft + ft

ftft + ft i \302\243l2,-,(/. \302\253I+ ft i \302\243[*,(/.01
! / 1

z,(f,

as claimed, \342\226\240
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\342\226\240Proof of Proposition 10.3. Writing out [10.2.11] explicitly,

H(L)V(L) =
(\342\200\242\342\200\242\342\200\242+H ,L ' + HltL\" + H,Z.' + \342\200\242\342\200\242

\342\200\242)

from which the coefficient on Lk is

Bk
=

\320\235\320\272\320\244\342\200\236+ Hk ,*, + Hk ,*, + \342\200\242\342\200\242\342\200\242.[10.A.13]

Let 6J*1 denote the row i, column ; element of Bk, and let \320\233}'1and \321\204)\320\272}denote the row /,
column j elements of Hk and 4?k, respectively. Then the row i, column ;' element of the

matrix equation [10.A. 13]states that

\321\214^
= 2 \"!*>:\"; + 2 *}\302\253VJ/1 + 2 h'i. 2>\321\204\\;1+ \342\226\240\342\226\240\342\226\240= 2

I I II

Thus,

But since

2 ICI= 2 2 2 \320\273;;,'>::,;

and

\320\272\342\226\240'.i-- \320\272\321\202i

= 2 2 W;'l 2 \320\232,,\"I.
Ill I I- II \320\272v.

, are absolutely summable,

\302\243|'<!\342\204\242''I <m,<*

\342\200\242>;;;.

[10.A.14]

Thus, [10.A. 14]becomes

\302\243|\320\271!,\320\2741M,M, < y..

\342\226\240Proof of Proposition 10.4. Let A be (m X \320\275),\320\222be (n x \320\273),and \320\241be (r x q). Let the
(\302\253x 1) vector b; denote the /th column of B, and let c,, denote the row /, column j element
of C. Then

ABC = A[b, b, \342\200\242\342\200\242\342\226\240
b,] c:' cr-

'''
c:\"

cv, c-,,
\342\200\242\342\200\242\342\226\240

c,.(,
= [{Ab,c,, + Ab,c,, + \342\200\242\342\200\242\342\200\242+ Ab,c,,}

{Ab,c,, + Ab,c,, + \342\200\242\342\226\240\342\200\242+ Abrcr,} \342\200\242\342\226\240\342\200\242

{Ab,c,,, + Ab2c.,, + \342\200\242\342\200\242\342\200\242+ Abrc,.,,}]

= [{c,,Ab, + c,,Ab, + \342\200\242\342\200\242\342\200\242+ cr,Ab,}

{c.^Ab, + c,,Ab, + \342\200\242\342\226\240\342\200\242+ c,:Abr} \342\226\240\342\200\242\342\200\242

{c,,,Ab, + c,,,Ab: + \342\200\242\342\200\242\342\200\242+ \321\201,.,,\320\220\320\254\320\233].

Applying the vec operator gives

\342\226\240c,,Ab,+ c,,Ab, + \342\200\242\342\200\242\342\200\242+ c,.,Ab

vec(ABC) = c,,Ab,

\321\201,\320\220

\342\226\240\342\226\240\342\226\240
c,,A

\342\226\240'\342\226\240
c,,A

\342\226\240\342\226\240\342\226\240c',A

\320\223\321\214/

.br.

=
(C\302\256 A)-vec(B). \342\226\240
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Chapter 10 Exercises

10.1.Consider a scalar AR(p) process (n
= 1). Deduce from equation [10.2.19] that the

(j)X I) vector consisting of the variance and first (p
\342\200\224

1) autocovariances.

7.
72

can be calculated from the first p elements in the first column of the (p2 X p-) matrix

cr;[I,,:
- (F \302\256F)]

' for F the (p X p) matrix defined in equation [1.2.3] in Chapter 1.

10.2. Let y,
=

(A1,, Y,)' be given by

X = \320\262,+ \320\262\320\265,,

Y, = h,X, , + it,,
where (e,, \302\273,)'is vector white noisewith contemporaneous variance-covariance matrix given

by

\302\243<\302\253?)

E(u

(a) Calculate the autocovariance matrices {\320\2234}^,_\342\200\236for this process.
(b) Use equation [10.4.3] to calculate the population spectrum. Find the cospectrum

between X and Y and the quadrature spectrum from X to Y.

(c) Verify that your answer to part (b) could equivalently be calculated from expres-
expression[10.4.45]. -

(d) Verify by integrating your answer to part (b) that [10.4.49] holds; that is, show
that

for \320\272= 1

(\302\253r)J Lo o-rj

f-
v ' J 0 for other integer k.
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11

Vector Autoregressions

The previous chapter introduced some basic tools tor describing vector time series
processes.This chapter looks in greater depth at vector autoregressions, which are

particularly convenient for estimation and forecasting. Their popularity for ana-
analyzing the dynamics of economic systems is due to Sims's A980) influential work.

The chapter begins with a discussion of maximum likelihood estimation and hy-

hypothesis testing. Section 11.2 examines a conceptof causation in bivariate systems
proposed by Granger A969). Section 11.3 generalizes the discussion of Granger
causality to multivariate systems and examinesestimation of restricted vector au-
autoregressions. Sections 11.4 and 11.5 introduce impulse-response functions and
variance decompositions, which are used to summarize the dynamic relations be-
between the variables in a vector autoregression. Section 11.6 reviews how such
summaries can be used to evaluate structural hypotheses. Section 11.7 develops
formulas needed to calculate standard errors for impulse-response functions.

11.1. Maximum Likelihood Estimation and Hypothesis
Testingfor an Unrestricted Vector Autoregression

The Conditional Likelihood Function

for a Vector Autoregression

Let y, denote an (\320\270x 1) vector containing the values that \320\270variables assume

at date t. The dynamics of y, are presumed to be governed by apth-order Gaussian
vector autoregression,

\321\203,
= \321\201+ \320\244,\321\203,_,+ \320\2442\321\203,_2+ \342\200\242\342\200\242\342\200\242+

\320\244\342\200\236\321\203,_\342\200\236
+ \320\265,, [11.1.1]

with e, ~ i.i.d. N@, fl).

Suppose we have observed eachof thesen variables for (\320\223+ p) time periods.
As in the scalar autoregression, the simplest approach is to condition on the first

p observations (denoted \321\203_p+ 1, \321\203_,,+2, . . . , \321\203\342\200\236)and to base estimation on the last

\320\223observations (denoted y,, y2, . . . , y7). Theobjective then is to form the con-
conditional likelihood

/vr.Yr-, y,|y\302\273.y-i Y-,,+,(yr, \320\243\320\263- \320\243||\320\243\320\276.\320\243- , y-v+T, \320\262)[11.1.2]

and maximize with respect to \320\262,where \320\262is a vector that contains the elements of

\321\201,\320\244\320\270\320\2442,. \342\200\242. , \320\244\321\200,and \320\236.Vector autoregressions are invariably estimated on

the basis of the conditional likelihood function [11.1.2] rather than the full-sample
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unconditional likelihood. For brevity, we will hereafter refer to [11.1.2] simply as

the \"likelihood function\" and the value of \320\262that maximizes [11.1.2] as the \"max-

\"maximumlikelihood estimate.\"

The likelihood function is calculated in the same way as for a scalar auto-
regression. Conditional on the values of \321\203observed through date t - 1, the value

of \321\203for date t is equal to a constant,

[\320\237.1.3]\320\241+ \320\244,\320\243,_,+ \320\2442\320\243,-2+ -

plus a N(Q, ft) variable. Thus,

\320\243;|\320\243/-|,\320\243/-2.\342\226\240\342\226\240\342\226\240, \320\243-p+ i

~/V((c + \320\244,\321\203,_,+ \320\2442\321\203,_2

+

\320\244\342\200\236\321\203,_,,),\320\250.
[11.1.4]

It will be convenient to use a more compact expression for the conditional

mean [11.1.3]. Let x, denote a vector containing a constant term and p lags of each
of the elements of y:

'
1

'

\320\243/-1

\320\243/-2 [11.1.5]

Thus, x, is an\\(np + 1) x I] vector. Let \320\223\320\223denote the following [\320\273x (np + 1)]
matrix:

\320\237'-
[\321\201\320\244,\320\2442

\342\200\242\342\200\242\342\226\240
\320\244\342\200\236]. [11.1.6]

Then the conditional mean [11.1.3]is equal to \320\237'\321\205,.The ;th row of \320\223\320\223contains

the parameters of the/th equation in the VAR. Using this notation, [11.1.4] can
be written more compactly as

\320\243/1\320\243/-1.\320\243,-2.\342\226\240\342\200\242\342\226\240. y-P + i
~ N(n\\, O). [11.1.7]

Thus, the conditional density of the tth observation is

/y,iy,-,.y,-3 \321\203.^,(\320\243'1\321\203/-|'\320\243/-2. \320\243-\342\200\236+<:\320\262)

=
B,\320\263)-\302\273'2|\320\237-'|'\320\264\320\265\321\205\321\200[(-1/2)(\321\203,

-
\320\237'\321\205,)'\320\237-'(\321\203,

-
\320\237'\321\205,)].

111\320\233-\320\247

The joint density of observations 1 through t conditioned on y0, y_,, . . . ,

y_,,+ 1 satisfies

/yi.Y,-i Yi|Yn.Y-i Y-,,+ l(yc \320\243'-l \320\243\320\274\320\243A-\320\243-1-\342\200\242\342\200\242\342\200\242J-ptli')

= ft,-, V.IV...V-, Y.,.,,(y-- \320\243||\320\243\320\276.\320\243-1 \320\243-\342\200\236+|;\320\262)

x/v,|v,-,.v,-3 \321\203-\342\200\236*,(\320\243/1\320\243/-1.\320\243/-2\320\243-,.+|;\320\262).

Applying this formula recursively, the likelihood for the full sample yr, yr_,,. . . ,
y, conditioned on y0, y_,, . . . , y_,,+ i is the product of the individual conditional

densities:

/yt.Y7--i Y,|Y,..Y-, Y-,,\302\273,(yr- \320\243\320\223-l \320\243||\320\243A.\320\243-1-\342\200\242\342\200\242\342\200\242\342\200\242\320\243-p+h \320\262)

The sample log likelihood is found by substituting [11.1.8] into [11.1.9] and taking
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logs:
\321\202

= 2 log/Y,|Y,_,.Y,_, \321\203.,.,(\320\243.|\320\243,-|.\320\243/-2 \320\243-,)+ >; \320\262)
1-1

=
-G\320\273/2) IogBir) + G/2) Iog|n-4 [11.1.10]

Maximum Likelihood Estimate of \320\237

Consider first the iWL\302\243of \320\237,which contains the constant term \321\201and auto-

regressive coefficients
\320\244;.

This turns out to be given by

\320\237' =
\320\223\302\243y,x;l| 2x,x;l , [li.i.ii]

which can be viewed as the sample analog of the population linear projection of

y, on a constant and x, (equation [4.1.23]). The/th row of \320\223\320\223is

which is just the estimated coefficient vector from an OLS regression of yt, on x,.
Thus, maximum likelihood estimates of the coefficients for the yth equation of a

VAR are found by an OLS regression of yt,
on a constant term and p lags of all

of the variables in the system.
To verify [11.1.11], write the sum appearing in the last term in [11.1.10] as

13]

7 \320\223 -1

= 2 (\320\243,
-

\320\237'\321\205,+ \320\237'\321\205,
-

\320\237'\321\205,)'\320\237-'(\321\203,
-

\320\237'\321\205,+ \320\237'\321\205,
-

\320\237'\321\205,) [11.1.
/=i L J

= 2
[[*\302\273

+ (\320\237
-

\320\237)'\321\205,]'\320\237-'[\321\221,+ (\320\237
-

\320\237)'\321\205,]],

where theyth element of the (\320\270\321\2051) vector \320\263,is the sample residual for observation

t from an OLS regression of
yjt

on x,:

\321\221,-\321\203,-\320\237'\321\205,. [11.1.14]

Expression [11.1.13] can be expandedas

2 \320\223(\321\203,-\320\237'\321\205,)'\320\237-'(\321\203,
-

\320\237'\321\205,)]

= 2 *;\302\253-'*, + 22 *;n-'(n -
\321\211\321\207 [n.i.is]

+ 2 \302\253/'(\320\230
-

\320\237)\320\237\"'(\320\237
-

\320\237)'\321\205;.

Consider the middle term in [11.1.15]. Since this is a scalar, it is unchanged
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by applying the \"trace\" operator:

\321\202 \320\223\320\263

S \302\253;\320\237-'(\320\237
-

\320\237)'\321\205,
= trace \302\243\321\221',\320\2371(\320\237

-
\320\237)'\321\205,

f-i L'=' J

\320\223
T 1

= trace 2 \320\237\"'(\320\237
-

\320\237)'\321\205,\321\221;[11.1.16]
L'-> J

= trace[n-'(ft -
\320\237)'2 \321\205,\321\221;1.

But the sample residuals from an OLS regression are by construction orthogo-
orthogonalto the explanatory variables, meaning that 2,1, x,e,, = 0 for all / and so
2,\320\263=1\321\205,\321\221;

= \320\236.Hence, [11.1.16] is identically zero, and [11.1.15] simplifies to

T T
l '

= 2 \321\221;\320\277-'\321\221,+ \302\243\321\205,'(\320\271
-

\320\277)\320\277-'(\320\271
-

\320\277)'\321\205,.

Since \320\236is a positive definite matrix. \320\236\021is as well.1 Thus, defining the

(n x 1) vector x,* as

x,* -
(\320\237

-
\320\237)'\321\205,.

the last term in [11.1.17] takes the form

\302\243\321\205,'(\320\237
-

\320\237)\320\237-'(\320\237
-

\320\237)'\321\205,
= S [x,*]'n-'x,*.

This is positive for any sequence {x,*},7\"., other than x* = 0 for all t. Thus, the
smallest value that [11.1.17] can take on is achieved when x,* = 0, or when \320\237=

\320\237.Since [11.1.17] is minimized by setting \320\237= \320\237,it follows that [11.1.10] is
maximized by setting \320\237=

\320\237,establishing the claim that OLS regressions provide
the maximum likelihood estimates of the coefficients of a vector autoregression.

Some Useful Results on Matrix Derivatives

The next task is to calculate the maximum likelihood estimate of ft. Here
two results from matrix calculus will prove helpful. The first result concerns the

derivative of a quadratic form in a matrix. Let
arj

denote the row i, column; element

of an (\320\270x n) matrix A. Supposethat the matrix A is nonsymmetric and unrestricted

(that is, the value of
a,y

is unrelated to the value of akl when either i \320\244\320\272or j \320\244I).
Consider a quadratic form x'Ax for x an (\320\270\321\2051) vector. The quadratic form can

be written out explicitly as

It \320\237

x'Ax = X S x,a,,x,, [11.1.18]
/-> /-i

from which

\320\255\321\205'\320\220\321\205

da;i
x,x,. [11.1.19]

'Thisfollows immediately from the fact that Cl ' can be written as L'L for L a nonsingular matrix

as in [8.3.1].
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Collecting these \320\2702different derivatives into an (\320\270x n) matrix, equation [11.1.19]
can conveniently be expressed in matrix form as

\342\200\224\342\200\224= xx'. [11.1.20]

The secondresult concerns the derivative of the determinant of a matrix. Let
A be a nonsymmetric unrestricted (\320\270\321\205\320\270)matrix with positive determinant. Then

\302\253\302\253, [11.1.21]
\320\264\320\260\320\223/

where a1' denotes the row/, column \302\273element of A\021. In matrix form,

^ =
(\320\220')-- [\320\237.1.22]

To derive [11.1.22], recall the formula for the determinant of A (equation

[A.4.10] in the Mathematical Review, Appendix A, at the end of the book):

|A| =
\302\243(Tl)'+'fl//|A//|, [11.1.23]

where Ai7 denotes the (\320\270
- 1) x (\320\270

-
1) matrix formed by deleting row i and

column / from A. The derivative of [11.1.23]with respect to a;/ is

^ (-l)'+'|A;,|, [1\320\253.24]

since the parameter e,y
does not appear in the matrix

\320\272\321\206.
It follows that

which will be recognized from equation [A.4.12] as the row/, column i element

of A\021, as claimed in equation [11.1.22].

The Maximum Likelihood Estimate of fl

We now apply these results to find the MLE of \320\237.When evaluated at the
MLETV, the log likelihood [11.1.10] is

, \320\237)
=

-(\320\223\321\217/2)IogBir) + (\320\223/2)Iog|n-'|
\321\202

[11.1.25]
e;n'

Our objective is to find a symmetric positive definite matrix \320\237for which this is as

large as possible. It is instructive to consider first maximizing [11.1.25] by choosing
ft to be any unrestricted (\320\270\321\205n) matrix. For that purpose we can just differentiate

[11.1.25]with respect to the elements ofn-'usingformulas[ll.l.20] and[ll.1.22]:

az(q \320\277)_ (\321\202\321\202
\320\267iog|n-'| _ $ \320\274;\320\260-%

\320\224\320\236-1
~ \\lu) \320\264\320\276-1 *\342\200\242> \342\226\240\"\320\224\320\236-1an an

^
,., an

[\320\277\320\273\321\211

=
G72)\320\237'

-
A/2) t \302\253,\302\253;.

The likelihood is maximized when this derivative is set to zero, or when

\320\237'=
A/\320\223)2 */*/'\342\200\242 [11.1.27]

11.1. Estimation and Hypothesis Testing for an Unrestricted VAR 295



The matrix \320\236that satisfies [11.1.27] maximizes the likelihood among the class
of all unrestricted (\320\270\321\205\320\270)matrices. Note, however, that the optimal unrestricted
value for \320\236that is specified by [11.1.27] turns out to be symmetric and positive

definite. The MLE, or the value of \320\236that maximizes the likelihood among the

class of all symmetric positive definite matrices, is thus also given by [11.1.27]:

\320\237=
A/\320\223)2 \320\234\320\233 [11.1.28]

The row i, column i element of \320\236is given by

&} =
(i/\320\263)2 el, [n.1.29]r- 1

which is just the average squared residual from a regression of the ith variable in
the VAR ona constant term and p lags of all the variables. The row i, column j
element of \320\236is

dv
=

(i/\320\263)2 \320\274,. [\320\247.1.30]

which is the average product of the OLS residual for variable i and the OLS residual

for variable j.

Likelihood Ratio Tests

To perform a likelihood ratio test, we need to calculate the maximum value
achieved for [11.1.25]. Thus, consider

, \320\237)
=

-(\320\223\320\270/2)logBir) + (\320\223/2)log|fi-'|
r . [11.1.31]

for \320\237given by [11.1.28]. The last term in [11.1.31] is

. A/2) 2 f,a-% =
A/2) trace 2 \321\221,'\320\237-'\321\221,

/-i L'-i J

= A/2) trace 2 \302\253\"'M,'

= A/2) trace[n-'(Tn)]
= A/2) trace(T-In)
= \320\223\320\270/2.

Substituting this into [11.1.31] produces

<\302\243(\320\237,\320\237)
=

-(\320\223\320\270/2)IogBir) + (\320\223/2)Iog|n-'|
-

(\320\223\320\270/2).[11.1.32]

This makes likelihood ratio tests particularly simple to perform. Supposewe
want to test the null hypothesis that a set of variables was generated from a Gaussian
VAR with pn lags against the alternative specification of p, > \321\200\342\200\236lags. To estimate
the system under the null hypothesis, we perform a set of \320\270OLS regressions of

each variable in the system on a constant term and on pu lags of all the variables

in the system. LetO0= (l/r)S/L,\320\263,{\321\200\320\270)[\320\263,{\321\2000)]'be the variance-covariance matrix
of the residuals from these regressions. The maximum value for the log likelihood
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under Ho is then

\320\251
= -Gn/2)IogBir) + (r/2)Iog|n,r'l -

(Tnll).

Similarly, the system is estimated under the alternative hypothesis by OLS regres-
regressionsthat include p, lags of all the variables. The maximized log likelihood under
the alternative is

\302\243?
= -Gn/2)IogB7r) + {Til) login,\"'| - Gn/2),

ariance-covariance matrix of the residuals from t

ice the log likelihood ratio is then

? -
\320\251)

= 2{G72) Iog|nr'l - G72) Iog|fV|}

where \320\237,is the variance-covariance matrix of the residuals from this second set
of regressions. Twice the log likelihood ratio is then

= -riog|n,| + \320\2231\320\276\321\221|\320\2370|

[\320\237.1.33]

=
\320\223{1\320\276\321\221|\320\2370|

-
1\320\276\321\221|\320\237,|}.

Under the null hypothesis, this asymptotically has a \\2 distribution with degrees

of freedom equal to the number of restrictions imposed under Ha. Each equation
in the specification restricted by //\342\200\236has (pi

- p0) fewer lags on each of \320\270variables

compared with //,; thus, //,, imposes \320\270(\321\200,
-

\321\200\342\200\236)restrictions on each equation.
Since there are \320\270such equations, Ho imposes \320\2702(\321\200,

-
p0) restrictions. Thus, the

magnitude calculated in [11.1.33] is asymptotically x2 with \320\2702(\321\200,
-

p0) degrees of
freedom.

For example, suppose a bivariate VAR is estimated with three and four

lags (n = 2, p0 = 3, p, = 4). Say that the original sample contains 50 obser-

observations on each variable (denoted \321\203_\320\264,y_2, . . . , \320\24346)and that observations 1

through 46 were used to estimate both the three- and four-lag specifications so
that T = 46. Let \321\221\342\200\236(\321\200\342\200\236)be the sample residual for observation t from an OLS
regression of yu on a constant, three lags of yu, and three lags of y2l.

Suppose that A/\320\223)2/1, [\321\221\342\200\236(\321\200\342\200\236)]2
= 2.0, A/\320\223)2,\320\263_,[<\320\2632,(\321\200\342\200\236)]2

= 2.5, and
= 1.0.Then

and log|n,,| = log 4 = 1.386.Suppose that when a fourth lag is added to each

regression, the residual covariance matrix is reduced to

n, = \320\22318 \302\2604

L0.9 2.2J

for which log|n,| = 1.147.Then

1{\320\251
- 25) = 46A.386 - 1.147)= 10.99.

The degrees of freedom for this test are 22D - 3) = 4. Since 10.99 > 9.49 (the
5% critical value for a *2D) variable), the null hypothesis is rejected. The dynamics

are not completely captured by a three-lag VAR, and a four-lag specification seems

preferable.
Sims A980, p. 17)suggested a modification to the likelihood ratio test to take

into account small-sample bias. He recommendedreplacing [11.1.33] by

(\320\223
-

fc){log|no| - log|n,|}, [11.1.34]
where \320\272= 1 + \321\217\321\200,is the number of parameters estimated per equation. The
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adjusted test has the same asymptotic distribution as [11.1.33] but is less likely to

reject the null hypothesis in small samples. For the present example, this test
statistic would be

D6
- 9)A.386- 1.147)= 8.84,

and the earlier conclusion would be reversed (//<, would be accepted).

Asymptotic Distribution of \320\237

The maximum likelihood estimates \320\237and \320\236will give consistent estimates of
the population parameters even if the true innovations are non-Gaussian. Standard

errors for \320\237can be based on the usual OLS formulas, as the following proposition
demonstrates.

Proposition 11.1: Let

\321\203,
= \320\241+ \320\244,\321\203,_,+ \320\2442\321\203,_,+ \342\226\240\342\226\240\342\226\240+

\320\244;,\321\203,_\342\200\236+ \320\225\342\200\236

where e, is independent and identically distributed with mean 0, variance ft, and

E{ei,ejteltellll) < \302\260\302\260for all i, j, I, and m and where roots of

|I,, -
\320\244,2

-
\320\244222 \320\244\342\200\2362\"|

= 0 [11.1.35]

lie outside the unit circle. Let \320\272= np + 1, and letxj be the A x k) vector

*; = [i y,'-i y!-2 \342\226\240\342\226\240\342\200\242
\321\203,'-\342\200\236].

Let \321\202\320\263\320\263
= vec(nr) denote the {nk x 1) vector of coefficients resulting from OLS

regressions of each of the elements of y, on x, for a sample of sizeT:

where

*i.r = S x,x,' S \320\245/\320\243\320\273;

and let it denote the {nk x 1) vector of corresponding population coefficients.

Finally, let

\320\2377.
=

A/\320\223)2 \321\221,\321\221;,

where

\321\221/,
=

\320\243\320\270
\342\200\224

\321\205,'\321\202\320\263,-,7-.

Then

\320\263

(\320\276)A/\320\223)2 \321\205,\321\205,'\320\233Q where Q =
\302\243(\321\205,\321\205,');
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(c) \320\237\320\223\320\233\320\237;

(d) VT(trr
-

\321\202\321\202)-\302\273/V@, (fl (x) Q-1)), w/iere \302\256rfenoto f/ie Kronecker

product.

A proof of this proposition is provided in Appendix 11.A to this chapter.
If we are interested only in \321\202\320\263,r, the coefficients of the tth regression in the

VAR, result (d) implies that

\320\243\320\242(\321\202\320\263,,\320\263
-

\321\202\320\263,)
\320\233/V@, ofQ-1), [11.1.36]

where of =
\320\257(\320\265?)is the variance of the innovation of the ith equation in the VAR.

But 07 is estimated consistently by of
=

A/\320\223J/=, ej, the average squared residual

from OLS estimation of this equation. Similarly, Q~
' is estimated consistently by

[A/\320\223J,\320\263.,\321\205,\321\205,']\"'-Hence, [11.1.36] invites us to treat it, approximately as

/ \320\223\320\263
-|-'\\

\321\202\320\263,
-

/VI\321\202\320\263,,&2 \302\243x,x,' . [11.1.37]
\\ L'-' J /

But this is the standard OLS formula for coefficient variances with s2 =

[1/(\320\223
- fc)]27L, e?, in the standard formula replaced by the maximum likelihood

estimate of in [11.1.37]. Clearly, sj and of are asymptotically equivalent, though

following Sims's argument in [11.1.34], the larger (and thus more conservative)
standard errors resulting from the OLS formulas might be preferred. Hence, Prop-
Proposition 11.1 establishes that the standard OLS t and F statistics applied to the

coefficients of any single equation in the VAR are asymptotically valid and can be
evaluated in the usual way.

A more general hypothesis of the form Rtt = \320\263involving coefficients across
different equations of the VAR can be tested using a generalization of the Wald

form of the OLS x2 test (expression[8.2.23]).Result (d) of Proposition 11.1
establishes that

VT(RTrr
- r) -^ nU, \320\251\320\237\302\256Q-')R'Y

In the light of results (a) and (c), the asymptotic distribution could equivalently
be described as

V7(RTrr -
\320\263)

\320\224
N\\0, R(nr \302\256Q,; ')

where \320\237\320\263
=

A/\320\223)2,1, &,&', and Qr =
A/\320\223)2JL , x,x/. Hence, the following statistic

has an asymptotic x2 distribution:

X\\m)
= r(R*r -

\320\263)'(\320\230(\320\237\320\263\302\256Qf')*')\"'(**r
- r)

=
(RTrr

-
r)'(R[ftr\302\256 (I4r)-']R')\"'(\302\253*r

-
\320\263)

[\320\246.1.38]

= (RTrr
- r)' |r| \320\237\320\263\302\256

^2 x,x;J Ir'J
(Rtt,-

- r).

The degreesof freedom for this statistic are given by the number of rows of R, or
the number of restrictions tested.

For example, suppose we wanted to test the hypothesis that the constant term
in the first equation in the VAR (c,) is equal to the constant term in the second

equation (c2). Then R is a A x nk) vector with unity in the first position, \342\200\2241 in
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the (it + l)th position, and zeros elsewhere:

R = [1 0 0 \342\200\242\342\200\242\342\226\2400-100 0].

To apply result [11.1.38], it is convenient to write R in Kronecker product form
as

R = R,, \302\256R*, [11.1.39]

where R,, selectsthe equations that are involved and Rk selects the coefficients.

For this example,

R,,
= [1 -1 0 0 \342\226\240\342\226\240\342\226\240

0]
(I x,i)

R* = [1 0 0 0 \342\200\242\342\200\242\342\200\242
0].

We then calculate

r[\302\253
\302\256(i

x,x,'J Jr1
=

(R,, \302\256R*)l n \302\256
^2 x,x;J |(r;,

=
(R,,flR;,) \302\256I R*

(S x,x;J
Ril

=
(d\"f

\342\200\224
2&[2 + \320\276\"\320\263)\302\256f \">

where &l2 is the covariance between \321\221\342\200\236and \321\2212,and f\" is the A, 1) element of

B/=1 x,x,')~'. Since f\" is a scalar, the foregoing Kronecker product is a simple
multiplication. The test statistic [11.1.38] is then

(\320\263,
-

\320\2362

Asymptotic Distribution of \320\237

In considering the asymptotic distribution of the estimates of variances and

covariances, notice that since \320\236is symmetric, some of its elements are redundant.
Recall that the \"vec\" operator transforms an (\320\270\321\205n) matrix into an (/\320\2632\321\2051)

vector by stacking the columns. For example.

vec
\302\253\"\320\270

O\022I

CT12

\302\26022

\320\236-32

o-,3\"

^23 =

O-2I

\320\241\320\22312

\0222

z

[11.1.40]

An analogous \"vech\" operator transforms an (\320\270\321\205\320\270)matrix into an ([\321\217(\320\270+ 1)/2]
x 1) vector by vertically stacking those elements on or below the principal
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diagonal. For example,

vech <T2l \302\26023
=

\302\26022
[11.1.41]

Proposition 11.2: Let

\321\203,
= \321\201+ \320\244,\321\203,_,+ \320\2442\321\203,_,+

where \320\263,
~ i.i.d. /V@, \320\236)and where roots of

\320\244;,\321\203,_\342\200\236
+ \320\265\342\200\236

= \320\236

lie outside the unit circle. Let trr, flr, and Q be as defined in Proposition 11.1.

Then

LvT[vech(nr) -
vech(fl)]

Let
(\320\223\321\206

denote the row i, column j element of ft; for example, cr{, is the variance of
eu. Then the element ofX22 corresponding to the covariance between

&^
and &,,\342\200\236is

given by (\320\276\"\320\275<7)\342\200\236,+
\321\201\320\263\342\200\236\342\200\236\321\201\320\263/;)/\320\276\320\263

all i,j,l,m= 1,2 \320\270,including i = j = I =

m.

For example, for \320\270= 2, Proposition 11.2 implies that

2o\"?i 2o-,,cr12 2cr22\302\260\"n.r
-

o-\321\206\"

\320\236-.2.\320\223
-

O-I2

<^22.\320\223
~

\302\26022.

/

\\

0'

0

0 12 2\321\201\320\26312\321\201\320\263,22\321\201\321\202\\

[11.1.42]

Thus, a Wald test of the null hypothesis that there is no covariance between e,,
and e2, is given by

^<5-,2

A Wald test of the null hypothesis that \320\265\342\200\236and e2/ have the samevariance is given

by

2<7-2,
-

4<t-?2 + 2<5i2
\320\273v \"

where cr2, denotes the square of the estimated variance of the innovation for the

first equation.
The matrix 222 in Proposition 11.2 can be expressedmore compactly using

the duplication matrix. Notice that since \320\236is symmetric, the \320\2702elements of vec(fl)
in [11.1.40] are simple duplications of the \320\270(\320\270+ 1)/2 elements of vech(fl) in

[U.1.41].Thereexistsaunique[n2 x \320\270(\320\270+ l)/2] matrix Dn that transforms vech(fl)
into vec(fl), that is, a unique matrix satisfying

D,, vech(n) = vec(fl). [11.1.43]
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For example,for \320\270= 2, equation [11.1.43] is

\021

0

0

0

0

1

1

0

o-

0

0

1.

^11
\302\2602I

|_?M_
\302\260\"|2

\302\26022_

[11.1.44]

Further, define D,f to be the following [n(n + l)/2 x \320\2702]matrix:2

d + = (d;,d,,)
-

'd;,. [11,1.45]
Notice that D+D,, = 1,,,,,+ ,,/\320\263.Thus, premultiplying both sides of [11.1.43]by D+

reveals D+ to be a matrix that transforms vec(ft) into vech(ft) for symmetric ft:

vech(ft) = D+ vec(ft).

For example,for \320\270= 2, equation [11.1.46] is

[11.1.46]

[11.1.47]

It turns out that the matrix 22, described in Proposition 11.2 can be written

1

0

0

0

0

0

6

\320\276'

0

1

\302\260\"ll

<T2\\

O-I2

(T22_

as->

222
=

2D,r(ft\302\256ft)(D,r)'.

For example, for \320\270= 2, expression [11.1.48] becomes

[11.1.48]

2D2+(ft\302\256ft)(D2+)'
= 2

1 0 0

0 i i
0 0 0 3

\320\241\320\223\320\230\320\241\320\223,2\320\241\320\22312\320\241\320\22312

\321\201\320\263,,\321\201\320\26321\320\276-,,\321\201\320\26322\321\201\320\26312\321\201\320\26321\321\201\320\26312\321\201\320\26322

\320\241\320\2232,\320\241\320\22321\320\241\320\22321\320\241\320\22322

2cr2, 2cr,,cr12 2cr,22

2\321\201\320\263\320\270\321\201\320\26312\321\201\320\263\321\206\321\201\320\263^+ cf2 2\321\201\320\26312\321\201\320\26322

2\321\201\320\263222\321\201\320\26312\321\201\320\263222\321\201\320\263222

1

0

0

_0

0

1

i

0

0

0

0

1_

which reproduces [11.1.42].

11.2. Bivariate Granger Causality Tests
One of the key questions that can be addressed with vector autoregressions is how
useful some variables are for forecasting others. This section discusses a particular

summary of the forecasting relation between two variables proposed by Granger

A969) and popularized by Sims A972). A more general discussion of a related

question in larger vector systems is provided in the following section.

-[t can be shown that (D,'D,,) is nonsingular. For more details, see Magnus and Neudecker A988.

pp. 48-49).

'Magnus and Neudecker A988, p. 318) derived this expression directly from the information matrix.
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Definition of Bivariate Granger Causality

The question investigated in this section is whether a scalar \321\203can help forecast
another scalar x. If it cannot, then we say that \321\203does not Granger-cause x. More
formally, \321\203fails to Granger-cause x if for all 5 > 0 the mean squared error of a
forecast of x,+, based on (x,, \320\264\321\201,_,,...)is the same as the MSE of a forecast of
x,+x that uses both (*,, jc,_|, . . .) and (y,, y,_ ). If we restrict ourselves to
linear functions, \321\203fails to Granger-cause x if

MSE[E(x,+,\\x,,x,- )]

= MSE [E(x,+i|*\342\200\236*,_ y,,y,_ )].

Equivalently, we say that x is exogenous in the time series sensewith respect to \321\203if

[11.2.1] holds. Yet a third expression meaning the same thing is that \321\203is not linearly
informative about future x.

Granger's reason for proposing this definition was that if an event \320\243is the
cause of another event X, then the event \320\243should precede the event X. Although

one might agree with this position philosophically, there can be serious obstacles
to practical implementation of this idea using aggregate time series data, as will

be seen in the examplesconsideredlater in this section. First, however, we explore
the mechanical implications of Granger causality for the time series representation

of a bivariate system.

Alternative Implications of GrangerCausality

In a bivariate VAR describing x and \321\203,\321\203does not Granger-cause x if the

coefficient matrices \320\244;are lower triangular for all /:

\320\250 l_c2J Ltf-21,' \320\244\320\263\320\237L>,-iJ L*iV \320\24422]L-J

\"

,,,,,,
T [ll.Z.ZJ

+ 1 '.;\342\226\240.,..,11
'

\"i + i\302\243\"

From the first row of this system, the optimal one-period-ahead forecast of x
depends only on its own lagged values and not on lagged y.

\320\201(\321\205,+1\\\321\205\342\200\236\321\205,-\320\243\342\200\236\320\243,-1,\342\226\240\342\200\242\342\200\242) [11.2.3]
=

\321\201,+ \321\204\\\\\\+ \321\204\\\320\243\321\205,_,+ \342\226\240\342\226\240\342\226\240+ <tf',V,, + 1.

Furthermore, the value of x,+2 from [11.2.2] is given by

x,+2
= c, + ifrWh.+ i + \321\204$\321\205,+ \342\226\240\342\226\240\342\226\240+

<\302\243(i'i'V,,+2
+ eu+2.

Recalling [11.2.3] and the law of iterated projections, it is clear that the date t

forecast of this magnitude on the basis of (x,, -t,_ i, . . . , \321\203\342\200\236y,-\\,. . .) also depends
only on (x,, jc,_ |,. . . , jc,_p+ ,). By induction, the sameis true of an 5-period-ahead
forecast. Thus, for the bivariate VAR, \321\203does not Granger-cause x if

\320\244/
is lower

triangular for all /', as claimed.
Recall from equation [10.1.19] that

Vs =
\320\244,\320\244,_,+ \320\2442\320\244,_2+ \342\226\240\342\200\242\342\200\242+

\320\244\342\200\236\320\244.,_\321\200for 5 = 1,2

with \320\244\321\206the identity matrix and \320\244,
= 0 for 5 < 0. This expression implies that if

11.2. Bivariate Granger Causality Tests 303



\320\244\321\203
is lower triangular for all /, then the moving average matrices \320\244,for the fun-

fundamental representation will be lower triangular for all 5. Thus, if \321\203fails to Granger-
cause x, then the MA{x) representation can be written

U
=

U
+

Lad fe(L)J UJ-
[1L24]

where

with \302\253/,!',\"
=

\302\253/$>
= 1 and !/,<\302\273>

= 0.

Another implication of Granger causality was stressed by Sims A972).

Proposition 11.3: Consider a linear projection of y, on past, present, and future

x's,

\320\243,
= \321\201+ \302\243*>,*,_, + \302\243d,xl+l + \320\263,,, [11.2.5]

;=<i /-I

\302\273v/ie/-e6,- and dt are defined as population projection coefficients, that is, the values

for which

E{ti,xt) = 0 for all t and \321\202.

Then \321\203fails to Granger-cause x if and only if df
= 0 for j = 1,2

EconometricTests for Granger Causality

Econometric tests of whether a particular observed series \321\203Granger-causes

x can be based on any of the three implications [11.2.2], [11.2.4], or [11.2.5]. The
simplest and probably best approach uses the autoregressive specification [11.2.2].
To implement this test, we assume a particular autoregressive lag length p and

estimate

x, = c, + a,jc,_i + a2x,_2 + \342\200\242\342\200\242\342\200\242+ apx,_p + /\320\227,^,

\342\226\240
+ fty,-2 + \342\200\242\342\226\240\342\200\242+ A,yf_, + u,

t11-2-6!

by OLS. We then conduct an F test of the null hypothesis

\320\224.:/8,
= 02 = \342\226\240\342\226\240\342\226\240=

/\320\222,
= 0. [11.2.7]

Recalling Proposition 8.2, oneway to implement this test is to calculate the sum
of squared residuals from [11.2.6],4

RSSt = 2 \320\271,2,

and compare this with the sum of squared residuals of a univariate autoregression

for x,,

RSSn = t if.

\342\226\240\342\200\242Notethat in order for / to run from 1 to 7\" as indicated, we actually need T + p observations on

\342\200\242randy,namely, \320\264\320\263.\321\200\321\207.,,\320\264:.,+2*,. and >>_,,+,. >>_,,+,.. . . ,yT.
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where

x, =
\321\201\342\200\236+ y,x,.t + y2*,_2 + \342\226\240\342\226\240\342\200\242+

\321\203\342\200\236\321\205,_\321\200
+ \320\265, [11.2.8]

is also estimated by OLS. If

_ (RSS0 - RSS,)lp
6l~RSS,l(T- 2p

-
1)

lU'Z-9J

is greater than the 5% critical value for an F(p, T -
2p

\342\200\224
1) distribution, then

we reject the null hypothesis that \321\203does not Granger-cause x\\ that is, if St is

sufficiently large, we conclude that \321\203does Granger-cause x.
The test statistic [11.2.9] would have an exact F distribution for a regression

with fixed regressors and Gaussian disturbances. With lagged dependent variables
as in the Granger-causality regressions, however, the test is valid only asymptot-

asymptotically.An asymptotically equivalent test is given by

[\320\237.2.10]

We would reject the null hypothesis that \321\203does not Granger-cause x if S2 is greater
than the 5% critical values for a x2(p) variable.

An alternative approach is to base the test on the Sims form [11.2.5] instead
of the Granger form [11.2,2]. A problem with the Sims form is that the error term

\321\202),is in general autocorrelated. Thus, a standard F test of the hypothesis that d,
= 0

for ally in [11.2.5] will not give the correct answer. One option is to use autocor-
autocorrelation-consistent standard errors for the OLS estimatesas describedin Section

10.5. A second option is to use a generalized least squares transformation. A third

option, suggested by Geweke, Meese, and Dent A983), is as follows. Suppose the

error term -q, in [11.2.5] has Wold representation -q,
= feC^-)^- Multiplying both

sides of [11.2.5] by h(L) ~ [fe(L)]-' produces

\320\243,
= C2

~ 2 Ayy,-y
+ S *>/*,-, + S d*xl+j

+ v2r [11.2.11]
y=i ;-<> /-i

The error term in [11.2.11] is white noise and uncorrelated with any of the ex-
explanatory variables. Moreover, d* = 0 for all; if and only if dj

= 0 for all;. Thus,
by truncating the infinite sums in [11.2.11] at some finite value, we can test the

null hypothesis that \321\203does not Granger-cause x with an F test of d* = d* =
\342\226\240\342\226\240\342\226\240=

d;
= o.

A variety of other Granger-causality tests have been proposed; see Pierce
and Haugh A977) and Geweke, Meese, and Dent A983) for selective surveys.
Bouissou, Laffont, and Vuong A986) discussed tests using discrete-valued panel
data. The Monte Carlo simulations of Geweke, Meese, and Dent suggest that the
simplest and most straightforward test\342\200\224namely, that based on [11.2.10]\342\200\224may

well be the best.
The results of any empirical test for Granger causality can be surprisingly

sensitive to the choice of lag length (p) or the methods used to deal with potential
nonstationarity of the series. For demonstrations of the practical relevance of such

issues, see Feige and Pearce A979),Christiano and Ljungqvist A988), and Stock
and Watson A989).

Interpreting Granger-Causality Tests

How is \"Granger causality\" related to the standard meaning of \"causality\"?

We explore this question with several examples.

11.2. Bivariate Granger Causality Tests 305



Example 11.1\342\200\224Granger-Causality Tests

and Forward-Looking Behavior
The first example uses a modification of the model of stock prices described
in Chapter 2. If an investor buys one share of a stock for the price P, at date
t, then at t + 1 the investor will receive D,+ l in dividends and be able to sell

the stock for P,+,. The ex post rate of return from the stock (denoted r,+,) is
defined by

A +\320\263,+|)\320\233\302\273/\302\273,+, + Dl+l. [11.2.12]

A simple model of stock prices holds that the expected rate of return for the

stock is a constant r at all dates:s

A + r)P,= E,IP,+ I + \320\224+1]. [11.2.13]

\320\235\320\265\320\263\320\265\320\225,denotes an expectation conditional on all information available to
stock market participants at time t. The logic behind [11.2.13] is that if investors

had information at time t leading them to anticipate a higher-than-normal return
to stocks, they would want to buy more stocks at date t. Such purchases would

drive P, up until [11.2.13] was satisfied. This view is sometimescalled the

efficient markets hypothesis.
As noted in the discussion of equation [2.5.15] in Chapter 2, equation

[11.2.13] along with a boundedness condition implies

Thus, according to the theory, the stock price incorporates the market's best
forecast of the present value of future dividends. If this forecast is based on

more information than past dividends alone, then stock prices will Granger-

cause dividends as investors try to anticipate movements in dividends.

For a simple illustration of this point, suppose that

D, = d + u, + Sm,_, + v,, [11.2.15]

where u, and v, are independent Gaussian white noise series and d is the mean

dividend.. Suppose that investors at time t know the values of {\320\270,,\320\270,_|,. . .}

and {v,, v,_,, . . .}. The forecastof D,+/based on this information is given by

Substituting [11.2.16] into [11.2.14],the stock price would be given by

P, = dlr + Sm,/A + r). [11.2.17]

5A related model was proposed by Lucas A978):

U\\C,)P, = \302\243,{|3t/'(C,+,)(/\",+1 + O,*,)},

with U'(C) the marginal utility of consumption at date I. If we define P, to be the marginal-utility-
weighted stock price P, \342\226\240U'(C,)P, and 6, the marginal-utility-weighted dividend, then this becomes

which is the same basic form as [11.2.13]. With risk-neutral investors, U'(C,) is a constant and the two
formulations are identical. The risk-neutral version gained early support from the empirical evidence

in Fama A965).
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Thus, for this example, the stock price is white noise and could not be forecast
on the basis of lagged stock pricesor dividends.ft No series should Granger-
cause stock prices.

On the other hand, notice from [11.2.17]that the value of \320\274,_,can be

uncovered from the lagged stock price:

\320\262\320\270,_,
= A + \320\263)\320\233-,

- A + r)dlr.

Recall from Section 4.7 that \302\253,_,contains additional information about D,
beyond that contained in {D,_,, D,_2,. . .}.Thus, stock prices Granger-cause
dividends, though dividends fail to Granger-cause stock prices.Thebivariate

VAR takes the form

\320\257,]
\320\223dlr 1 \320\2230

0] (\"/>,_,] \320\223\320\262\320\275,/A+
\320\263\320\246

D,\\ l-dlr] [l + r oJLA-.J L u,+ v, X

Hence, in this model, Granger causation runs in the opposite direction
from the true causation. Dividends fail to \"Granger-cause\" prices, even though

investors' perceptions of dividends are the sole determinant of stock prices.
On the other hand, prices do \"Granger-cause\" dividends, even though the
market's evaluation of the stock in reality has no effect on the dividend process.

In general, time series that reflect forward-looking behavior, such as stock

prices and interest rates, are often found to be excellent predictors of many key

economic time series. This clearly does not mean that these series cause GNP or
inflation to move up or down. Instead, the values of these series reflect the market's

best information as to where GNP or inflation might be headed. Granger-causality
tests for such series may be useful for assessing the efficient markets view or

investigating whether markets are concerned with or are able to forecastGNP or
inflation, but should not be used to infer a direction of causation.

There nevertheless are circumstances in which Granger causality may offer

useful evidence about the direction of true causation. As an illustration of this

theme, consider trying to measure the effects of oil price increaseson the economy.

Example 11.2\342\200\224Testing for Strict Econometric Exogeneity7
All but one of the economic recessionsin the United States since World War

II have been preceded by a sharp increase in the price of crude petroleum.
Does this mean that oil shocks are a causeof recessions?

One possibility is that the correlation is a fluke\342\200\224ithappened just by
chance that oil shocks and recessions appeared at similar times, even though
the actual processes that generated the two series are unrelated. We can in-

investigate this possibility by testing the null hypothesis that oil prices do not
Granger-cause GNP. This hypothesis is rejected by the data\342\200\224oilprices help

predict the value of GNP, and their contribution to prediction is statistically
significant. This argues against viewing the correlation as simply a coincidence.

To placea causal interpretation on this correlation, one must establish

that oil price increaseswerenot reflecting some other macroeconomic influence

that was the true causeof the recessions. The major oil price increaseshave

'This result is due to the particular specification of the time series properties assumed for dividends.
A completely general result is that the excess return series defined by />,,., + D,+ ,

- A + r)P,(which

for this example would equal 6\302\253,+/A + r) + \320\270,+,+ v,+,) should be unforecastable. The example in

the text provides a simpler illustration of the general issues.

This discussion is based on Hamilton A983, 1985).
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been associated with clear historical events such as the Suez crisis of 1956-57,
the Arab-Israeli war of 1973-74, the Iranian revolution of 1978-79, the start
of the Iran-Iraq war in 1980, and Iraq's invasion of Kuwait in 1990. One could
take the view that these events were causedby forces entirely outside the U.S.
economy and were essentially unpredictable. If this view is correct, then the

historical correlation between oil prices and GNP could be given a causal

interpretation. The view has the refutable implication that no series should

Granger-cause oil prices. Empirically, one indeed finds very few mac-
roeconomic series that help predict the timing of these oil shocks.

The theme of these two examples is that Granger-causality tests can be a
useful tool for testing hypotheses that can be framed as statements about the

predictability of a particular series. On the other hand, one may be skeptical about

their utility as a general diagnostic for establishing the direction of causation be-

between two arbitrary series. For this reason, it seems best to describe these as tests
of whether \321\203helps forecast x rather than tests of whether \321\203causes x. The tests
may have implications for the latter question, but only in conjunction with other

assumptions.

Up to this point we have been discussing two variables, x and y, in isolation

from any others. Supposethere are other variables that interact with x or \321\203as well.

How does this affect the forecasting relationship between x and yi

Example 11.3\342\200\224Role of Omitted Information
Consider'the following three-variable system:

Ell

\320\243\320\274'

\320\2432:

\320\243\320\274.

=

1 + SL

0

0

L
1
L

0

0

1

with
\"

a\\ 0 0 \"I

0 a\\ 0

_ 0 0 <r\\\\

0

for t

otherwise.

Thus, y3 can offer no improvement in a forecast of either \321\203,or y2 beyond that

achieved using lagged y, and y2.

Let us now examine the bivariate Granger-causality relation between yt

and y3. First, consider the process for y,:

\320\243\320\270
= i.,_, + e2.,_,.

Notice thaty, is the sum of an MA{\\) process (\320\265\342\200\236+ 8\320\265\320\270_,)and an uncorrelated
white noise process (e2.,-1). We know from equation [4.7.15] that the univariate

representation for \321\203,is an MA(\\) process:

yu
= u, + \320\262\320\270,.,.

From [4.7.16], the univariate forecast error u, can be expressedas

\320\270,
=

(\320\265\342\200\236
- 0e,,_, + 02e,.,_2- 03e,.,_3 + \342\200\242\342\200\242

\342\200\242)

+ \302\253(\302\253,,_,
- 0eu_2 + 02e,,_3 -

e3e,.,_4 + \342\226\240\342\200\242
\342\200\242)

+ (e2J_,
- 0e2.,_2+ 02e2.,_3

-
e3e2j_t + \342\200\242\342\200\242

\342\200\242).

308 Chapter 11 \\ Vector Autoregressions



The univariate forecast error u, is, of course, uncorrelated with its own lagged
values. Notice, however, that it is correlated with >,.,_,:

Thus, lagged y3 could help improve a forecast of y, that had been based
on lagged values of y, alone, meaning that \321\203\321\212Granger-causes y, in a bivariate
system. The reasonis that lagged y3 is correlated with the omitted variable y2,
which is also helpful in forecasting y,.8

11.3. Maximum Likelihood Estimation of Restricted
VectorAutoregressions
Section 11.1 discussed maximum likelihood estimation and hypothesis testing on
unrestricted vector autoregressions. In these systems each equation in the VAR

had the same explanatory variables, namely, a constant term and lags of all the
variables in the system. We showed how to calculate a Wald test of linear constraints
but did not discuss estimation of the system subject to the constraints. This section
examines estimation of a restricted VAR.

Granger Causality in a Multivariate Context

As an example of a restricted system that we might be interested in estimating,

consider a vector generalization of the issues explored in the previous section.

Suppose that the variables of a VAR are categorized into two groups, as represented

by the (\320\273,x 1) vector yi, and the (\320\2732\321\2051) vector y2,. The VAR may then be
written

\321\203i,
= c, + AJx,, + A2x2, + \320\265\342\200\236 [11.3.1]

ys, = c2 + BJx,, + B2x2, + e2,. [11.3.2]

Here X,, is an (n,p x 1) vector containing lags of \321\203,,,and the (n2p x 1) vector
x2, contains lags of y2,:

\320\243|

\320\243,

.\320\243|

(-1

1-2
\321\2052,

=\302\273

\320\2432

\320\2432

-\320\2432

1-1

1-2

I-P-

The (\302\253!x 1) and (\320\2732\321\2051) vectors c, and c2 contain the constant terms of the

VAR, while the matrices A,, A2, B|, and B2contain the autoregressive coefficients.
The group of variables represented by y, is said to be block-exogenous in the

time series sensewith respect to the variables in y2 if the elements in y2 are of no

help in improving a forecast of any variable contained in y, that is based on lagged
values of all the elements of y, alone. In the system of [11,3.1]and [11.3.2], y, is

block-exogenous when A2
= 0. To discuss estimation of the system subject to this

constraint, we first note an alternative form in which the unrestricted likelihood
can be calculated and maximized.

The reader may note thai for this example the correlation between yu and y3J^, is zero. However,
there are nonzero correlations between A) \321\203\342\200\236and _y,.,_| and B) _y|.,_t and y.v-i, and these account
for the conlribution of >>,,,_, to a forecast of yu that already includes \321\203,.,.,.

11.3. Estimation of Restricted Vector Autoregressions 309



An Alternative Expression for the Likelihood Function

Section 11.1 calculated the log likelihood function for a VAR using the pre-
prediction-error decomposition

2(9) = 2 log/v,|x,(y,|x,;9), [11.3.3]/-1
where yj

=
(\321\203'\342\200\236,y'2l), x,' = (y,'_,, y,'_2, . . . , \321\203,'_\342\200\236),

and

v,|x,(yJ\",; 9)

\320\273,+ n2
l0gB7T)

- 4 log
ft,, ft,2

ft2, ft22

-
\320\226\320\243|,

-
\321\201,

- AJx,, -
\320\2202\321\2052,)'(\321\2032,

-
\321\2012

- BJx,, -

\321\205
\320\223^\320\270ft,2l '\320\223\321\203\342\200\236

-
\321\201,

-
\320\220[\321\205\342\200\236

-
\320\2202\321\2052\320\233

|_ft2l ft22j Lyai
-

\321\2012
- BJx,, -

B2x2,J

'

[11.3.4]

Alternatively, the joint density in [11.3.4] could be written as the product of a
marginal density of \321\203\342\200\236with the conditional density of y,, given y,,:

/\321\203,|\321\205,(\320\243,\320\272;9)
=

/Y,,|x,(y,,|x,; 9)-/Yi|V|f \320\245/(\321\203,,|\321\203\342\200\236,x,; 9). [11.3.5]

Conditional on x,, the density of y,, is

/y1,ix,(y.,|x,;e)
=

Bir)-\302\273>e|nll|-|e

x exp[-i(y,,
- c, -

A;x,,
-

A,x2,)'ftn' [11.3.6]
x (\320\243\320\270

-
\321\201,

-
\320\220|\321\205\342\200\236

-
A2x2,)],

while the conditional density of y2, given y,, and x, is also Gaussian:

/vi|Y1I.x,(y2i|y.,. \",; 8) = B^)-\"^|H|-\022 [n 3 7]
x expH(y2,- m2,)'H-'(y2,

- m,,)].

The parameters of this conditional distribution can be calculated using the results
from Section 4.6. The conditional variance is given by equation [4.6.6]:

H =
ft22

- ft^ftfi'ft,;,;

while the conditional mean (m2,) can be calculated from [4.6.5]:

m2, =
\302\243(y2,k) + ft21ft,V[y,,

-
\302\243(\320\243\342\200\236|\321\205,)].[11.3.8]

Notice from [11.3.1] that

\320\225(.\320\243\\,\\\321\205,)
=

\321\201,+ AJx,, + \320\2202\321\2052\342\200\236

while from [11.3.2],

\302\243(\320\2432,\320\272)
= c2 + BJx,, + B2x2r

Substituting these expressions into [11.3.8],
m2,

= (c2 + BJx,, + B2x2/) + ft2lftri'[y,,
- (c, + AJx,, + A,>2,)]

= d + D(',y,, + DJx,, + D2X2,,
where

d = c2 -
ft2lftri'c, [11.3.9]

D(', = ^ftn1 [11.3.10]

d; =
\320\262;

- ft2|ftn'A; [11.3.11]

D2 =
B2

- ft2lftn'A2. [11.3.12]
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The log of the joint density in [11.3.4] can thus equivalently be calculated as
the sum of the logs of the marginal density [11.3.6] and the conditional density

[11.3.7]:

log/v,,x,(y,|x,;9)
=

\342\202\254\342\200\236+ \342\202\254,\342\200\236 [11.3.13]

where

\342\202\254\342\200\236
= (-n,/2) logB,r) -l

-
\320\267[(\320\243\342\200\236

-
\321\201,

-
\320\220;\321\205\342\200\236

-
\320\2202\321\205,,)'\320\237\320\277'(\320\243|,

-
\321\201,

-
\320\220|\321\205\342\200\236

-
\320\2202\321\2052,)]

I11-3-14!

\302\2532,
=

(-\320\2772/2) 1\320\276\321\221B\321\2027)
- 4 log|H|

-
{[<\321\203\320\273

- d -
D,',y,,

- d;x,, - D2x2,)'H-' [11.3.15]
x (\320\243\320\263,

~ d -
\302\260\320\276\320\243\320\270

~
D;x,,

- D2x2,)].

The sample log likelihood would then be expressedas

2(9) = 2 tu + 2 \342\202\254,,. [11.3.16]
/-1 ;=|

Equations [11.3.4]and [11.3.13] are two different expressions for the same

magnitude. As long as the parameters in the second representation are related to

those of the first as in [11.3.9] through [11.3.12], either calculation would produce
the identical value for the likelihood. If [11.3.3] is maximized by choice of (c,, A,,
A2, c2, B|, B2, On, ft|2, ^22)' the same value for the likelihood will be achieved

as by maximizing [11.3.16] by choice of (cb Ab A2, d, D,,, D,, D2, ftM, H).

The second maximization is as easy to achieve as the first. Since the parameters

(\321\201,,A,, A2) appear in [11.3.16] only through 2/L1 \342\202\254|\342\200\236the MLEs of these parameters
can be found by OLS regressions of the elements of \321\203\342\200\236on a constant and lagged
values of y, and y2, that is, by OLS estimation of

\321\203\342\200\236
=

\321\201,+ \320\220!\321\205\342\200\236+ A,x2, + \320\265\342\200\236. [11.3.17]

The MLE of ftM is the sample variance-covariance matrix of the residuals from
these regressions, ft,, = A/TJ/_ 1 e|,ej,. Similarly, the parameters (d, D,,,D,,
Dj) appear in [11.3.16] only through 2/L1 \342\202\2542/,and so their MLEs are obtained from

OLS regressions of the elements of y2, on a constant, current and lagged values of

y,, and lagged values of y2:

\320\243\320\263,
= d + Diy,, + D;x,,+ D2X2, + v2/. [11.3.18]

The MLE of H is the sample variance-covariance matrix of the residuals from this
second set of regressions,H = A/TJ,r_| *2/*2,.

Note that the population residuals associated with the second set of regres-
regressions,V2,, are uncorrelated with the population residuals of the first regressions.
This is because v2,

=
\321\203\321\214

- E(y2,\\yt,, x,) is uncorrelated by construction with \321\203\342\200\236

and x,, whereas e,, is a linear function of \321\203\342\200\236and x,. Similarly, the OLS sample
residuals associated with the second regressions,

*2/
=

\320\2432/
- d ~

D,',y,,
- D[x,, -

D2x2/,

are orthogonal by construction to \321\203\342\200\236,a constant term, and x,. Since the OLS sample
residuals associated with the first regressions, \321\221,\342\200\236are linear functions of these same
elements, V2, is orthogonal by construction to 6,,.

Maximum Likelihood Estimation of a VAR Characterized
by Block Exogeneity

Now consider maximum likelihood estimation of the system subject to the

constraint that A2 = 0. Supposewe view (d, Do, D,, D2, H) rather than (c2, B,,
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B2, ft2|, ^22) as {he parameters of interest for the second equation and take our

objective to be to choose values for (c,, A,, ft,,, d, Do,D,,D2, H) so as to maximize

the likelihood function. For this parameterization, the value of A2 does not affect

the value of (.\321\212in [11.3.15]. Thus, the full-information maximum likelihood esti-
estimates of c,. A,, andftn can be based solely on a restricted version of the regressions
in [11.3.17],

\321\203\342\200\236
=

\321\201,+ \320\220;\321\205\342\200\236+ \320\265\342\200\236. [11.3.19]

Let \302\243|@),A|@), ftu(O) denote the estimates from these restricted regressions. The
maximum likelihood estimates of the other parameters of the system (d, Do, D,,
D2, H) continue to be given by unrestricted OLS estimation of [11.3.18],with

estimates denoted (d, D,,, D,, D2,H).
Themaximum value achieved for the log likelihood function can be found

by applying [11.1.32] to [11.3.13]:

/-1 \342\202\254\342\200\236[\302\243,@),A,@), ft,,@)] + 2 tb[l, DA, D,, D2, H]
/=1

= [-Gn,/2) logB^) + (\320\223/2)loglftn'Wl
-

(\320\223\320\273,/2)]
[U-3.20]

+ [-(\320\223\320\2732/2)logB^) + (\320\223/2)log|H-'|
-

(\320\223\320\2732/2)].

By contrast, when the system is estimated with no constraints on A2, the value

achieved for the log likelihood is

2 \342\202\254\342\200\236[\302\243\342\200\236A,, A,, ft,,] + 2 \342\202\2542,[d,Do, D,, D2, H]
l l

+ (\320\223/2)log|ftn'|
-

G\320\270,/2)] [\320\2373.21]

+ [-{Tnjl) logB77) + (\320\223/2)log|H-'|
-

(\320\223\320\2732/2)],

where (\302\243,,A,, A2, ft,,) denote estimatesbasedon OLS estimation of [11.3.17]. A
likelihood ratio test of the null hypothesis that A2 = 0 can thus be based on

2{2[9] - 2[9@)]}= r{log|ftn'|- log|ftn'@)|}

= r{log|ft,,@)|
- log|ft,,|}.

l \342\226\240\342\200\242J

This will have an asymptotic x2 distribution with degrees of freedom equal to the

number of restrictions. Since A2 is an (\320\273,\321\205n2p) matrix, the number of restrictions

is n,n2p.
Thus, to test the null hypothesis that the \320\273,variables represented by y, are

block-exogenous with respect to the \320\2732variables represented by y2, perform OLS
regressions of each of the elements of \321\203,on a constant, p lags of all of the elements
of \321\203,,and p lags of all of the elements of y2. Let &u denote the (\320\273,\321\2051) vector of

sample residuals for date t from these regressions and ft,, their variance-covariance
matrix (ft, 1

= (I/TJS/Li \321\221,,\321\221'|,).Next perform OLS regressions of each of the

elements of y, on a constant and p lags of all the elements of y,. Let \321\221\342\200\236@)denote

the (\320\273,x 1) vector of sample residuals from this second set of regressions and

ftM@) their variance-covariance matrix (ftM@) =
A/7*) 2J_, [\321\221|,@)][\321\221\342\200\236@)]').

If

r{log|ft,,@)|
- log|ft,,|}

is greater than the 5% critical value for a A'2(\"i/I2P) variable, then the null hypothesis
is rejected, and the conclusion is that some of the elements of y2 are helpful in

forecasting y,.
Thus, if our interest is in estimation of the parameters (\321\201,,\320\220|,\320\237\320\277,d, D,,,

D,, D2, H) or testing a hypothesis about block exogeneity, all that is necessary
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is OLS regression on the affected equations. Suppose, however, that we wanted
full-information maximum likelihood estimates of the parameters of the likelihood
as originally parameterized (\321\201,,A,, \302\243ln,c2, B,, B2, ft2|, ^22)- F\302\260rthe parameters
of the first block of equations (\321\201,,\320\220,,\320\236\321\206),the MLEs continue to be given by

OLS estimation of [11.3.19].The parameters of the second block can be found

from the OLS estimatesby inverting equations [11.3.9] through [11.3.12]:4

4,@) =
\320\271\320\260\320\277\342\200\236(\320\276)]

C2@)
= d + [^

[6,@)]'= d; + [

[B2@)]'
= D2

\302\25322@)
= H + [4,@)][ft,,@)]-1[ft12@)].

Thus, the maximum likelihood estimates for the original parameterization of [11.3.2]
are found from these equations by combining the OLS estimates from [11.3.19]

and [11.3.18].

Geweke's Measure of LinearDependence
The previous subsection modeled the relation between an (\320\273,\321\2051) vector \321\203\342\200\236

and an (\320\2732\321\2051) vector y2, in terms of the pth-order VAR [11.3.1] and [11.3.2],
where the innovations have a variance-covariance matrix given by

,^\"] = [\"ft,, ft,,\"]
^J L\302\2532i ft22j

To test the null hypothesis that y, is block exogenous with respect to y2, we proposed
calculating the statistic in [11.3.22],

r{log|ft,,@)| - log|ft,,|}- X2{ntn2p), [11.3.23]

where ft,, is the variance-covariance matrix of the residuals from OLS estimation
of [11.3.1] and ftM@) is the variance-covariance matrix of the residuals from OLS

estimation of [11.3.1] when lagged values of y2 are omitted from the regression

(that is, when A2 = 0 in [11.3.1]).

Clearly, to test the parallel null hypothesis that y2 is block-exogenous with

respect to y,, we would calculate

T{log|42@)| - log|42|}=
X\\n2nlP), [11.3.24]

where \320\23622is the variance-covariance matrix of the residuals from OLS estimation
of [11.3.2]and 4\320\263@)is the variance-covariance matrix of the residuals from OLS
estimation of [11.3.2]when lagged values of y, are omitted from the regression

(that is, when \320\222,
= \320\236in [11.3.2]).

Finally, consider maximum likelihood estimation of the VAR subject to the
restriction that there is no relation whatsoever between y, and y2, that is, subject

\"To confirm that the resulting estimate \320\237@)is symmeteric and positive definite, notice that

\320\237,,@)= ft + 6,',[\320\237\342\200\236@)]\320\261\342\200\236

and so

o\302\245n,,(O) oik

D,', I,J[
0 ||
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to the restrictions that A2
= 0, B, = 0, and ft2,

= 0. For this most restricted

specification, the log likelihood becomes

2(9) =
\302\243( -(\320\270,/2) IogB^)

- A/2) login,, |

-
(l/2)(yw

- c, -
\320\220;\321\205\342\200\236)'\320\237\320\277|(\320\243\342\200\236

-
\321\201,

- Ajx

-(\022/2)logBir) -
A/2) Iog|ft22|

- (l/2)(y2, -
c2

-
\320\222^\321\203\320\237\320\271\320\247\320\243*

- c2
-

B2x2,)j
and the maximized value is

2(9@)) =
{-(\320\223\320\270,/2)logB^)

-
(\320\223/2)Iog|ft,,@)|

-
Gn,/2)}

+ {-(\320\223\321\2172/2)logB77)
-

(\320\223/2)Iog|n22@)|
- Gn2/2)}.

A likelihood ratio test of the null hypothesis of no relation at all between yi and

y2 is thus given by

2{2(9)
- 2(9@))}

[11.3.25]
ft,, ft,|\", = T log|ft,,@)| + log|ft22@)| -

log
I 4*21

where ft,2 is the covariance matrix between the residuals from unrestricted OLS
estimation of [11.3.1] and [11.3.2]. This null hypothesis imposed the (n,n2p) re-
restrictions that A, = 0, the (nznip) restrictions that B| = 0, and the (i2i|) restric-
restrictionsthat fto, = 0. Hence, the statistic in [11.3.25] has a x2 distribution with

(\"i'b) x (?P + 1)degreesof freedom.

Geweke A982) proposed A/T) times the magnitude in [11.3.25] as a measure
of the degree of linear dependence between yi and y2. Note that [11.3.25] can be
expressedas the sum of three terms:

rflog|n,,@)| + log|ft22@)| -log J?\"
?'

I 4*2i 4*22|

= r{log|nu@)|
- log|n,,|} + r{log|ft22@)|

- Iog|ft22|} [\320\230.3.26]

ft,, ftl2.
+ r]log|ft,,| + Iog|ft22|- log

L \0221 **22

The first of these three terms, T{log|ft,,@)|
- Iog|ft,,|}, is a measure of the

strength of the linear feedback from y2 to \321\203,and is the x2(ni \320\277\320\263\320\240)statistic calculated

in [11.3.23]. The secondterm, T{log|ft22@)|
- Iog|ft22|}, is an analogous measure

of the strength of linear feedback from y, to y2 and is the X2{n2nxp)statistic in

[11.3.24]. The third term,

is a measure of instantaneous feedback. This corresponds to a likelihood ratio test
of the null hypothesis that ft2, = 0 with A2 and B, unrestricted and has \320\260\321\205\321\212(\320\277{\320\277\320\263)

distribution under the null.

Thus, [11.3.26] can be used to summarize the strength of any linear relation

between y, and y2 and identify the source of that relation. Geweke showed how
these measurescan be further decomposed by frequency.
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Maximum Likelihood Estimation Under General
Coefficient Constraints

We now discuss maximum likelihood estimation of a vector autoregression
in which there are constraints that cannot be expressed in a block-recursive form
as in the previous example. A VAR subject to general exclusion restrictions can

be viewed as a system of \"seemingly unrelated regressions\" as originally analyzed

by Zellner A962).
Let X,, be a {k{ x 1) vector containing a constant term and lags of the variables

that appear in the first equation of the VAR:

\320\243\321\205,
=

\321\205[,\320\255,+ \320\265\342\200\236.

Similarly, let x2, denote a {k2 x 1) vector containing the explanatory variables for
the second equation and \321\205,\342\200\236\320\260(\320\272\342\200\236\321\2051) vector containing the variables for the last

equation. Hence, the VAR consists of the system of equations

\320\243\321\205,
=

\321\205[,\320\255|

\320\243\320\263,
=

\321\205^\320\255\320\267

\320\243,\342\200\236
=

\321\205,'\342\200\236\320\255\342\200\236

+ \320\265\342\200\236

+ e2l
[11.3.27]

Let \320\272=
\320\272\321\205+ \320\2722+ \342\226\240\342\200\242\342\200\242+ \320\272\342\200\236denote the total number of coefficients to be

estimated, and collect these in \320\260(\320\272\321\2051) vector:

\320\255
-

\320\263\321\215

.ftj

Then the system of equations in [11.3.27] can be written in vector form as

y,
= 3P;p + e,, [11.3.28]

where \320\251is the following (n x k) matrix:

K,

0'

0'

0' 0'

0'
0'

x;,,

Thus, \321\205'/,is defined as a A x k) vector containing the k,- explanatory variables for

equation i, with zeros added so as to be conformable with the (\320\272\321\2051) vector p.
The goal is to choose p and ft so as to maximize the log likelihood function

, ft) = -
GV2) logB77) + G72)log|ft-'|

\321\202

This calls for choosing P so as to minimize

2 (y,
- 3e;p)'ft-'(y, -

[11.3.29]

[\320\230.3.30]
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If ft-' is written as L'L, this becomes

2 (y,
-

*;\321\215)'\320\277-'(\321\203,
-

\320\266;\321\215)
= 2

[11.3.31]

= 2, (\320\243.
-

*.\320\240)'(\320\243/
-

where \321\203,
= Ly, and

But [11.3.31] is simply

2 (s, -
*.'\321\215)'(\321\203,

-
*;\321\215)

i

\320\243\320\252
~ *2,f

\320\243\320\277,
-

\321\202

2 (\321\203,\342\200\236
-

which is minimized by an OLS regression of y,, on xu, pooling all the equations

(i = 1, 2, . . . , \320\273)into one big regression. Thus, the maximum likelihood estimate
is given by

=
{

2 [(*.i*iO

(\321\205\342\200\236,\321\203\342\200\236,)]\\.
J

[11-3-32]

Noting that the variance of the residual of this pooled regression is unity by

construction,1\" the asymptotic variance-covariance matrix of f$ can be calculated
from

*,\342\200\236*;\342\200\236)]}

.\342\226\240+ (

Construction of the variables yu and xH to use in this pooled OLS regression

requires knowledge of L and hence il. Theparameters in \320\222and il can be estimated

jointly by maximum likelihood through the following iterative procedure. From n

OLS regressions of \321\203\342\200\236on x,,, form an initial estimate of the coefficient vector

'\"That is,

\320\225(\320\243,
~ *,'P)(y, - *,'P)' = LflL' = L(L'L) 'L' = 1\342\200\236.
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\320\255@)
=

(\321\213\321\2142

matrix,

b^)'.Use this to form an initial estimate of the variance

ft@) =
(i/\320\263)2 [y,

- *;
i

Find a matrix L@) such that [L(O)']L(O) = [ft(O)]-', say, by Cholesky factor-

factorization, and form y,@) =
L@)y, and \302\243,'@)

= L@)9f;. A pooled OLS regression
of y,,@) on

\320\266,,@)combining i = 1, 2, . . . , n then yields the new estimate 3A).
from which ft(l) =

A/\320\223)2,r., [\321\203,
-

\302\243,'3A)][y,
-

\302\243,'3A)]'.. Iterating in this
manner will produce the maximum likelihood estimatesC, fl), though the esti-

estimate after just one iteration has the same asymptotic distribution as the final

MLE (see Magnus, 1978).
An alternative expression for the MLE in [11.3.32] is sometimes used. Notice

that

l\\xlixll) + \\x2tx2i) + + \\xmxn,)\\

=
[*\342\200\236x2,

\342\226\240\342\226\240\342\226\240
x,,]

\321\205\342\200\236\320\236\342\226\240\342\226\240

0 x2,
\342\200\242\342\226\240

o' o' \342\226\240\342\226\240

O-\"X|,X,', \320\241

o-2lx2,xl, \321\201

o-\"'x,,,x;, \321\201

\342\226\2400
\342\200\2420

r22x2/X2

\320\263\022\321\205\342\200\236,\321\2052

a21

a\302\2731

I

0-12 ...

0-22 ...

a\022 \342\226\240\342\226\240\342\226\240

o-'\"xi/x;,,

\320\276-2\"\321\2052,\321\205;\342\200\236

o-\"\"x,,,x,\302\273

\320\276-1\"

\320\236\022\"

o-'\"\"_

x|, 0'

0' xi

0' 0'

0'
0'

[11.3.33]

where &> denotes the row i, column / element of il~'. Similarly,

=
[\321\205\342\200\236

\320\243\321\210

\321\2052,

0 0

\320\236\0221\320\236\0222

\321\201\320\263\021\320\276-'\022

\320\276-1\"

\321\201\320\263\"\"

!,?!, + \320\236-'2\320\2451\302\273\320\2432/+ \342\226\240\342\226\240\342\226\240+ \320\236-'\"\320\245\342\200\236)'\342\200\236,
22

[11.3.34]

\"^ X V + \320\237\"\022Y V- -I- \342\200\242\342\226\240\342\200\2424- /\321\202\"\"V V\320\220\320\273\320\273\320\243|/\321\202\" \321\205\321\210/2/\321\202 \321\202\" \320\273\321\202\320\243\320\2771
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Substituting [11.3.33] and [11.3.34] into [11.3.32], the MLE satisfies

\320\255
=

o-\0222x,,,x2,

o-l2xuy2,

<r\"\022x,X,_
\342\226\240\342\226\240\342\226\240+ (TXn\\uyn,Y

[11.3.35]

where 2 denotessummation over t = 1,2 T.
The result from Section 11.1 was that when there are no restrictions on the

VAR, maximum likelihood estimation is achieved by OLS equation by equation.
This result can be seen as a specialcaseof [11.3.35] by setting x,, =

x2,
= \342\226\240\342\226\240\342\200\242=

x,,,, for then [11.3.35] becomes

\320\255= [ft'1 \302\256B\321\205,\321\205,')]-'2[(\320\237-'\321\203#)\302\256x,]

= [ft\302\256Bx,x;r']2[(ft-'y,)\302\256x,]

\320\276

\320\276

B\321\205,\321\205;

V

as shown directly in Section 11.1.
Maximum likelihood estimation with constraints on both the coefficients and

the variance-covariance matrix was discussed by Magnus A978).

11.4. The Impulse-Response Function

In equation [10.1.15] a VAR was written in vector MA(<=o) form as

\321\203,
=

(\320\264.+ e, + \320\244,\320\265,_,

Thus, the matrix \320\244,has the interpretation

*,;

[11.4.1]

[11.4.2]

that is, the row i, column ; element of \320\244,identifies the consequences of a one-
unit increase in the /th variable's innovation at date t (e/() for the value of the ith

variable at time t + s (y,,,+.v), holding all other innovations at all dates constant.
If we were told that the first element of e, changed by 8, at the same time

that the second element changed by S2, . . . , and the nth element by 5,,, then the
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combined effect of these changes on the value of the vector y,+s would be given

by

\320\224\321\203,+,
= ~ a, + ~

52 + \342\200\242\342\200\242\342\200\242+ ^ a. -
\321\204.\320\224 [\320\237-4.3]

\320\264\320\265\320\270\320\264\320\2622, \320\264\320\262\342\200\236,

where 8 = F,, 52, . . . , 5,,)'.
Several analytic characterizations of \320\244,were given in Section 10.1.A simple

way to find these dynamic multipliers numerically is by simulation. To implement

the simulation, set y,_, =
y,_2

= \342\200\242\342\226\240\342\226\240=
y,_p

= 0. Set ejt
= 1 and all other elements

of e, to zero, and simulate the system [11.1.1] for dates t, t + 1, t + 2, . . . , with

\321\201and e,+ 1, e,+2, ... all zero. The value of the vector yl+s at date t + s of this
simulation corresponds to the /th column of the matrix \320\244,.By doing a separate
simulation for impulses to each of the innovations (/ = 1, 2, . . . , \320\273),all of the
columns of \320\244,can be calculated.

A plot of the row i, column / element of \320\244\342\200\236

%\", [11.4.4]
\320\264\320\265,,

as a function of s iscalledthe impulse-response function. It describes the response

oiyll+s to a one-time impulse in yjt with all other variables dated t or earlier held

constant.

Is there a sense in which this multiplier can be viewed as measuring the causal
effect of yt on yP. The discussion of Granger-causality tests suggests that we should
be wary of such a claim. We are on surer ground with an atheoretical VAR if we

confine ourselves to statements about forecasts. Consider, therefore, the following

question. Let

denote the information received about the system as of date t - 1. Suppose we

are then told that the date t value of the first variable in the autoregression, y,,,
was higher than expected, so that e,, is positive. How does this cause us to revise

our forecast of y,,+v? In other words, what is

,|yl,.x,-,O

The answer to this question is given by [11.4.4] with j = 1 only in the special case
when \302\243(e,e',)

= ft is a diagonal matrix. In the more general case when the elements

of e, are contemporaneously correlated with one another, the fact that eu is positive
gives us some useful new information about the values of e2l, . . . , e,,,. This in-
information has further implications for the value of yiJ+t. To summarize these

implications, we need to calculate the vector

and then use [11.4.3]to calculate the effect of this change in all the elements of
e, on the value of yiJ+s.

Yet another magnitude we might propose to measureis the forecast revision

resulting from new information about, say, the second variable, y2l, beyond that
contained in the first variable, yu. Thus, we might calculate

..|\320\243\320\260..\320\243|/,
x,_i)^ [11.4.6]

3\320\243
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Similarly, for the variable designated number 3, we might seek

and for variable \321\217.

\321\203\342\200\236

[11.4.7]

[11.4.8]

This last magnitude corresponds to the effect of e,,, with etl, . . . , e,,_,, constant

and is given simply by the row i, column n element of \320\244\321\203.

The recursive information ordering in [11.4.5] through [11.4.8] is quite com-

commonly used. For this ordering, the indicated multipliers can be calculated from the

moving average coefficients (\320\244,)and the variance-covariance matrix of e, (ft) by
a simple algorithm. Recall from Section 4.4 that for any real symmetric positive
definite matrix ft, there exists a unique lower triangular matrix A with Is along

the principal diagonal and a unique diagonal matrix D with positive entries along
the principal diagonal such that

ft = ADA'. [11.4.9]

Using this matrix A we can construct an (n x 1) vector u, from

u, = A-'e,. [11.4.10]

Notice that since e, is uncorrelated with its own lags or with lagged values of y, it

follows thafu, is also uncorrelated with its own lags or with lagged values of y.
The elements of u, are furthermore uncorrelated with each other:

\302\243(u,u,')

[11.4.11]

= D.

But D is a diagonal matrix, verifying that the elements of u, are mutually uncor-
uncorrelated. The (/, /) element of D gives the variance of ujt.

If both sides of [11.4.10] are premultiplied by A, the result is

Au,
= e,.

Writing out the equations represented by [11.4.12] explicitly,

1

\321\217\320\264i

0

0

0

i

\302\253i,

\302\2532,

\302\253V

\302\253;\342\200\236

=

~E,,

*?'

L

[11.4.12]

[11.4.13]

<*,,\\ <*,,2 \"lO
\342\226\240

Thus, uu is simply \320\265\342\200\236.The /th row of [11.4.13]states that

But since \320\270,,is uncorrelated with uu, u2, \302\253/-i.\302\273it follows that ujt has the

interpretation as the residual from a projection of
Ej,

on uu, u2l, . . . , Uj_,,:

\320\201(\320\265/,\\\320\270,\342\200\236u2, ut_tJ)
=

\320\260\321\206aj2u2, [11.4.14]

The fact that the ut, are uncorrelated further implies that the coefficient on
U|, in a projection of Ej, on (uu, u2l, . . . , \302\253y-i.,)is the same as the coefficient on
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\320\270,,in a projection of
ejt on uu alone:

E{E,,\\uu)
=

<*,,\302\253\342\200\236. [11.4.15]

Recalling from [11.4.13] that e,, = uu, we see that new information about the
value of E\\, would cause us to revise our forecast of ey-, by the amount

fle,, du,,
[11.4.16]

Now e,, has the interpretation as yu -
\302\243(y,,|x,_.,) and ejt

has the interpretation
as Vj,

-
E^Jx,.,). From the formula for updating a linear projection [4.5.14],

the coefficient on yu in a linear projection of yjt onyi, and x,_, is the same as the

coefficient on E\\, in a linear projection of e;, on \302\243,,.\"Hence,

, I \320\243.,.x,_i

Combining these equations for/ = 1,2, . . . , n into a vector,

[11.4.17]

[11.4.18]

where a, denotes the first column of A:

Substituting [11.4.18] into [11.4.3], the consequencesfor y,+, of new information
about y,, beyond that contained in x,_, are given by

tyu

Similarly, the variable u2, represents the new information in y2r beyond that
contained in (\321\203\342\200\236,\321\205,_,).This information would, of course,not cause us to change
our assessment of eu (which we know with certainty from yu and \321\205,\342\200\236|),but from

[11.4.14] would cause us to revise our estimate of e(,for; = 2, 3 \302\253by

Su2t

Substituting this into [11.4.3], we conclude that

\"That is

, x,.,)

+ Cov{[y/;
-

x {Var[y,,
-

) + Cov(e/;, \320\265\342\200\236)
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where

In general,

\320\264&(\320\243\320\270-,\\\320\243\321\206<\320\243/-\320\270\320\243\320\270,x,_i)
[11.4.19]

where a, denotes the/th column of the matrix A defined in [11.4.9].

The magnitude in [11.4.19] is a population moment, constructed from the

population parameters \320\244,and ft using [11.4.9]. For a given observed sample of

size T, we would estimate the autoregressive coefficients \320\244,,. . . , \320\244(,by OLS and
construct \320\244,by simulating the estimated system. OLS estimation would also pro-
provide the estimate ft = (l/TJ/_i &,&',, where the ith element of \320\271,is the OLS

sample residual for the ith equation in the VAR for date t. Matrices A and D

satisfying ft = A6A' could then be constructed from ft using the algorithm de-
described in Section 4.4. Notice that the elements of the vector fl,

= A '4., are then

mutually orthogonal by construction:

i (i/\320\223)21-1
= A-'ft(A-')' = 6.

The sample estimate of [11.4.19] is then

*A- [11.4.20]
where a, denotes the yth column of the matrix A.

A plot of [11.4.20] as a function of j is known as an orthogonalized impulse-

response function. It is based on decomposing the original VAR innovations (e,,,
. . . , \302\243\342\200\236,)into a set of uncorrelated components (u,, u,,,) and calculating
the consequencesfor y/+.v of a unit impulse in ujt. These multipliers describe how

new information about y/( causes us to revise our forecast of y/+,, though the implicit
definition of \"new\" information is different for each variable ;'.

What is the rationale for treating each variable differently? Clearly, if the

VAR is being used as a purely atheoretical summary of the dynamics of a group

of variables, there can be none\342\200\224wecould just as easily have labeled the second

variable yu and the first variable y2,, in which case we would have obtained different

dynamic multipliers. By choosing a particular recursive ordering of the variables,
the researcher is implicitly asking a set of questions about forecasting of the form
of [11.4.5]through [11.4.8]. Whether we should orthogonalize in this way and how
the variables should be ordered would seem to depend on why we want to ask

such questions about forecasting in the first place. We will explore this issue in

more depth in Section 11.6.
Beforeleaving the recursive orthogonalization, we note another popular form

in which it is implemented and reported. Recall that D is a diagonal matrix whose

(/, j) element is the variance of ujr Let D\022 denote the diagonal matrix whose

(/, j) element is the standard deviation of
ut,. Note that [11.4.9] could be written as

where

ft = AD\022DI/2A' = PP',

P = AD\022.

[11.4.21]
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Expression [11.4.21] is the Cholesky decomposition of the matrix ft. Note that,

like A, the (n x n) matrix P is lower triangular, though whereas A has Is along
its principal diagonal, P has the standard deviation of u, along its principal diagonal.

In place of u, defined in [11.4.10], some researchers use

V/
= p-'e, = D-'^A-'e, =

D-\022u,-

Thus, Vji
is just iij, divided by its standard deviation Vd~r A one-unit increase in

Vj,
is the same as a one-standard-deviation increase in ujr

In place of the dynamic multiplier dyj.,+.i/Sujr these researchers then report

dyu+sldvjr The relation between these multipliers is clearly

4^
= ^

4 T
dvjt dui

yV^ jst the yth column of AD\022, which is the /th column of the Cholesky

factor matrix P. Denoting the/th column of P by p;, we have

2f\302\243\302\261-I
=

*,P>. [\320\237.4.22]

Expression [11.4.22] is just [11.4.19] multiplied by the constant VVar(i<;/).
Expression [11.4.19] gives the consequences of a one-unit increase in yjn where
the units are those in which yjt itself is measured. Expression [11.4.22] gives the

consequences if yjt were to increase by VVar(\302\253/()
units.

11.5. Variance Decomposition

Equations [10.1.14] and [10.1.16] identify the error in forecasting a VAR s periods
into the future as

The mean squared error of this i-period-ahead forecast is thus

- y,+.,|,)(y,+,- \320\243,+ ,|/)'] [11.5.2]
= ft +

where

ft =
\302\243(e,e;). [11.5.3]

Let us now consider how each of the orthogonalized disturbances (\302\253|(,. . . ,

u,,,) contributes to this MSE. Write [11.4.12] as

e, =
Au,

= a,u,, + a2u2, + \342\226\240\342\200\242\342\200\242+ a,,u,,,, [11.5.4]

where, as before, a, denotesthe /th column of the matrix A given in [11.4.9].

Recalling that the
u/7's

are uncorrelated, postmultiplying equation [11.5.4]by its

transpose and taking expectations produces
ft =

\302\243(e,e,') [11.5.5]
=

\320\260,\320\260;\320\243\320\260\320\263(\320\270\342\200\236)+ \320\2602\320\260\320\267-Var(n2,)+ \342\200\242\342\200\242\342\200\242+ a,,a,',-Var(u,,,),

where Var(uy/) is the row/, column/element of the matrix D in [11.4.9]. Substituting

[11.5.5] into [11.5.2], the MSEof the j-period-ahead forecast can be written as the

sum of n terms, one arising from each of the disturbances u/(:

MSE(yr+slr) = t {Var(uy/)[a/a;
+

\320\244.\320\260^\320\244;

'

'\"' [11.5.6]
+

\320\2442\320\260,\320\260;<\320\263;
+ \342\200\242\342\200\242\342\200\242+

\320\244,_,\320\260\321\203\320\260/*;_,]}.
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With this expression, we can calculate the contribution of the jth orthogonalized

innovation to the MSE of the s-period-ahead forecast:

Again, this magnitude in general depends on the ordering of the variables.
As s \342\200\224\302\273* for a covariance-stationary VAR, MSE(y,+ ,\\,)

\342\200\224>
\320\223\342\200\236,the uncon-

unconditional variance of the vector y,. Thus, [11.5.6] permits calculation of the portion
of the total variance of y( that is due to the disturbance u} by letting s become
suitably large.

Alternatively, recalling that a,- VVar(Uy,)
is equal to P/, the /th column of

the Cholesky factor P, result [11.5.6] can equivalently be written as

i [pyP;
+

\321\204,\321\200/\320\240;\321\204;+
2\321\200/\320\240;;

/-1 [11.5.7]
+ \342\226\240\342\226\240\342\226\240+

\321\204,_,\321\200\321\203\320\240;*.;_,]

11.6. Vector Autoregressions and Structural
Econometric Models

Pitfalls in Estimating Dynamic Structural Models

The vector autoregression was introduced in Section 10.1 as a statistical de-
description of the dynamic interrelations between n different variables contained in

the vector y,. This description made no use of prior theoretical ideas about how

these variables are expectedto be related, and therefore cannot be used to test

our theories or interpret the data in terms of economicprinciples. This section

explores the relation between VARs and structural econometric models.
Supposethat we would like to estimate a money demand function that ex-

expresses the public's willingness to hold cash as a function of the level of income
and interest rates. Thefollowing specification was used by some early researchers:

M,-P, =
A, + /8,\320\243,+ ft,/, + \302\243,(M,_,

-
/\302\273,_,)+ v'\\ [U.6.1]

Here, M, is the log of the nominal money balances held by the public at date t, P,
is the log of the aggregate price level, Y, is the log of real GNP, and /, is a nominal
interest rate. The parameters f}{ and /32 represent the effect of income and interest
rates on desired cash holdings. Part of the adjustment in money balances to a

change in income is thought to take place immediately, with further adjustments
coming in subsequent periods. The parameter /3, characterizes this partial adjust-
adjustment. The disturbance v,D represents factors other than income and interest rates
that influence money demand.

It was once common practice to estimate such a money demand equation

with Cochrane-Orcutt adjustment for first-order serial correlation. The implicit

assumption behind this procedure is that

v? = pvf_, + \320\270?, [11.6.2]

where uf is white noise. Write equation [11.6.2] as A
- pL)vf = uf and multiply

both sides of [11.6.1]by A
- pL):

M, - P, =
A

-
\321\200)\320\224,+ p,Y,

-
/3,\321\200\320\243(_,+ A./,

-
\320\220\320\263\321\200/,-1

[\320\246.6.3]

+ 05, + p){M,_{ -
/>,_,)

- ftp(M,_2 - P,_2) + u\302\260.
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Equation [11.6.3] is a restricted version of

\342\200\236[\320\230-6-4]
M,- P, =

au + aj, + a2Y,_l + a,/, + a4/,_,

2
- P,_2) +

where the seven parameters (a,,, a, \320\260\320\271)are restricted in [11.6.3] to be
nonlinear functions of the underlying five parameters (p, \320\224,,/3,, /3,, \320\224,).The

assumption of [11,6.2] can thus be tested by comparing the fit of [11.6.3] with that

from unconstrained estimation of [11.6.4].
By definition, vf represents factors influencing money demand for which the

researcher has no explicit theory. It therefore seemsodd to place great confidence
in a detailed specification of its dynamics such as [11.6.2] without testing this

assumption against the data. For example, there do not seem to be clear theoretical

grounds for ruling out a specification such as

or, for that matter, a specification in which vf is correlated with lagged values of

Y or/.
Equation [11.6.1] further assumes that the dynamic multiplier relating money

demand to income is proportional to that relating money demand to the interest
rate:

W,

Again, it seems a good idea to test this assumption before imposing it, by comparing
the fit of [11.6.1] with that of a more general dynamic model. Finally, inflation

may have effects on money demand that are not captured by nominal interest rates.
The specification in [11.6.1] incorporates very strong assumptions about the way

nominal money demand responds to the price level.

To summarize, a specification such as [11.6.1] and [11.6.2] implicitly imposes

many restrictions on dynamics for which there is little or no justification on the

basis of economic theory. Beforerelying on the inferences of [11.6.1]and [11.6.2],

it seems a good idea to test that model against a more general specification such

as

,-, + PtfP,-, + PtfY,., + p\\?l,_f + \320\270\302\273.

Like equation [11.6.1], the specification in [11,6.5] is regarded as a structural money

demand equation; /\320\227',\"'and p\\^ are interpreted as the effects of current income
and the interest rate on desired money holdings, and \320\270?represents factors influ-

influencing money demand other than inflation, income, and interest rates. Compared
with [11.6.1], the specification in [11.6.5] generalizes the dynamic behavior for the
error term v,\302\260,the partial adjustment process, and the influence of the price level
on desired money holdings.

11.6. Vector Autoregressions and Structural Econometric Models 325



Although [11.6.5] relaxes many of the dubious restrictions on the dynamics

implied by [11.6.1], it is still not possible to estimate [11.6.5] by OLS, because of
simultaneous equations bias. OLS estimation of [11.6.5]will summarize the cor-
correlation between money, the price level, income, and the interest rate. The public's

money demand adjustments are one reasonthese variables will be correlated, but

not the only one. For example,eachperiod, the central bank may be adjusting
the interest rate /, to a level consistent with its policy objectives, which may depend
on current and lagged values of income, the interest rate, the price level, and the

money supply:

i
[11.6.6]

/3g>y,_2 \302\243

Here, for example, /3J\"' captures the effect of the current price level on the interest

rate that the central bank tries to achieve. The disturbance uf captures changes
in policy that cannot be describedas a deterministic function of current and lagged
money, the price level, income, and the interest rate. If the money demand dis-

disturbance uf is unusually large, this will make M, unusually large. If/Si'J' > 0, this

would cause /, to be unusually large as well, in which case uf would be positively

correlated with the explanatory variable /, in equation [11.6.5]. Thus, [11.6.5]

cannot be estimated by OLS.

Nor is central bank policy and endogeneity of /, the only reason to be con-
concerned about simultaneous equations bias. Money demand disturbances and changes
in central bank policy also have effects on aggregate output and the price level, so
that Y, and P, in [11.6.5] are endogenous as well. An aggregate demand equation,
for example, might be postulated that relates the level of output to the money
supply, price level, and interest rate:

Y, = kt
+ /3<iMf /3<>/> + /3<'>r, + /8<\320\243/,-,

[\320\246.6.7]

+ j8<24>/,_2 + \342\200\242\342\226\240\342\200\242

with uf representing other factors influencing aggregate demand. Similarly, an

aggregate supply curve might relate the aggregate price level to the other variables

being studied. The logical conclusion of such reasoning is that all of the date t

explanatory variables in [11.6.5] should be treated as endogenous.

Relation Between Dynamic Structural Models

and Vector Autoregressions

The system of equations [11.6.5] through [11.6.7](along with an analogous
aggregate supply equation describing P,) can be collectedand written in vector
form as

Boy,
= \320\272+ B,y,_, + B2y,_2 + \342\200\242\342\200\242\342\226\240+ Bpy,_p + u,, [11.6.8]
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where

\321\203,
=

(\320\234\342\200\236\320\240\342\200\236\320\243\342\200\236/,)'

\320\270,
=

(\320\270?,\320\270?,\320\270?,\320\270?I

1 \"\"Pit

\320\222\342\200\236
=

2I 1

1

P43

'24

\320\272=
(\320\272\342\200\236\320\2722,\320\2723,

and \320\222,is \320\260D \321\2054) matrix whose row 1, column j element is given by /8
\342\200\242*'for 5 =

1,2 /?. A large class of structural models for an (\302\253x 1) vector y, can be

written in the form of [11.6.8].
Generalizing the argument in [11.6.3], it is assumed that a sufficient number

of lags of p are included and the matrices B, are defined so that u, is vector white

noise. If instead, say, u, followed an rth-order VAR, with

u,
= F,u,_, + F,u(_, + \342\226\240\342\226\240\342\226\240+ Fru,_r + e,,

then we could premultiply [11.6.8] by (I,,
- F, L' -

F,L2 - \342\200\242\342\200\242\342\200\242- F,.Lr) to arrive

at a system of the same basic form as [11.6.8]with p replaced by {p + r) and with

u, replaced by the white noise disturbance e,.
If each side of [11.6.8] is premultiplied by B,7', the result is

\321\203,
= \321\201+ \320\244,\321\203,_,+ \320\244,\321\203,_,+ \342\226\240\342\226\240\342\200\242+ \320\244\342\200\236\321\203,_\321\200

+ \320\265\342\200\236

where

\321\201=
\320\222,\320\263'\320\272

\320\244\320\273
=

\320\222,\320\263'\320\222,

\320\265,
=

\320\222,\320\263\320\247-

for 5 = 1, 2 \321\200

[11.6.9]

[11.6.10]

[11.6.11]

[11.6.12]

Assuming that [11.6.8] is parameterized sufficiently richly that u, is vector white

noise, then e, will also be vector white noise and [11.6.9] will be recognized as the
vector autoregressive representation for the dynamic structural system [11.6.8].
Thus, a VAR can be viewed as the reduced form of a general dynamic structural

model.

Interpreting Impulse-Response Functions

In Section 11.4 we calculated the impulse-response function

%4 [11.6.13]

This magnitude describes the effect of an innovation in the jth variable on future

values of each of the variables in the system. According to [11.6.12], the VAR
innovation ejt is a linear combination of the structural disturbances u,. For example,
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it might turn out that

\320\265\342\200\236
= 0.3u,D

-
0.6\320\274?+ 0.1\320\274?

- 0.5uf.

In this case, if the cash held by the public is larger than would have been forecast
using the VAR (eu is positive),this might be because the public's demand for cash
is higher than is normally associated with the current level of incomeand interest

rate (that is, uf is positive).Alternatively, \320\265\342\200\236might be positive because the central

bank has chosen to ease credit (uf is negative), or a variety of other factors. In

general, bxi represents a combination of all the different influences that matter for

any variables in the economy.Viewed this way, it is not clear why the magnitude
[11.6.13]is of particular interest.

By contrast, if we were able to calculate

[11.6.14]

this would be of considerable interest. Expression [11.6.14] identifies the dynamic

consequences for the economy if the central bank were to tighten credit more than

usual and is a key magnitude for describing the effects of monetary policy on the

economy.
Section 11.4 also discussed calculation of an orthogonalized impulse-response

function. For il =
\302\243(e,el), we found a lower triangular matrix A and a diagonal

matrix D suctrthat il = ADA'. We then constructed the vector A~'e, and calcu-

calculatedthe consequences of changes in each element of this vector for future values

of y.
Recall from [11.6.12] that the structural disturbances u, are related to the

VAR innovations e, by

u,
= Bee,. [11.6.15]

Suppose that it happened to be the case that the matrix of structural parameters

B,, was exactly equal to the matrix A \"'. Then the orthogonalized innovations would
coincide with the true structural disturbances:

u,
= Boe, = A-'e,. [11.6.16]

In this case, the method describedin Section 11.4 could be used to find the answers
to important questions such as [11.6.14].

Is there any reason to hope that Bo and A ~'
would be the same matrix? Since

A is lower triangular, this clearly requires Bu to be lower triangular. In the example

[11.6.8], this would require that the current values of P, Y, and / do not influence

money demand, that the current value of M but not that of Y or / enters into the

aggregate supply curve, and so on. Such assumptions are rather unusual, though

there may be another way to order the variables such that a recursive structure is

more palatable. For example, a Keynesian might argue that prices respond to other

economic variables only with a lag, so that the coefficients on current variables in

the aggregate supply equation are all zero. Perhaps money and interest rates in-

influence aggregate demand only with a lag, so that their current values are excluded
from the aggregate demand equation. One might try to argue further that the

interest rate affects desired money holdings only with a lag as well. Becausemost

central banks monitor current economicconditions quite carefully, perhaps all the

current values should be included in the equation for /,. Theseassumptions suggest

ordering the variables as y,
= (/\",, Y,, M,, /,)', for which the structural model would
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be

\321\203,

\320\274,

i,

'\320\272,

\320\272\320\263

\320\272\320\263

0

0

(\302\253\320\236
\320\2332

42*

0

0

0

\320\240~43

0

0

0

0

\321\200,

\320\243,

I,

\"\320\264(|)\320\264\320\236)
Pll Pl2

\320\264A>\320\276A)
\320\240\320\270\320\240\320\263\320\263

\320\276\320\236)\320\276A)
\320\240\320\2671\320\240.12

(>
\320\263\320\267

\320\236)

\320\264('
\320\240|4

(')

\321\207\320\227\320\2404

[11.6.17]

\\\\ PI2

21 \320\24022

ail') ail')
3 \320\240\320\2332

a(i>)

air) ail') ail') a
\320\240\320\274\320\24042P43 P

.1')

24

if)

il>)
44

VP 1

\321\203'-,

\320\274,'',

J-i:

+

- sq

\320\270?

Suppose there exists such an ordering of the variables for which \320\222\342\200\236is lower

triangular. Write the dynamic structural model [11.6.8] as

\320\222\342\200\236\321\203,
=

-\320\223\321\205,+ u,, [11.6.18]

where

\320\262,]^\342\200\236,-lk
B, B2

\"
1

\"

\320\243/-1

\320\243/-2

Suppose, furthermore, that the disturbances in the structural equations are serially

uncorrelated and uncorrelated with each other:

D for f = \321\202

0 otherwise,
[11.6.19]

where D is a diagonal matrix. The VAR is the reduced form of the dynamic structural
model [11.6.18]and can be written as

\321\203,
=

\320\237'\321\205,+ \320\265\342\200\236 [11.6.20]

where

\320\237'=
-\320\222(\320\223'\320\223 [11.6.21]

e, =
\320\222\302\253\320\263\320\247- [11.6.22]

Letting ft denote the variance-covariance matrix of \302\243\342\200\236[11.6.22] implies

ft =
\302\243(e,e,')

=
Bo-'\302\243A1,11; )(B0-')'

= B(r'D(B(r')'. [11.6.23]
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Note that if the only restrictions on the dynamic structural model are that B,,

is lower triangular with unit coefficients along the principal diagonal and that D is

diagonal, then the structural model is just identified. To see this, note that these
restrictions imply that B,7' must also be lower triangular with unit coefficients along

the principal diagonal. Recall from Section 4.4 that given any positive definite

symmetric matrix ft, there exist a unique lower triangular matrix A with Is along

the principal diagonal and a diagonal matrix D with positive entries along the

principal diagonal such that ft = ADA'. Thus, unique values B,7' and D of the

required form can always be found that satisfy [11.6.23]. Moreover, any BA matrix

of this form is nonsingular, so that \320\223in [11.6.21] can be calculated uniquely from

Bo and \320\237as \320\223=
-\320\222,,1\320\223.Thus, given any allowable values for the reduced-form

parameters (\320\237and ft), there exist unique values for the structural parameters (B,,,
\320\223,and D) of the specified form, establishing that the structural model is just

identified.

Since the model is just identified, full-information maximum likelihood (FIML)
estimates of (\320\222\342\200\236,\320\223,and D) can be obtained by first maximizing the likelihood

function with respect to the reduced-form parameters (\320\237and ft) and then using
the unique mapping from reduced-form parameters to find the structural param-
parameters.The maximum likelihood estimates of \320\237are found from OLS regressions of
the elements of y, on x,, and the MLE of ft is obtained from the variance-covariance
matrix of the residuals from these regressions.The estimates B(;\"' and D are then

found from the triangular factorization of ft. This, however, is precisely the pro-
procedure described in calculating the orthogonalized innovations in Section 11.4. The
estimate A described there is thus the same as the FIML estimate of B,7'. The
vector of orthogonalized residuals u, = A

\"
'e, would correspond to the vector of

structural disturbances, and the orthogonalized impulse-response coefficients would

give the dynamic consequences of the structural events represented by u,, provided
that the structural model is lower triangular as in [11.6.17].

Nonrecursive Structural VARs

Even if the structural model cannot be written in lower triangular form, it

may be possible to give a structural interpretation to a VAR using a similar idea
to that in equation [11.6.23]. Specifically, a structural model specifies a set of
restrictions on B,, and D, and we can try to find values satisfying these restrictions
such that B,;-'D(B,7')' = ft- This point was developed by Bernanke A986), Blan-
chard and Watson A986), and Sims A986).

For illustration, consider again the model of supply and demand discussed in

equations [9.3.2] and [9.3.3]. In that specification, quantity (q,) and price (p,) were

endogeneous variables and weather (vf,) was exogenous, and it was assumed that
both disturbances were i.i.d. The structural VAR approach to this model would

allow quite general dynamics by adding p lags of all three variables to equations
[9.3.2] and [9.3.3], as well as adding a third equation to describe the dynamic
behavior of weather. Weather presumably does not depend on the behavior of the

market, so the third equation would for this example just be a univariate auto-

regression. The model would then be

q, = &, + /\320\261',1,\302\273?,-,+ /S'li'P.-! + /3(ii4-i
+ /S',1'9,-2+ Pl$P,-2+ P\\>,-2 + \342\226\240\342\226\240\342\226\240

[\320\237.6.24]
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q, = yp, + hw, + &\\>q,_, + /322>p,_, + &!>,-,
+ /3<\302\2739,_2+ Plgp,-2 + /\320\227\320\231\320\247-2+ \342\226\240\342\226\240\342\226\240

[11.6.25]

*, =
/\320\267&\321\207..+ p$w,_2 + \342\226\240\342\226\240\342\226\240+ /s'jS'^.p + \302\253;\342\226\240-.[n.6.26]

We could then take (uf, uf, u\"')' to be a white noise vector with diagonal variance-
covariance matrix given by D. This is an example of a structural model [11.6.18]
in which

B(, = 1 -y -h\\.
Lo \320\276 i J

[11.6.27]

There is no way to order the variables so as to make the matrix B,, lower

triangular. However, equation [11.6.22] indicates that the structural disturbances

u, are related to the VAR residuals e, by e,
= B,7'u,. Thus, if B,, is estimated by

maximum likelihood, then the impulse-response functions could be calculated as
in Section 11.4 with A replaced by B,7', and the results would give the effects of
each of the structural disturbances on subsequent values of variables of the system.
Specifically,

so that the effect on e, of the /th structural disturbance uf, is given by \320\254\320\233the ;'th
column of B,7'. Thus, we would calculate

\320\255\320\271,-,\320\255\320\265;\320\264\320\270\320\274

for \320\244,the (\320\270x n) matrix of coefficients for the 5th lag of the MA(<*>) representation

[11.4.1].

FIML Estimation of a Structural VAR

with Unrestricted Dynamics

FIML estimation is particularly simple if there are no restrictions on the

coefficients \320\223on lagged variables in [11.6.18]. For example, this would require
including lagged values of

p,_y
and q,_t in the weather equation [11.6.26]. Using

[11.6.23], the log likelihood function for the system [11.6.18]can be written as

1, D, \320\237)
= -Gn/2) logBir)

-
(\320\223/2)

-
A/2) \302\243[\320\243,

-
n'x,]'[B,71D(B(r1)']-1[y,

-
\320\237'\321\205,].

If there are no restrictions on lagged dynamics, this is maximized with respect to
\320\237by OLS regression of y, on x,. Substituting this estimate into [11.6.28] as in
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[11.1.25]produces

2(\320\222(\342\200\236D, \320\237)
= -GV2) logB\302\253)

-
(\320\223/2)log|BG'D(BG')'|

\302\243 [11.6.29]- A/2) 2 ft;[Blr1D(Bu-')']-\302\253,.

But

2 \321\221\320\257\320\222.\320\223^\320\222.\321\2031)']-1^
= S trace{e;[BG'D(BG')']-'\302\253,}

= 2 trace{[B(r'D(BG')']-1e,e;}'-' [11.6.30]=
trace{[B(r1D(BG1)']-T-ft}

= T x trace{[B,71D(B,7l)']-|ft}
= T x trace{(B,',D-1B(,)ft}-

Furthermore,

log|BG'D(BG')'| = log{|BG'|-|D|-|BG'|} = -log|B,,|2+ log|D|. [11.6.31]
Substituting [11.6.31] and [11.6.30] into [11.6.29],F1ML estimates of the structural
parameters are found by choosing B,, and D so as to maximize

2(\320\222,\342\200\236D,<n) = -(Tn/2) logBtr) + (\320\223/2)log|B,,|2
-

(\320\223/2)log|D|
fi 3

- G72)trace{(B(',D-1B,,)ft}.

Using calculations similar to those used to analyze [11.1.25], one can show
that if there exist unique matrices BA and D of the required form satisfying

B,7'0(8,7')' = ft, then maximization of [11.6.32] will produce estimates \320\222\342\200\236and

D satisfying

B^'D^r1)' = ft. [11.6.33]
This is a nonlinear system of equations, and numerical maximization of [11.6.32]
offers a convenient general approach to finding a solution to this system of

equations.

Identification of Structural VARs

The existence of a unique maximum of [11.6.32] requires both an order

condition and a rank condition for identification. The order condition is that B(l

and D have no more unknown parameters than ft. Since ft is symmetric, it can
be summarized by n{n + l)/2 distinct values. If D is diagonal, it requires n param-
parameters,meaning that B(l can have no more than \302\253(\302\253

\342\200\224
l)/2 free parameters. For the

supply-and-demand example of [11.6.24] through [11.6.26],n = 3, and the matrix

Bo in [11.6.27] has 3C -
l)/2

= 3 free parameters (J3,y, and h). Thus, that example
satisfies the order condition for identification.

Even if the order condition is satisfied, the model may still not be identified.
For example, supposethat

\021 -/3 0]
1 -y 0 .

.0 0 lj
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Even though this specification satisfies the order condition, it fails the rank con-
condition, since the value of the likelihood function will be unchanged if /8 and \321\203are

switched along with a2, and a1..

To characterize the rank condition, suppose that there are nB elements of B(,

that must be estimated; collect these in an (nB x 1) vector 6e. The identifying

assumptions can be represented as a known (n1 x nB) matrix Sfl and a known

{n2 x 1) vector sn for which

vec(B0) = Ssefl+ ss. [11.6.34]
For example, for the dynamic model of supply and demand represented by [11.6.27],

1

vec(B0) =

1
0

-p
-y

0

0

-h

1

0

0

0

-1
0
0
0
0
0

0
0
0
0
-1

0

0

0

0

efl =

0
0
0
0
0
0
0

-1
0

ss
=

1

1

0

0

0

0
0
0
1

Similarly, collect the unknown elements of D in an (\320\270\320\276x 1) vector 6O, with

vec(D)
= SO6O + so [11.6.35]

forSo an (\320\2702x nD) matrix and so an (n2 x 1) vector. For the supply-and-demand

example,

vec(D) =

Sn =

\320\276

\320\276

\320\276

\320\276'

\320\276

\320\276

\320\2602

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0
0
0
0
0
1

So =

0
0

0

0

0

0

0

0

0

11.6. Vector Autoregressions and Structural Econometric Models 333



_
[\"a~

L

Since [11.6.33] is an equation relating two symmetric matrices, there are
n* = n(n + l)/2 separate conditions, represented by

vech(ft) =
vech^B,,(es)]-'[D(eo)]{[B,,(efl)]-\342\226\240}').

[11.6.36]

Denote the right side of [11.6.36] by fF,,, 6O), where f: (R\"\302\273x R\"\302\273)-> U\"':

vech(ft) = f(en,eo). [11.6.37]
Appendix 11.\320\222shows that the [n* x (\321\217\321\217+ nD)] matrix of derivatives of this

function is given by

\"a vech(ft) a
vech(ft)~|

L e Wo J [11.6.38]

= [[-2D,r(ft \302\256Bi-'JSJ D,r((B,r') \302\256
(B,7')]SOJ,

where D* is the (n* x n2) matrix defined in [11.1.45].
Suppose that the columns of the matrix in [11.6.38] were linearly dependent;

that is, suppose there exists a nonzero [{nB + nD) x 1]vector \\ such that JX = 0.
This would mean that if a small multiple of \\ were added to (Q'B,Q'D)', the model

would imply the same probability distribution for the data. We would have no basis
for distinguishing between these alternative values for (\320\262\320\264,\320\262\302\243>),meaning that the
model would be unidentified.

Thus, the rank condition for identification of a structural VAR requires that

the (nB + nD) columns of the matrix J in [11.6.38] be linearly independent.12 The
order condition is that the number of rows of J (\320\270*

= n(n + l)/2) be at least as

great as the number of columns.
To checkthis condition in practice, the simplest approach is usually to make

a guess as to the values of the structural parameters and check J numerically.
Giannini A992) derived an alternative expression for the rank condition and pro-
provided computer software for checking it numerically.

Structural VAR with Restrictions on \320\237

The supply-and-demand example of [11.6.24]to [11.6.26] did not satisfy the

assumptions behind the derivation of [11.6.32],because[11.6.26]imposed the

restriction that lagged values of p and q did not belong in the weather equation.

Where such restrictions are imposed, it is no longer that case that the FIML
estimates of \320\237are obtained by OLS, and system parameters would have to be

estimated as described in Section 11.3. As an alternative, OLS estimation of [11.6.24]
through [11.6.26] would still give consistent estimates of \320\237,and the variance-
covariance matrix of the residuals from these regressions would provide a consistent
estimate ft. One could still use this estimate in [11.6.32], and the resulting max-
maximization problem would give reasonable estimates of Bo and D.

Structural VARs and Forward-Looking Behavior

The supply-and-demand example assumed that lagged values of price and

quantity did not appear in the equation for weather. The spirit of VARs is that

'This condition characterizes local identification; it may be that even if a model satisfies both the
rank and the order condition, there are two noncontiguous values of (\320\262'\342\200\236,\320\262',,)for which the likelihood

has the same value for all realizations of the data. See Rothenberg A971, Theorem 6, p. 585).

334 Chapter 11 \\ Vector Autoregressions



such assumptions ought to be tested before being imposed. What should we con-
conclude if, contrary to our prior expectations, the price of oranges turned out to

Granger-cause the weather in Florida? It certainly cannot be that the price is a
cause of the weather. Instead, such a finding would suggest forward-looking be-
behavior on the part of buyers or sellers of oranges; for example,it may be that if

buyers anticipate bad weather in the future, they bid up the price of oranges today.
If this should prove to be the case, the identifying assumption in [11.6.24] that

demand depends on the weather only through its effect on the current price needs
to be reexamined. Proper modeling of forward-looking behavior can provide an
alternative way to identify VARs, as explored by Flavin A981), Hansen and Sargent
A981),and Keating A990), among others.

Other Approaches to Identifying Structural VARs

Identification was discussed in previous subsections primarily in terms of

exclusion restrictions on the matrix of structural coefficients Bo.Blanchard and

Diamond A989, 1990) used a priori assumptions about the signs of structural

parameters to identify a range of values of Bo consistent with the data. Shapiro
and Watson A988)and Blanchard and Quah A989) used assumptions about long-
run multipliers to achieve identification.

A Critique of Structural VARs

Structural VARs have appeal for two different kinds of inquiry. The first

potential user is someone who is primarily interested in estimating a structural

equation such as the money demand function in [11.6.1]. If a model imposes
restrictions on the dynamics of the relationship, it seems good practice to test these

restrictions against a more general specification such as [11.6.5] before relying on

the restricted model for inference. Furthermore, in order to estimate the dynamic
consequences of, say, income on money demand, we have to take into account the

fact that, historically, when income goes up, this has typically been associated with
future changes in income and interest rates. What time path for these explanatory
variables should be assumed in order to assess the consequencesfor money demand

at time t + s of a change in income at time f? A VAR offers a framework for
posing this question

\342\200\224we use the time path that would historically be predicted
for those variables following an unanticipated change in income.

A second potential user is someone who is interested in summarizing the

dynamics of a vector y, while imposing as few restrictions as possible.Insofar as

this summary includes calculation of impulse-response functions, we need some
motivation for what the statictics mean.Supposewe find that there is a temporary
rise in income following an innovation in money. One is tempted to interpret this

finding as suggesting that expansionary monetary policy has a positive but tem-

temporary effect on output. However, such an interpretation implicitly assumes that

the orthogonalized \"money innovation\" is the same as the disturbance term in a

description of central bank policy. Insofar as impulse-responsefunctions are used

to make statements that are structural in nature, it seems reasonable to try to use
an orthogonalization that represents our understanding of these relationships as
well as possible. This point has been forcefully argued by Cooley and LeRoy A985),
Learner A985), Bernanke A986), and Blanchard A989), among others.

Even so, it must be recognized that convincing identifying assumptions are
hard to come by. For example, the ordering in [11.6.17] is clearly somewhat ar-

arbitrary, and the exclusion restrictions are difficult to defend. Indeed, if there were

compelling identifying assumptions for such a system, the fierce debates among
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macroeconomists would have been settled long ago! Simultaneous equations bias
is very pervasive in the social sciences, and drawing structural inferences from
observedcorrelations must always proceed with great care. We surely cannot always

expect to find credible identifying assumptions to enable us to identify the causal
relations among any arbitrary set of n variables on which we have data.

11.7. Standard Errors for Impulse-ResponseFunctions
Standard Errors for Nonorthogonalized Impulse-Response
Function Based on Analytical Derivatives

Section 11.4 discussed how \320\244,,the matrix of impulse-response coefficients
at lag s, would be constructed from knowledge of the autoregressive coefficients.
In practice, the autoregressive coefficients are not known with certainty but must
be estimated by OLS regressions. When the estimated values of the autoregressive
coefficients are used to calculate \320\244\342\200\236it is useful to report the implied standard
errors for the estimates \320\244,.13

Adopting the notation from Proposition 11.1, let A- = np + 1 denote the

number of coefficients in each equation of the VAR and let \321\202\320\263= vec(II) denote
the (nk x 1) vector of parameters for all the equations; the first \320\272elements of \321\202\320\263

give the constant term and autoregressive coefficients for the first equation, the

next \320\272elements of \321\202\320\263give the parameters for the second equation, and so on. Let
\321\204,

= vecD';).denote the (n3 x 1)vectorof moving average coefficients associated
with lag s. The first n elements of \321\204,are given by the first row of \320\244,and identify
the response afyiJ+s to e,. The next n elements of \321\204,are given by the second row

of \320\244,and identify the response ofy2j+s to e,, and so on. Given the values of the

autoregressive coefficients in it, the VAR can be simulated to calculate \321\204(.Thus,

\321\204,could be regarded as a nonlinear function of \321\202\320\263,represented by the function

\321\204,(\321\202\320\263),\321\204,:R\"A-> R\022.

The impulse-response coefficients are estimated by replacing \321\202\320\263with the OLS
estimates \320\265\321\202\321\202,generating the estimate <j\302\273,.iT

=
\321\204,('\320\277\321\202).Recall that under the con-

conditions of Proposition 11.1, y/T^r -
\321\202\320\263)\342\200\224\302\273X, where

X ~ nU,
(ft\302\256Q-')J.

[11.7.1]

Standard errors for \321\204,can then be calculated by applying Proposition 7.4:

VT(^T -
\321\204,)\320\233G,X,

where

G. -SbM. [11.7.2]
(n- x ilk) Of

That is,

\320\243/\320\251,.\321\202
~

\320\244.)-^

tf(o,
G.v(ft \302\256Q-')G;V [11.7.3]

Standard errors for an estimated impulse-response coefficient are given by the

\"Calculations related to those developed in this section appeared in Baillie A987), Liitkepohl A989,

1990), and Giannini A992). Giannini provided computer software for calculating some of these mag-
magnitudes.
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square root of the associated diagonal element of (l/r)GvT(ftT(x)Qf')G;7, where

-
_ \320\260\321\204,(\321\202

\302\253.*,.

with x, and ft, as defined in Proposition 11.1.
To apply this result, we need an expression for the matrix G, in [11.7.2].

Appendix 11.\320\222to this chapter establishes that the sequence {GJ\021, can be cal-
calculated by iterating on

g, = [i,, \302\256@,,, *;_, *.:_, \342\226\240\342\226\240\342\226\240
*;_,)] + (\320\244,\302\256ijg,_,

Here 0,,, denotes an (n x 1) vector of zeros. The iteration is initialized by setting
G,, = G_, = \342\200\242\342\226\240\342\226\240=

G_,, + 1
=

0,,;,,A. It is also understood that \320\244A
= I,, and

% = a,,,, for s < 0. Thus, for example,
G, = [I,\302\256@\342\200\236,I,, 0,,,,

\342\226\240\342\226\240\342\226\240
0,,,,)]

G2 = [I,, \302\256@,\342\200\236\320\244; I,,
\342\226\240\342\226\240\342\226\240

0,,,,)] + (\320\244,\302\256I,,)G,.

A closed-form solution for [11.7.4] is given by

g. \302\253.\302\243[*,., \302\256(o(ll *;_, *;_,_, \342\226\240\342\226\240\342\226\240
*;_,_p+1)]. [11.7.5]

Alternative Approaches to Calculating Standard Errors
for NonorthogonalizedImpulse-ResponseFunction

The matrix of derivatives G, can alternatively be calculated numerically as

follows. First we use the OLS estimates \321\202\320\263to calculate \321\204,(\302\253)for 5 = 1, 2
m. We then increase the value of the ith element of \321\202\320\263by some small amount \320\224,

holding all other elements constant, and evaluate \321\204,(\321\202*+ e;A) for s = 1, 2
m, where e, denotes the ith column of l,,k. Then the (n- x 1) vector

\302\273,(\302\273+ \320\265,\320\224)
-

\321\204,(\321\202\320\263)

\320\233

gives an estimate of the ith column of G,. By conducting separate evaluations of
the sequence \321\204\320\224\321\202\320\263+ \320\265,\320\224)for each i = 1,2,..., nk, all of the columns of G,
can be filled in.

Monte Carlo methods can also be used to infer the distribution of \321\204.,(<\320\263).

Here we would randomly generate an (nk x 1) vector drawn from a N(it,
(l/r)(ft \302\256Q~')) distribution. Denote this vector by 7rA), and calculate \321\204,(\321\202\320\263A)).

Draw a second vector \321\202\320\263<2)from the same distribution and calculate \321\204\320\263(\321\202\320\263B)).Repeat
this for, say, 10,000 separate simulations. If 9500 of these simulations result in a

value of the first element of \321\204\320\273that is between \321\204\320\260{and $,,, then (j^,,, if,,) can be
used as a 95% confidence interval for the first element of \321\204\320\273.

Runkle A987) employed a related approach based on bootstrapping. The idea
behind bootstrapping is to obtain an estimate of the small-sample distribution of

\342\200\242nwithout assuming that the innovations e, are Gaussian. To implement this pro-
procedure, first estimate the VAR and save the coefficient estimates fr and the fitted
residuals {\321\221,,\321\2212,. . . , \321\221\321\202).Then consider an artificial random variable u that has

probability A/\320\223)of taking on each of the particular values {\321\221,,\321\2212,. \342\226\240\342\226\240, \321\221\321\202}.The
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hope is that the distribution of u is similar to the distribution of the true population
e's. Then take a random draw from this distribution (denoted u',\.") ar)d use this
to construct the first innovation in an artificial sample; that is, set

y',\" = e + \320\244,\321\203\342\200\236+ \320\2442\321\203_,+ \342\226\240\342\226\240\342\226\240+
\320\244\320\264_,,+ 1 + u',11,

where \321\203\342\200\236,y_,,. . . , and y_,,+ 1 denote the presample values of \321\203that were actually
observed in the historical data. Taking a seconddraw u,1', generate

y<'>
= \321\201+ \320\244.\321\203!\302\273+ \320\2442\321\203\342\200\236+ \342\226\240\342\226\240\342\226\240+

\320\244\342\200\236\321\203_\342\200\236+2
+ u<\302\273.

Note that this second draw is with replacement; that is, there is a (l/\320\223)chance

that \320\270'/'is exactly the same as u2\". Proceeding in this fashion, a full sample

{y[l\\ y2() \321\203',!1}can be generated. A VAR can be fitted by OLS to these
simulated data (again taking presample values of \321\203as their historical values),,
producing an estimate frA). From this estimate, the magnitude \321\204\320\273(\321\202\320\263A))can be

calculated. Next, generate a second set of T draws from the distribution of u,
denoted {u(B), u22), . . . , u(^}, fit \321\202\320\263B)to these data by OLS, and calculate

\320\244\302\273(*B))'A series of 10,000 such simulations could be undertaken, and a 95%
confidence interval for \321\204\320\273{\"\320\277)is then inferred from the range that includes 95%
of the values for #,,(\302\253<\.

Standard Errors for Parameters of a Structural VAR

Recall from Proposition 11.2 and equation [11.1.48] that if the innovations
are Gaussian,

vT[vech(ftr) -
vech(ft)]

\320\233NU), 2D,t(Sl \302\256
H)(D+)'J.

The estimates of the parameters of a structural VAR (Bo and 6) are determined

as implicit functions of ft from

ft = VfyB,:1)'- [n.7.6]
As in equation [11.6.34], the unknown elements of Bn are summarized by an

(\320\277\321\217x 1) vector 6B with vec(BA)
= Sn6e + sB. Similarly, as in [11.6.35], it is

assumed that vec(D) = SO6O+ so for 6O an (nD x 1)vector. It then follows from

Proposition 7.4 that

VT(es.r
-

\320\262\321\217)
-\302\273A/I 0, 2GsD,r(ft\302\256 H)(Dn+)'Gel [11.7.7]

VT(eo.r- \320\262\320\276)\320\233A/(O, 2GoDn+(O\302\256ft)(D,r)'Gb), [11.7.8]

where

[11.7.10]
and n* = n(n + l)/2.

Equation [11.6.38] gave an expression for the [n* x (nB + nD)] matrix:

\320\223\321\215vech(ft) \320\255vech(ft)l

L \320\267\320\262\320\262 \320\227\320\262\320\254J'

We noted there that if the model is to be identified, the columns of this matrix

must be linearly independent. In the just-identified case, n* =
(nn + nD) and J\021
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exists, from which

= J [11.7.11]

StandardErrorsfor Orthogonallzed

Impulse-Response Functions

Section 11.6 describedcalculation of the following (\321\217x n) matrix:

H, =
\320\244.\320\224\320\233 [11.7.12]

The row i, column / element of this matrix measures the effect of the /th structural

disturbance (uy,)
on the ith variable in the system (yLl+,) after a lag of s periods.

Collect these magnitudes in an (\320\2702x 1) vector h, = vec(H;,).Thus, the first n

elements of h, give the effect of u, on y,,,+,,, the next n elements give the effect of
u, on \320\243\320\263.,+1,and so on.

Since \320\244,is a function of \321\202\320\263and since B(l is a function of vech(ft), the distri-

distributions of both the autoregressive coefficients and the variances affect the asymp-
asymptoticdistribution of h,. It follows from Proposition 11.2 that with Gaussian in-

innovations.

VT(hv.r
- h,)

\320\276\342\204\242-]GO) [11.7.13]0

\\
' \"\"

where Appendix 11.\320\222demonstrates that

B. = Sb,/9n' = [I,,\302\256(B,1,)\" ']G, [11.7.14]

Hff
=

,,
***'

,
=

-[Hv\302\256 (B,',)-']SH.Gn. [11.7.15]
a[vech(ft)]'

^ l ]

Here G, is the matrix given in [11.7.5], GB is the matrix given in [11.7.11|, and SH
is an (\320\2702x nB) matrix that takes the elements of \320\262\320\264and puts them in the corre-

corresponding position to construct vec(B,')):

vec(B,',)= S,,.6e+ sn..

For the supply-and-demand examplesof [11.6.24]to [11.6.26],

\020 0 0

S,, =

\342\200\224

0

0

0

0

0

0

0

1 0

0

0

-1
0
0
0
0

0
0
0
0
-1
0

0

0

Practical Experience with Standard Errors

In practice, the standard errors for dynamic inferences based on VARs often

turn out to be disappointingly large (see Runkle, 1987, and Liitkepohl, 1990).
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Although a VAR imposes few restrictions on the dynamics, the cost of this generality

is that the inferences drawn are not too precise. To gain more precision, it is
necessary to impose further restrictions. One approach is to fit the multivariate

dynamics using a restricted model with far fewer parameters, provided that the

data allow us to accept the restrictions. A second approach is to place greater
reliance on prior expectations about the system dynamics. This second approach
is explored in the next chapter.

APPENDIX 11.A. Proofs of Chapter11Propositions

\342\226\240Proof of Proposition 11.1. The condition on the roots of [11.1.35]ensures that the MA(x)
representation is absolutely summable. Thus y, is ergodic for first moments, from Propo-
Propositions10.2(b) and 10.5(a), and is also ergodic for secondmoments, from Proposition l().2(d).

This establishes result ll.l(a).
The proofs of results (b) and (c) are virtually identical to those for a single OLS

regression with stochastic regressors (results [8.2.5]and [8.2.12]).
To verify result (d), notice that

\302\243

and so

fll.A.l]

where

Define |, to be the following (nk x 1) vector:

Vf(TTj.
- 1t) =

Qf1 (I'VT) 2 \\ey

Notice that |, is a martingale difference sequencewith finite fourth moments and variance

\302\243(x,x,')\342\226\240\302\243(\302\243?,)E(x,x',)-E(el,e2l)
\342\226\240\342\226\240\342\226\240

\302\243(x,x,')\342\226\240\302\243(\302\243\342\200\236\302\243,\342\200\236)

:(ei)
\342\226\240\342\226\240\342\226\240

\302\243(x,x,')\342\226\240\302\243(\302\243!\302\243,\342\200\236)

(emea)
\342\226\240\342\226\240\342\226\240

\320\225(\321\205,\321\205',)-\320\225(\320\265}\342\200\236)

E(si)

\320\225(\320\265?\342\200\236)_

= ft\302\256Q.

It can further be shown that

ts; [11.A.2]
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(see Exercise11.1).It follows from Proposition 7.9 that

Now, expression [11.A.I] can be written

VT(tt7
-

\321\217)

[11.A.31

Q,' 0 \342\226\240\342\226\240\320\236

\320\236QT>
\342\226\240\342\226\240\342\226\240\320\236

\320\236 0 \342\226\240\342\226\240\342\226\240Qr

A/VT) 2 \321\205,\320\265

(l/VT) \320\243x,t-,,,

But result (a) implies that Qf' -^ Q \"'. Thus,

V7(tt7 -
\321\202\320\263)\320\233(I,, \302\256Q -')A/vT) 2 t. [11.A.4]

But from [11.A.3]. this has a distribution that is Gaussian with mean 0 and variance

as claimed. \342\226\240

\342\226\240Proof of Proposition 11.2. Define \320\237*= (l/TJ/\",,,e,e,' to be the estimate of ft based
on the true residuals. We first note that ft7 has the same asymptotic distribution as ft*.
Toseethis, observe that

(\320\2377
-

\320\237\321\203\321\205,]1

\321\202

=
\320\260/\320\263)|(\321\203,-\320\277

+ (\320\2377
-

\320\237)'A/7

=
\320\2377+ (\320\237\320\263

-
\320\237)'

;.\321\205,+ (\320\2717
- \320\277

^\321\205,)(\321\203,
-

\320\237,,)

1 t \320\245\320\233'(\320\2317
-

7\"

\320\237)

\321\202_\320\237),

where cross-product terms were dropped in the third equality on the right in the light of
the OLS orthogonality condition (UT)IJ,,(\321\203,

-
\320\237'\321\202\\)\321\205',

- \320\236.Equation [11.A.5] implies
that

= (flr
-

\320\237)' x,x,'[VT(n7
-

But Proposition 11.1 established that (\320\2377
-

\320\237)'-4 0, A/\320\223J,7=,\321\205,\321\205;
\320\233Q, and

Vf(Jlr -
\320\237)converges in distribution. Thus, from Proposition 7.3, VT(ft* -

ClT) -^ 0

meaning that VT(n? -
ft) \320\233Vf(ftr

-
\320\237).

Recalling [11.A.4],

VT[tt7 -\321\217] 1
\320\264

'ech(ftr)
- vech(ft)]J

2^
\320\242'\302\2531

[11.A.6]
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where \302\243,
= e, \302\256x, and

\\, = vech

e],
- au

\320\254\320\225\342\200\236
-

\320\241\320\223:,

,\342\200\236\302\243|,
-

\320\265\320\263\342\200\236,

^,
-

cr,3 \302\253,,\302\243,\342\200\236
-

cr,,,

\302\243,,\302\243,\342\200\236
-

\320\241\320\223\320\263\342\200\236

It is straightforward to show that (\302\243,',\\J)' is a martingale difference sequence that satisfies
the conditions of Proposition7.9, from which

(i/VT) 2

\320\247\320\235-&: \302\243])\342\200\242
|11\320\233-\"

where

\321\205\342\200\236

Recall from the proof of Proposition 11.1 that

A typical element of %l2 is of the form

\302\243(\302\273,\302\243;,)(\302\243\342\200\236\302\243/,
-

cr,v)
=

E(x,)-\302\243((;\342\200\236\302\243\342\200\236\302\243,,)
-

\320\260\342\200\236-\320\225(\321\205)-\320\225(\320\265\342\200\236),

which equals zero for all i, j, and /. Hence, [11.A.7]becomes

(l/Vr) 2

(i/Vt) \302\243\\,
\302\253(\320\271-[\302\260?Q \302\243])\342\200\242

and so, from [11.A.6],

7) - vech(n)]

Hence, Proposition 11.2 will be established if we can show that \302\243(\\,\\,')is given by the

matrix 2a describedin the proposition; that is, we must show that

-
\321\201\320\263\342\200\236)(\320\265\342\200\236\320\265\342\200\236\342\200\236\321\201\320\263\342\200\236\342\200\236\320\260>[11.\320\220.8]

for all i, /, /, and in.

To derive [11.A.8],let \320\237= PP' denote the Choleskydecomposition of \320\237,and define

v,sp-'e,. [U.A.9]
Then \302\243(v,v,')

=
\320\240-'\320\237(\320\240\"')'

= I,,. Thus, vn is Gaussian with zero mean, unit variance, and
fourth moment given by \302\243(vj)

= 3. Moreover, v;, is independent of vfl for i \321\204j.

Equation [11.A.9] implies

e, =
Pv(. [11.A.10]

Let pn denote the row i, column / element of P. Then the jth row of [11.A.10] states that

4 =
P;ivn + P12V2, + \342\226\240\342\200\242\342\200\242+ p,,,v,,, [ll.A.ll]

and

e\302\273eM
= (pnvu + pQv,_, + \342\200\242\342\226\240\342\226\240+ \321\200\342\200\236\321\203\342\200\236)X (Pl,vu + \321\200^\321\212+ \342\226\240\342\200\242\342\226\240+ p^v,,,). [11.A.12]

Secondmoments of e, can be found by taking expectations of [11. A. 12], recalling that

E(Vi,Vj,)
= 1 if i = j and is zero otherwise:

\320\225(\302\243\320\233,)
=

P.1P/1 + PaPr. + \342\226\240\342\226\240\342\226\240+ \321\200,\342\200\236\320\240/\342\200\236.[11.\320\220.13]
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Similarly, fourth moments can be found from

+ Pp.Pp.PllP,\342\200\2362+ ' ' \342\226\240+ Pi,,Pi,,Pl,,P,,J]
Pm2 + PliPiui + ' ' ' + Pl,,P,m)

+ {PaPp){Pl\\Pm\\ + PllP.M + ' \342\226\240' + Pi\302\273Pi,i.)+
\342\200\242\342\200\242\342\200\242

[(P<\\Pl,)(PP-P,,P- + \320\240\321\200\320\240\321\210\320\243+ ' \342\226\240' + \320\240,\342\200\236\320\240\342\200\236\342\200\236)

+ (PaPi2)(P,iP,,,, + AjA.u + \342\226\240\342\200\242\342\226\240+ \320\240\320\273\321\200,\342\200\236\342\200\236)+ \342\200\242\342\200\242\342\200\242

+ (P,,,Pi,)(Pi\\P,,a + \320\240\321\200.\320\240,\320\273+ \342\200\242\342\200\242\342\200\242+ P:J, ,A\302\273.\302\273-i)]

[(PnP,,,i)(Pp.Pi2 + PpPn. + \342\200\242' \342\200\242+ p,.,Pi,)
+ (Pl2P-,,2)(Pl\\Pn + PjlPn + ' ' \342\226\240+ P,,,Pl,) + \342\226\240' '

' '\342\226\240+ P,.,,-.P/.,,~|)]

+ [(P,.P;i + \320\240\320\273\320\240\320\265+ \342\226\240' ' + PbPhXPjiPmi + Pr-P-i + ' ' ' + \320\240/\342\200\236\320\240.\342\200\236,.)]

+ [(PilPml + \320\240,2\320\240\302\273\320\231+ ' ' \342\226\240+ Pi,,P,,,,,)(Pl\\Pn + PcPc + ' ' ' + \320\240,.,/\320\233.,)]

[II.A.14]

where the last line follows from [11.A.13]. Then

E[(e,v<v,
-

<\320\223(/)(\302\243/,\320\265\342\200\236\342\200\236
-

a,,.)}
=

\302\243(<r,,e,,e,,e.,,,)
-

<\321\203\321\206\320\260,,\342\200\236
=

\321\201\321\202,;\321\201\320\263,,\342\200\236+ \321\201\320\263.,\342\200\236\320\260>.

as claimed in [11.A.8]. \342\226\240

\342\226\240Proof of Proposition 11.3. First suppose that \321\203fails to Granger-cause \320\273-,so that the
processcan be written as in [11.2.4]. Define v2l to be the residual from a projection of f2,
on e,(, with bu defined to be the projectioncoefficient:

v2l
m e2l

- 6uS|,.

Thus, v2, and e,, are uncorrelated,and, recalling that e, is white noise,v,, must be uncorrelated
with e,T for all t \321\204\321\202as well. From the first row of [11.2.4], this means that v3, and .v, are
uncorrelated for all t and \321\202.With this definition of v2,, the second row of [11.2.4] can be
written as

\320\243,
= /*. + \320\2442,(\320\246\320\265\342\200\236+ <\320\253*-\320\226+ \320\254\342\200\236\320\265,,]. [11.A. 15]

Furthermore, from the first row of [11.2.4],

*'\342\200\236
= itnWU;- \320\270-,)- [\320\277.a.16]

Substituting [11.A.16] into [11.A.15] gives

\321\203,
= \321\201+ b(L)x, + 17,, [11.A. 17]

where we have defined b(L) =
{[\320\2442,(\320\246+ 6,,fe(t)][(/r,,(/-)]\"'}, \321\201= /u, - 6(l)/u,, and

1i = fe(^)vV But 7j,, being constructed from v2,, is uncorrelated with xTfor nil \321\202.Fui-

thermore, only current and lagged values of x, as summarized by the operator b(L), appear
in equation [11.A.17].We have thus shown that if [11.2.4] holds, then d, = 0 for all j in

[11.2.51.
To prove the converse, suppose that dt

= 0 for all / in [11.2.5]. Let

denotethe univariate Wold representation for x,\\ thus, i/r','11
= 1. We will be using notation

consistent with the form of [11.2.4] in anticipation of the final answer that will be derived;

for now, the reader should view [11.A.18] as a new definition of \302\253/^(Z-)in terms of the
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univariate Wold representation for x. There also exists a univariate Wold representation
for the error term in [11.2.5], denoted

\342\226\240\320\237,
= feO:,. [11.A.19]

with \321\204\320\263'1]
= 1. Notice that % as defined in [11.2.5] is uncorrectedwith x, for all t and s. It

follows that v-i, is uncorrelated with xr or e,T for all t and \321\202.

Substituting [U.A.18] and [11.A.19]into [11.2.5],

\321\203,
= \321\201+ 6(l)/u, + \320\254(\320\246\321\204\342\200\236(\320\246\320\265\320\270+ fc(L)v2l. [11.A.20]

Define

for 6,, the coefficient on L\" of b(L) and

ix2
\320\262\321\201

Observe that (\320\265,\342\200\236e,,)' is vector white noise. Substituting [11.A.21] and [11.A.22] into

[11.A.20] produces

y, =
ix, + [\320\254A,)\321\204\320\270(\320\246

-
\320\254\342\200\236\321\20422(

Finally, define

noting that \321\2042']'
= 0. Then, substituting this into [11.A.23] produces

This combined\" with [U.A.18] completesthe demonstration that [11.2.5] implies [11.2.4]. \342\226\240

APPENDIX ll.B. Calculation of Analytic Derivatives

This appendix calculates the derivatives reported in Sections 11.6 and 11.7.

\342\226\240Derivation of [11.6.38]. Let the scalar f represent some particular element of 6\342\200\236or 6,,,
and let dil/Bg denote the (n- x n2) matrix that results when each element of Q is differ-
differentiated with respect to \302\243Thus, differentiating [11.6.33] with respect to f results in

vafl. [u.b.i]

Define

'
[U.B.2]

and notice that

x' = (Bir')D[a(B,7')'/af],

since D is a variance-covariance matrix and must therefore be symmetric. Thus, [ll.B.l]
can be written

' + x'- [u.b.3]
Recall from Proposition 10.4 that

vec(ABC) =
(\320\241\302\256A)'vec(B). [11.B.4]

Thus, if the vec operator is applied to [U.B.3],the result is

\320\260\321\203\320\265\321\201(\320\237)

df
= vec(X + X') + [(B,7')\302\256(B,r')l vec(aD/af).
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Let D,,denote the (n- x n*) duplication matrix introduced in [11.1.43]. Notice that

for any (n x n) matrix x. the elements of D/, vec(x) are of the form x\302\253for diagonal elements
of x and of the form (x</ + Xit) f\302\260roff-diagonal elements. Hence, D,', vec(x)

=
D,' vec(x').

If [11.B.5] is premultiplied by D,| = (D,',D,,)'D,',, the result is thus

= 2D; vec(x)+ D;[(B,r')\302\256(\320\222.\320\2231)]vecCD/af), [11.B.6]

since from [11.1.46] D; vec(tl) = vech(tl).
Differentiating the identity B,7 'Bu =

I,, with respect to f produces

[ii.bj]
Thus, [11.B.2] can be written

x =
-\320\262,\320\263|(\321\215\320\2621,/\320\260?)\320\262,\320\263|\320\276(\320\262\342\200\236')'=-\320\262\342\200\236'(\320\273

Applying the vec operator as in [11.B.4] results in

\320\222vecfB,,)
vec(x) =

-(\302\253\302\256\320\222,\320\223')

Substituting this expression into [11.B.6] gives

\342\226\240\342\226\240-2D;(n \302\256\320\262,\320\263')a
veac(B|l)

+ d;[(b,, ') \302\256(\320\262,;1)]

= -2D,;(n \302\256B,r')S/, ^f +-D,r[(B,r') \302\256(B,r')]Sn ~.

Expression[11.B.8]is an (\321\217*x 1) vector that gives the effect of a change in some
element of 6\342\200\236or 6O on each of the n\" elements of vech(ft). If f corresponds to the first

element of 6\342\200\236,then \320\2229\342\200\236/\320\222\302\243= e,, the first column of the (nB x nB) identity matrix, and

aeo/af = 0. If f corresponds to the secondelement of 6\342\200\236,then \320\264\320\262\342\200\236/\320\222\302\243
-

e2. If we stack
the vectors in [11.B.8] associatedwith f = \320\262\342\200\236,, f =

\320\262\320\2222,. . . , f =
\320\262\321\217\342\200\236\321\217side by side, the

result is

[\"a
vech(fl) a vech(fl) a

vech(n)\"[

\320\2550\320\222., Mm \320\264\320\262\302\273.\342\200\236\342\200\236J
[I1.B.9]

= [-ZDJCnSB.r'JSJe, e: \342\226\240\342\200\242\342\200\242
e,J.

That is,

a vech(fl)
[-2D;(n\302\256B,,')S,,]. [U.B.IO]

Similarly, letting the scalar fin [11.B.8]correspond to each of the elements of 6D in succession
and stacking the resulting columns horizontally results in

a
ve/flh(n)

= d;[(b,7') \302\256(B,r')]sn.

Equation [11.6.38] then follows immediately from [U.B.IO] and [ll.B.ll].

\342\226\240Derivation of [11.7.4]. Recall from equation [10.1.19] that

+ \320\244.\320\244,-:+ \342\200\242\342\200\242\342\200\242+
\320\244,,\320\244,.,,. [11.\320\222.12]

Taking transposes,
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Let the scalar f denote some particular element of it, and differentiate [11.B.13] with
respectto f

=
[\320\276,\342\200\236\321\204;, \321\204;.\320\267

=
[\320\276,\342\200\236

4. \321\204'

an

[11.\320\222.14]

Recall result [11.\320\222.4],and note the special casewhen A is the (n x \320\273)identity matrix,
\320\222is an (n x /\342\226\240)matrix, and \320\241is an (\320\263\321\205q) matrix;

vec(BC) =
(\320\241\302\256I,,) vec(B).

For example,

vec

[11.B.15]

. [\320\237.\320\222.16]

Another implication of [11.B.4] can be obtained by letting A be an (m x q) matrix,
\320\222a (q x n) matrix, and \320\241the (n x n) identity matrix:

vec(AB) = (I,, \302\256A) vec(B). [11.B.17]

For example.

Applying the vec operator to [11.B.14] and using [11.B.18] and [11.B.16] gives

I\302\273) [\320\237.\320\222.191

Letting f successively represent each of the elements of it and stacking the resulting
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equations horizontally as in [\320\237.\320\222.9]results in

as claimed in [11.7.4]. \342\226\240

\342\226\240Derivation of [11.7.5]. Here the task is to verify that if G, is given by [11,7.5]. then

[11.7.4] holds:

G, =
[1\342\200\236\302\256@,\342\200\236\320\244.;_, \320\244,'_,

\342\226\240\342\226\240\342\226\240
*;.,)] + \302\243(\320\244*\302\256IJG,_t. [11.\320\222.20]

A--I

Notice that for G, given by [11.7.5],

\302\243(\320\244\320\260\302\256I.)G,_t

=
\302\243(\320\244\320\260.\302\256\320\2702 [\342\231\246,.\342\226\240\302\256(\320\276,\342\200\236*:.*-,\342\200\242\342\231\246:_*-,-,

\342\226\240\342\226\240\342\226\240
\342\231\246;-,-,-\342\200\236\342\231\246,)i

A-I I-I

=
\302\2432* [\321\204**;-.\302\256(\320\276,\342\200\236*;.,., *;.*.,.\342\226\240

\342\226\240\342\226\240\342\226\240
*;.*.,\342\226\240-,\342\200\236,)].

For any given value for \320\272and i, define v = \320\272+ i. When i = 1, then v = \320\233+ 1; when
i = 2. then v = \320\272+ 2; and so on;

t (**\302\256ug,.*
- i \302\243\342\204\226.\342\231\246,-.-,\302\256(\320\276\342\200\236,\342\231\246\342\200\242\342\200\242_,\342\231\246:.,.,

\342\226\240\342\226\240\342\226\240
*.;-,.\342\200\236*\342\226\240)].

A-I A-I i\342\200\224AtI

Recalling further that 4f,..k.t = 0 for v - 2, 3, . . , , k, we could equally well write

\302\243(\320\244\320\260\302\2561\342\200\236)\320\241\320\273.\320\273.

.-\320\267*-|
* '\"*\"' '\" '\" *\"'\"' '\"\"\"\"

[11.\320\222.21]

=

\302\243,[(\302\243\342\200\242*\342\231\246-*-\342\226\240)\302\256(\320\276\342\200\236
\342\231\246:-\342\231\246:....,

\342\226\240\342\226\240\342\200\242

\342\231\246:.,.\342\200\236.,)]

by virtue of [11.B.12]. If the first term on the right side of [11.B.20] is added to [11.B.21],
the result is

[1\342\200\236\302\256(\320\276\342\200\236,*;., \321\204;.=
\342\200\242\342\200\242\342\200\242

\342\226\240*:.,,)]+ \302\243(\320\244\320\260\302\256i,,)G....t
A-l

=
[1\342\200\236\302\256(\320\276\342\200\236,*;., \321\204.;-;

\342\200\242\342\200\242\342\200\242
\321\204,'.,)

=
\302\243[*.-.\302\256(\320\276,\342\200\236\342\231\246;...\342\231\246.'.,.,

\342\226\240\342\226\240\342\200\242
\342\231\246;....,\342\231\246,)].

which is indeed the expressionfor Gv given in [11.7.5]. \342\226\240

\342\226\240Derivation of [11.7.14] and [11.7.15]. Postmultiplying [11.7.12] by B,, and transposing
results in

\320\222/\320\264;
=

\342\226\240*.;. . [11.B.22]

Let the scalar f denote someelement of it or \320\237,and differentiate [11.B.22] with respect

tof:
+ \320\262;,(\321\215\320\275.;/\321\215\320\271

= a*,vaf. [\320\270.\320\262.23]
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Applying the vec operator to [11.B.23]and using [11.B.15] and [11.B.17],

(H, \302\2561\342\200\236)(\320\255vec(B,',)\302\253f) + (I,, \302\256\320\222,',)(\320\224vec(H;)/3f ) = \320\224vec(*

implying that

\320\260\321\212\320\274
= -

(i,, \302\256\320\262,',)
-

'(H, \302\256i,,)(a vec(B,',)/af) + (i,, \302\256\320\262;,)
'

\320\260*\320\266
fl, B 24|

[i,, \302\256(\320\262;,)'] a*\342\204\226.

Noticing that B,', does not depend on n. if [11.B.24] is stacked horizontally for f =
\321\202\320\263,,7\320\263;,

.... \321\202\320\263\342\200\236\320\272,the result is

ahv\302\253it'= [i,, \302\256(\320\262;,)'i \320\264\321\204,/\320\264\320\270'.

as claimed in [11.7.14]. Similarly, if f is an element of ft, then f has no effect on \320\244\342\200\236and
its influence on B,', is given by

a vec(B,',) _ \320\271\320\262\342\200\236

Stacking [ll.B,24| horizontally with f representing each of the elements of vech(ft) Ihus

produces

a[vech(ft)]'
=

\"[H< \302\256(Bl<l) '1Sn'
efvJ

as claimed in [11.7.15]. \342\226\240

Chapter 11 Exercises

11.1. Verify result [\320\230.\320\220.2],

11.2. Consider the following three-variable VAR:

\320\243\320\267,
= f^L.-l + \320\2311!.,-!+ \320\247\320\245\320\270-l+ \302\2533,-

(a) Is ^,, block-exogenous with respect to the vector (ya, Xi.)\"'

(b) Is trie vector (^,\342\200\236yz) block-exogenous with respect to y,,7

(c) Is y3l block-exogenous with respect to the vector (\321\203\342\200\236,y:,)\"?

11,3. Consider the following bivariate VAR:

\320\243\321\205,
=

\320\260\321\205\320\243\321\205.,-\321\205+ a2y,.,.2 + \342\200\242\342\200\242\342\200\242+ \320\260\320\264,.,.\342\200\236

+ /3,^,,-, + \320\2403\320\243:.,-2+ \342\200\242\342\200\242\342\226\240+ \320\240\342\200\236\320\243\320\263,.\342\200\236+

^\321\214
=

\320\243\321\205\320\243\321\205..-\321\205+ 7=^i,,-: + ' \342\226\240\342\226\240+ 7\342\200\236\320\243,.,,,

S,y2.,..t + 8zy2.,.: + \342\200\242\342\200\242\342\226\240+ 5\342\200\236\321\203,,_\342\200\236+

\320\223\320\223\320\277\342\200\236\320\277,\320\233

10 otherwise.

Use the results of Section 11.3to write this in the form

\320\243\321\205,
-

\320\241\321\205\320\2431.,-\321\205+ \302\243\320\263\320\243\321\205,,-\320\263+ \342\226\240' \342\226\240+ \302\243\342\200\236\320\243,.,-\342\200\236

+ \302\243\321\205\320\2432.,-\320\245+ \320\272\320\243^-\320\263+ \342\226\240\342\226\240\342\226\240+ fa,..-, + \022,-

where

\320\225('\342\226\240>= \342\226\240]' \342\226\240\342\226\240I
for ( = \321\202

L 0 otherwise.
What is the relation between the parameters of the first representation (a,, ft, y;, \320\261,,\320\237\342\200\236)
and those of the second representation (\302\243},7j;, Xt, \302\247,<tj)? What is the relation between e,
and u,?

348 Chapter 11 \\ Vector Autoregressions



11.4. Write the result for Exercise11.3as
\320\2231 -

C(L) -V{L) \021
|>,\320\233=

\320\223\320\270,\320\233

L-Ao- \\(L) 1 -f(L)J \320\254-J UJ

Premultiply this system by the adjoint of
\320\2231 -

\302\243(L) r,(L) ~]
\\*(L) = .

La,, + x(L) i - f(L)J
to deduce that ytl and y2l each admit a univariate ARMABp, p) representation. Show how

the argument generalizes to establish that if the (n x 1) vector y, follows a pth-order
autoregression,then each individual element \321\203\342\200\236follows an ARMA[np, (n \342\200\224

l)p] process.
(See Zellner and Palm, 1974).

11.5. Consider the following bivariate VAR:

\320\243\342\200\236
=

\320\2432.
~

with E(euelT)
= 1 for t = \321\202and 0 otherwise, \302\243(e:,e,r)

= 2 for t = \321\202and 0 otherwise, and
\302\243(e,,e,r)

= 0 for all t and \321\202.

(a) Is this system covariance-stationary?

(b) Calculate \320\244,=
\320\224\321\203,+,/\320\224\320\265,'for^ = 0, 1. and 2. What is the limit as\302\253-\302\273\302\273?

(c) Calculate the fraction of the MSE of the two-period-aheadforecast error for
variable 1,

that is due to e, ,tl and e, (+:.
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12

Bayesian Analysis

The previous chapter noted that because so many parameters are estimated in a

vector autoregression, the standard errors for inferences can be large. The estimates
can be improved if the analyst has any information about the parameters beyond
that contained in the sample. Bayesian estimation provides a convenient framework

for incorporating prior information with as much weight as the analyst feels it

merits.

Section 12.1 introduces the basic principles underlying Bayesian analysis and

uses them to analyze a standard regression model or univariate autoregression.
Vector autoregressions are discussed in Section 12.2. For the specifications in

Sections 12.1 and 12.2, the Bayesian estimators can be found analytically. Nu-

Numerical methods that can be used to analyze more general statistical problems from

a Bayesian framework are reviewed in Section 12.3.

12.1. Introduction to Bayesian Analysis
Let 9 be an (a x 1) vector of parameters to be estimated from a sample of
observations. For example, if y,

~ i.i.d. N(/x, cr2), then 9 =
(/x, cr2)' is to be

estimated on the basis of \321\203
=

{\321\203,,\321\2032,\342\226\240\342\226\240\342\226\240, \320\243\321\202\320\243'\342\226\240Much of the discussion up to this

point in the text has been based on the classical statistical perspective that there

exists some true value of 9. This true value is regarded as an unknown but fixed
number. An estimator 9 is constructed from the data, and 9 is therefore a random
variable. In classical statistics, the mean and plim of the random variable 9 are

compared with the true value 9. The efficiency of the estimator is judged by the

mean squared error of the random variable, \302\243(9
- 9)(9 \342\200\224

9)'. A popular classical
estimator is the value 9 that maximizes thesample likelihood, which for this example
would be

[12.1.1]

In Bayesian statistics, by contrast, 9 itself is regarded as a random variable.

All inference about 9 takes the form of statements of probability, such as \"there
is only a 0.05 probability that \320\262{is greater than zero.\" The view is that the analyst

will always have some uncertainty about 9, and the goal of statistical analysis is to
describe this uncertainty in terms of a probability distribution. Any information
the analyst had about 9 before observing the data is represented by a prior density
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/(9).1 Probability statements that the analyst might have made about 9 before
observing the data can be expressedas integrals of/(9); for example, the previous

statement would be expressed as /,\"/F,) rfe,
= 0.05 where/F,) = Jlx J'_, \342\200\242\342\200\242\342\200\242

/ _\302\273/(9) de2 dfl, \342\200\242\342\200\242\342\200\242
de,,. The sample likelihood [12.1.1]is viewed as the density

of \321\203conditional on the value of the random variable 9, denoted/(\321\203 19). The product
of the prior density and the sample likelihood gives the joint density of \321\203and 9:

/(\320\243.\320\255)=/(y|9)-/(9). [12.1.2]

Probability statements that would be made about 9 after the data \321\203have been

observed are based on the posterior density of 9, which is given by

[12.1.3]

Recalling [12.1.2] and the fact that/(y) =
/*\302\253/(y, 9) d9, equation [12.1.3]can

be written as

/(y|8)-/(8)
[12.1.4]

/(y|e)/(9)rf9
which is known as Bayes's law. In practice, the posterior density can sometimes
be found simply by rearranging the elementsin [12.1.2] as

where /(y) is\" a density that does not involve 9; the other factor, /(9|y), is then

the posterior density.

Estimating the Mean of a Gaussian Distribution

with Known Variance

To illustrate the Bayesian approach, let \321\203,
~ i.i.d. N(/x, a1) as before and

write the sample likelihood [12.1.1]as

' [12\320\233'5]

where I denotes \320\260(\320\223\321\2051) vector of Is. Here /x is regarded as a random variable.
To keep the example simple, we will assume that the variance a2 is known with

certainty. Suppose that prior information about /x is represented by the prior
distribution /x

~ Nipt, <r2lv):

[12\320\273-\320\261]

Here m and v are parameters that describe the nature and quality of prior infor-

information about /x. The parameter m can be interpreted as the estimate of /x the

analyst would have madebeforeobserving y, with a2/v the MSEof this estimate.

Expressing this MSE as a multiple A/v) of the variance of the distribution for y,
turns out to simplify some of the expressions that follow. Greater confidence in

the prior information would be representedby larger values of v.

'Throughout this chapter we will omit the subscript that indicates the random variable whose density

is being described; for example./H(8) will simply be denoted/(9). The random variable whose density

is being described should always be clear from the context and the argument of/(\342\226\240).
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To make the idea of a prior distribution moreconcrete,suppose that before

observing \321\203the analyst had earlier obtained a sample of N separate observations

{zh i = 1, 2, . . . , \320\251from the N(/x, a2) distribution. It would then be natural to

take m to be the mean of this earlier sample (m
= z = (lWJEj^,, z,) and a2/v to

be the variance of z, that is, to take v - N. The larger this earlier sample (N),
the greater the confidence in the prior information.

The posterior distribution for /x after observing the sample \321\203is described by
the following proposition.

Proposition 12.1: The product of [12.1.5] and [12.1.6] can be written in the form
/Ou.|y;o-2)-/(y;o-2), where

[12\320\233\320\233]

r , [12.1.8]
x

exP|[-l/Bc72)](y
- m-l)'(IT+M'/iO-(y-

m-|
m* =

p)m + )y
\\ + T) \\v + \320\242\320\243 [12.1.9]

\321\203
=

(i/\320\263)2 \320\273.

/\320\273\320\276\320\233\320\265\320\263words, the distribution of ix conditional on the data (ylt y2, \342\226\240\342\200\242\342\200\242, \320\243\321\202)

is N(m*, (T2l{v + \320\223)),while the marginal distribution of \321\203is N(m-l,

a\\lT+\\-Vlv)).

With a quadratic loss function, the Bayesian estimate of /x is the value \320\224that

minimizes \302\243(/x
-

\320\224J.Although this is the same expression as the classical MSE,
its interpretation is different. From the Bayesian perspective,/x is a random variable
with respect to whose distribution the expectation is taken, and \320\224is a candidate
value for the estimate. The optimal value for (L is the mean of the posterior
distribution described in Proposition 12.1:

v + T
m +

This is a weighted average of the estimate the classical statistician would use (y)
and an estimate based on prior information alone (m). Larger values of v correspond

to greater confidence in prior information, and this would make the Bayesian

estimate closer to m. On the other hand, as v approaches zero, tne Bayesian

estimate approaches the classicalestimate y. The limit of [12.1.6]as v\342\200\224\302\2730isknown

as a diffuse or improper prior density. In this case, the quality of prior informa-
informationis so poor that prior information is completely disregarded in forming the

estimate /X.

The uncertainty associated with the posterior estimate /1 is described by the

variance of the posterior distribution. To use the data to evaluate the plausibility of
the claim that /*,, < /x < Mi, we simply calculate the probability /\302\243,;/(\320\2741\321\203;\302\260\022)dp-

For example, the Bayesian would assert that the probability that /x is within the

range /2 \302\261luNv + T is 0.95.
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Estimating the Coefficientsof a RegressionModel
with Known Variance

Next, consider the linear regression model

y,
= x;p + m,,

where M,~i.i.d. \320\233^\320\236.\321\201\320\263^.\321\205,is \320\260(\320\272x 1) vector of exogenous explanatory variables,

and p is a (A: x 1) vector of coefficients.Let

(\320\223\321\205|)

\320\243\321\202_

X =
v'
X2

Treating p as random but cr2 as known, we have the likelihood

1
-\320\237

1

2\321\207\320\263/2\320\265\321\205\320\2401|-\320\242^;|\320\241\320\243-\320\245\321\200)'(\321\203-

[12.1.10]

Bwo-2O

Suppose that prior information about p is represented by a N(m, cr2M)distribution:

/(Pi ^ =
\320\242^\320\250\320\257I Ml

-1'2
expl 1-^51 (P - m)'M-'(P-

[12.1.11]
Thus, prior to observation of the sample, the analyst's best guess as to the value

of P is represented by the (\320\272x 1) vector m, and the confidence in this guess is

summarized by the (\320\272\321\205\320\272)matrix a2M; less confidence is represented by larger

diagonal elements of M. Knowledge about the exogenous variables X is presumed
to have no effect on the prior distribution, so that [12.1.11] also describes

|
Proposition 12.1generalizesas follows.

Proposition 12.2: The product of [12.1.10]and [12.1.11] can be written in the form
/(\320\240|\321\203,\320\245;\320\260\320\260)-/(\321\203|\320\245;\320\260\320\260),\320\270.\320\233\320\265\302\253

/(Ply, X; a3) = 1
X'X|1

x
exp|[-l/Bo-2)](P

- m*)'(M-'+ X'X)(P
- m*)

[12.1.12]

[12.1.13]

x
expj [-l/Bo-2)](y

- Xm)'(IT+ XMX')\"'(y -
Xm)

m* =
(M\021 + + X'y). [12.1.14]

In other words, the distribution of p conditional on the observed data is
N(m*, cr^M\"' + X'X)~') and the marginal distribution of \321\203given X is

yV(Xm, o-2(Ir + XMX'))-
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Poor prior information about \320\255corresponds to a large variance M, or equiv-

alently a small value for M~'. The diffuse prior distribution for this problem is
often represented by the limit as M~' \342\200\224\302\2730, for which the posterior mean [12.1.14]
becomes m* = (X'X)~'X'y,the OLS estimator. The variance of the posterior

distribution becomes cr2(X'X)~'. Thus, classical regression inference is reproduced
as a special case of Bayesian inference with a diffuse prior distribution. At the

other extreme, if X'X = 0, the sample contains no information about \320\255and the

posterior distribution is N(m, o^M), the same as the prior distribution.

If the analyst's prior expectation is that all coefficients are zero (m
= 0) and

this claim is made with the sameconfidencefor each coefficient (M~' =
A-IA. for

some A > 0), then the Bayesian estimator [12.1.14] is

m* = (A-I* + X'X)-'X'y, [12.1.15]
which is the ridge regression estimator proposed by Hoerl and Kennard A970).
The effect of ridge regression is to shrink the parameter estimates toward zero.

Bayesian Estimation of a Regression Model
with Unknown Variance

Propositions 12.1 and 12.2 assumed that the residual variance a2 was known
with certainty. Usually, both a2 and p would be regarded as random variables,
and Bayesian analysis requires a prior distribution for a2. A convenient prior
distribution for this application is provided by the gamma distribution. Let

{Z,}\302\243.,be a sequence of i.i.d. W@, \321\2022)variables. Then W = I/1,Z2 is said to
have a gamma distribution with N degrees of freedom and scale parameter A,
indicated W ~ T(N, A), where A = l/\321\2022.Thus, W has the distribution of \321\2025times

\320\260\320\2452{\320\251variable. The mean of W is given by

E(W) = N-E(Zf) = Nt2 = N/\\, [12.1.16]

and the variance is

E(W2)
- [E(W)]2 = N-{E(Zf)- ])

\321\205
= W-Ct\"

-
\321\2024)

= 2Nt4 = 2W/A2.

The density of W takes the form

where \320\223(\342\200\242)denotes the gamma function. If N is an even integer, then

\320\223(\320\273\320\263\320\260)
= 1-2-3 \342\200\242\342\200\242\342\200\242

[(\320\233//2)
- 1),

with \320\223B/2)
= 1; whereas if N is an odd integer, then

\320\223(\320\250)
= V^-i-\320\230--- [(\320\233/\320\2432)

- 1],

with \320\223D)
= Vir.

Following DeGroot A970) and Learner A978), it is convenient to describe

the prior distribution not in terms of the variance cr2 but rather in terms of the

reciprocal of the variance, cr~2, which is known as the precision. Thus, suppose
that the prior distribution is specified as a'2 ~

T(N, A), where N and A are

parameters that describe the analyst's prior information:
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Recalling [12.1.16], the ratio MA is the value expected for er~2 on the basis of prior

information. As we will see shortly in Proposition 12.3,if the prior information is
based on an earlier sample of observations {z,, z2, . . . , zN), the parameter N

turns out to describe the size of this earlier sample and A is the earlier sample's
sum of squared residuals. For a given ratio of N/\\, larger values for \320\233'imply greater
confidence in the prior information.

The prior distribution of p conditional on the value for cr~2 is the sameas in

[12.1.11]:

[12.1.20]

- m)'M-'(p -
m)j

Thus, /(p, o-2|X), the joint prior density for p and cr~2, is given by the product
of [12.1.19]and [12.1.20]. The posterior distribution/(p, o-2|y, X) is described

by the following proposition.

Proposition 12.3: Let the prior density /(p, a~2\\X) be given by the product of
[12.1.19]and [12.1.20], and let the sample likelihood be

^|[-^](y
- Xp)'(y-

Xp)|. [12.1.21]

Then the following hold:

(a) The joint posterior density of p and a'2 is given by

/(P, <r-2|y, X) = /(Pk\022,y, X)-/(G-2|y, X), [12.1.22]
where the posterior distribution of p conditional on a~2 is N(m*, cr2M*):

2, \321\203,X)

[12.1.23]

with

m* =
(M\021 + X'XJ-'CM-'m + X'y) [12.1.24]

M* = (M-1+ X'X)\021. [12.1.25]

Furthermore, the marginal posterior distribution of a'2 is T(N*, A*):

/k\022|y, X)
=

r(jv4)
exp[-AV-%], [12.1.26]

with

N* = N + T [12.1.27]

A* = A + (y
-

\320\245\320\254)'(\320\243
- Xb)

+ (b -
m)'M-'(X'X + M-')-'X'X(b

- m) 11/\320\273-^

for b = (X'X)-'X'y the OLS estimator.

(b) The marginal posterior distribution for p is a k-dimensional t distribution with
N* degrees of freedom, mean m*, and scale matrix (\\*/N*)-M*:
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\320\233\320\2401\321\203,X)

=
\320\223\320\223[(*+ N*)/2]

|(\320\220./\320\220,.)\320\234..-,\320\257
\\A\321\202\320\253*)\321\202\320\246\320\253*/2)

\320\232 ' '
[12.1.29]

\321\205[1 + (\320\250*)(\320\255
-

\321\202*)'[(\320\220*/\320\233'*)\320\234*]-|(\320\255
- m*)]-(*+/v'

(\321\201)Lef \320\232be a known (m \321\205A:) matrix with linearly independent rows, and define

n - [R(P
-

\321\202*I'[\320\232(\320\234-'+ X'X)-R']-'-[R(p
- m*)]/me= \342\200\224 . [12.1.30]

77ien Q has a marginal posterior distribution that is F{m, N*):

)
=;

\320\223(\321\202/2)\320\223(\320\233'*/2)(\320\233'*

Recalling [12.1.16], result (a) implies that the Bayesian estimate of the pre-
precision is

\302\243(o-2|y, X) = \320\233\320\223/\320\220*. [12.1.32]

Diffuse prior information is sometimes represented as N = A = 0 and M~' = 0.
Substituting these values into [12.1.27] and [12.1.28] implies that N* = T and

A* = (y - Xb)'(y -
Xb). For these values, the posterior mean [12.1.32]would

be

\302\243(G-2|y, X) = 77(y -
Xb)'(y

- Xb),

which is the maximum likelihood estimate of cr~2. This is the basis for the earlier

claim that the parameter \320\233'forthe prior distribution might be viewed as the number
of presample observations on which the prior information is based and that A might
be viewed as the sum of squared residuals for these observations.

Result (b) implies that the Bayesian estimate of the coefficient vector is

\302\243(P|y, X) = m* = (M-1 + X'X)-'(M-'m+ x'y), [12.1.33]

which is identical to the estimate derived in Proposition 12.2 for the case where
a2 is known. Again, for diffuse prior information, m* = b, the OLS estimate.

Result (c) describes the Bayesian perspectiveon a hypothesis about the value
of K|l, Where the matrix R characterizes which linear combinations of the elements
of \320\255are of interest. A classicalstatistician would test the hypothesis that R|l = r

by calculating an OLS F statistic,

(Rb
-

r)'[R(X'X)-'R']-'(Rb -
r)/w

s2

and evaluating the probability that an F(m, T - k) variable could equal or exceed
this magnitude. This represents the probability that the estimated value of Rb could

be as far as it is observed to be from \320\263given that the true value of \320\255satisfies

Rp = r. By contrast, a Bayesian regards Rp as a random variable, the distribution
for which is described in result (c). According to [12,1.30], the probability that R|l
would equal \320\263is related to the probability that an F(m, N*) variable would assume

the value

(r
- Rm')'[R(M-' + X'X)-'R']-'(r -

Rm*)/m
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The probability that an F(m, N*) variable could exceed this magnitude represents
the probability that the random variable Rp might be as far from the posterior
mean Rm* as is represented by the point Rp = r. In the case of a diffuse prior
distribution, the preceding expression simplifies to

(r
- Rb)'[R(X'X)-'R']-'(r -

Rb)/m

(y
-

\320\245\320\254)'(\320\243
-

\320\245\320\254)/\320\223

which is to be comparedin this case with an F(m, T) distribution. Recalling that

s2 =
(y

-
\320\245\320\254)'(\320\243

-
\320\245\320\254)/(\320\223

- *),

it appears that, apart from a minor difference in the denominator degrees of
freedom, the classical statistician and the Bayesian with a diffuse prior distribution

would essentially be calculating the identical test statistic and comparing it with

the same critical value in evaluating the plausibility of the hypothesis represented
by Rp

= r.

Bayesian Analysis of Regressionswith Lagged

Dependent Variables

In describing the sample likelihood (expression[12.1.10]or [12.1.21]), the

assumption was made that the vector of explanatory variables x, was strictly ex-

exogenous. If x, contains lagged values of y, then as long as we are willing to treat

presample values of .y as deterministic, the algebra goes through exactly the same.
The only changes needed are some slight adjustments in notation and in the de-

description of the results. For example, considera pth-order autoregression with

xi
~

\320\236-*yi-\\i \320\243/-2*\342\200\242\342\200\242\342\200\242. \320\243,-,,)'\342\226\240In this case, the expression on the right side of

[12.1.21] describes the likelihood of {y,,y2 \320\243\321\202)conditional on ytt, \321\203_,

y-p + t; that is, it describes /(y|p, a--2, x,). The prior distributions [12.1.19] and

[12.1.20] are then presumed to describe/(cr~2|x,) and/(p|cr~2, x,), and the pos-
posterior distributions are all as stated in Proposition 12.3.

Note in particular that results (b) and (c) of Proposition 12.3 describe the

exact small-sample posterior distributions, even when x, contains lagged dependent
variables. By contrast, a classical statistician would consider the usual t and F tests

to be valid only asymptotically.

Calculation of the Posterior Distribution Using
a GLSRegression
It is sometimes convenient to describethe prior information in terms of certain

linear combinations of coefficients, such as

RPk\022
~

W(r, o-2V). [12.1.34]

Here R denotes a known nonsingular (\320\272\321\205k) matrix whose rows represent linear

combinations of p in terms of which it is convenient to describethe analyst's prior
information. For example, if the prior expectation is that /3, =

/32, then the first

row of R could be A, -1, 0, . . . , 0) and the first element of \320\263would be zero.
The A, 1) element of V reflects the uncertainty of this prior information. If p

~

yV(m, <\321\2022\320\251,then Rp
~

JV(Rm, o-2RMR'). Thus, the relation between the parameters
for the prior distribution as expressed in [12.1.34] (R, r, and V) and the parameters
for the prior distribution as expressedin [12.1.20] (m and M) is given by

r = Rm [12.1.35]

V = RMR'. [12.1.36]
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Equation [12.1.36] implies

V-' = (R')-'M-'R-1. [12.1.37]

If equation [12.1.37] is premultiplied by R' and postmultiplied by R, the result is

R'VR = M-'. [12.1.38]
Using equations [12.1.35] and [12.1.38], the posterior mean [12.1.33] can be re-
rewritten as

m* = (R'VR + X'X)-'(R'V-'r + X'y). [12.1.39]

To obtain another perspective on [12.1.39], notice that the prior distribution

[12.1.34] can be written

\320\263= R0 + e, [12.1.40]

where e ~ N@, cr2V). This is of the same form as the observation equations of
the regression model,

\321\203
= Xp + u [12.1.41]

with u ~ N@, cr2lT).The mixed estimation strategy described by Theil A971, pp.

347-49) thus regards the prior information as a set of \320\272additional observations,
with /\342\226\240,treated as if it were another observation on y, and the fth row of R corre-
corresponding to its vector of explanatory variables x,'. Specifically, equations [12.1.40]
and [12.1.41] are stacked to form the system

y* = X*p + u\\ [12.1.42]

where

\302\243(u*u\")
=

The GLS estimator for the stacked system is

b = [X*'(V*)-'XT'[X*'(V*r'y*]

= (R'VR + X'X)-'(R'V-'r + X'y).

Thus the posterior mean [12.1.39] can be calculated by GLS estimation of [12.1.42].
For known cr2, the usual formula for the variance of the GLS estimator,

o-2[X*'(V*)-'X*]-'
= o-2(R'V-'R + X'X)-\\

gives a correct calculation of the variance of the Bayesian posterior distribution,

o-2(M-' + X'X)-1.
The foregoing discussion assumed that R was a nonsingular (\320\272x \320\272)matrix.

On some occasions the analyst might have valuable information about some linear

combinations of coefficients but not others. Thus, suppose that the prior distribution
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[12.1.34]is written as

where R, is an (m x k) matrix consisting of those linear combinations for which
the prior information is good and R2 is a [(k

- m) x k] matrix of the remaining
linear combinations. Then diffuse prior information about those linear combina-

combinationsdescribed by R2 could be representedby the limit as V2\"' -* 0, for which

R'v-' = [ri na|^ v^-.l \342\200\224[R'.v,-1 0].

The Bayesian estimate [12.1.39]then becomes

(RiVf'R, + X'X)-'(R;Vr'r, + X'y),

which can be calculated from GLS estimation of a [G\" + m) x 1] system of the

form of [12.1.42]in which only the linear combinations for which there is useful

prior information are added as observations.

12.2. Bayesian Analysis of VectorAutoregressions
Litterman's Prior Distribution for Estimation of an Equation
o/eVAR
This section discusses prior information that might help improve the estimates

of a single equation of a VAR. Much of the early econometric research with dynamic

relations was concerned with estimation of distributed lag relations of the form

\321\203,
= \321\201+ \321\210\342\200\236\321\205,+ \320\270,*,., + \342\200\242\342\200\242\342\200\242+ \321\210,,\321\205,-1,

+ \",\342\200\242 [12.2.1]

For this specification, ws has the interpretation as \320\264\321\203,/\320\264\321\205,_\342\200\236and some have argued
that this should be a smooth function of s; see Almon A965) and Shiller A973)
for examples. Whatever the merit of this view, it is hard to justify imposing a

smoothness condition on the sequences {aijf., or {<\302\243,}?=i in a model with auto-

regressive terms such as

\320\243i
= c + \320\244\\\320\243,-)+ \320\2441\320\2431-1+ \342\200\242\342\200\242\342\200\242+ \320\244\320\240\320\243,-\321\200

+ \320\250\320\277\320\245,+ U),X,_, + \342\200\242\342\200\242\342\200\242+ \320\250\321\200\320\245,_\321\200
+ U,,

since here the dynamic multiplier \320\264\321\203,/\320\264\321\205,_, is a complicated nonlinear function of

the <\302\243'sand w's.

Litterman A986) suggested an alternative representation of prior information

based on the belief that the change in the series is impossible to forecast:

y,-y,-l=c + e,, [12.2.2]
where e, is uncorrelated with lagged values of any variable. Economic theory

predicts such behavior for many time series. For example, suppose that y, is the

log of the real price of some asset at time t, that is, the price adjusted for inflation.
Then y,

-
.y,_, is approximately the real rate of return from buying the asset

at t - 1 and selling it at t. In an extension of Fama's A965) efficient markets

argument described in Section 11.2, speculators would have bought more of the
asset at time t - 1 if they had expected unusually high returns, driving _y,_, up in
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relation to the anticipated value of yr The time path for {y} that results from such

speculation would exhibit price changes that are unforecastable. Thus, we might

expect the real prices of items such as stocks, real estate, or preciousmetals to

satisfy [12.2.2]. Hall A978) argued that the levelof spending by consumers should
also satisfy [12.2.2], while Barro A979) and Mankiw A987) developed related
arguments for the taxes levied and new money issued by the government. Changes
in foreign exchange rates are argued by many to be unpredictable as well; see the
evidence reviewed in Diebold and Nason A990).

Write the ith equation in a VAR as

\321\203\342\200\236
=

\321\201,+ \321\204^\321\203,,,-,+ \320\244^\320\243\320\263.,-,+ \342\200\242\342\200\242\342\200\242+ \321\204^\321\203,,.,-,

+ ^fVi.,-2 + \320\244^\320\243\320\263.,-2+ \342\200\242\342\200\242\342\200\242+ \320\244^\320\243.,,-2+ \342\226\240\342\200\242\342\226\240
[12.2.3]

where
\321\204)\321\200gives the coefficient relating \321\203\342\200\236to \321\203,,,-.,.The restriction [12.2.2] requires

\321\204{\321\200
= 1 and all other

\321\204^\321\200
= 0, These values @ or 1) then characterize the mean

of the prior distribution for the coefficients. Litterman used a diffuse prior distri-
distribution for the constant term c,-.

Litterman took the variance-covariance matrix for the prior distribution to

be diagonal, with \321\203denoting the standard deviation of the prior distribution

/

Although each equation i = 1, 2, . . . , n of the VAR is estimated separately,
typically the same number \321\203is used for each i. A smaller value for \321\203represents

greater confidence in the prior information and will force the parameter estimates
to be closer to the values predicted in [12.2.2]. A value of \321\203

= 0.20 means that,
before seeing the data, the analyst had 95% confidence that <\302\243}/'is no smaller than
0.60 and no larger than 1.40.

The coefficients relating ytl to further lags are predicted to be zero, and
Litterman argued that the analyst should have more confidence in this prediction
the greater the lag. He therefore suggested taking <\302\243J)

~
\320\243\320\243(\320\236,(\321\203/2K),

\321\204]\321\200
~

N@, (y/3J) and <#/\"
~

N@, (y/pJ), tightening the prior distribution
with a harmonic series for the standard deviation as the lag increases.

Note that the coefficients <\302\243j/>are scale-invariant; if each value of yh is mul-

multiplied by 100, the values of \321\204%]will be the same. The same is not true of <\302\243{/'for

i \320\244j; if series i is multiplied by 100 but series/ is not, then
\321\204*;\321\200

will be multiplied
by 100. Thus, in calculating the weight to be given the prior information about

\321\204\\\321\200,
an adjustment for the units in which the data are measured is necessary.

Litterman proposed using the following standard deviation of the prior distribution

for *\302\253f>:

[12.2.4]

Here
(\321\202,/\321\202\321\203)

is a correction for the scale of series i compared with series/. Litterman

suggested that f,- could be estimated from the standard deviation of the residuals
from an OLS regression of yu on a constant and on p of its own lagged values.

Apart from this scale correction, [12,2.4] simply multiplies yls (which was the

standard deviation for the prior distribution for \321\204{\321\200)by a parameter w. Common
experiencewith many time series is that the own lagged values yu-s are likely to
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be of morehelp in forecasting yfl than will be values of other variables ^.,_,. Hence
we should have more confidence in the prior belief that

\321\204)-\321\200
= \320\236than the prior

belief that <\302\243);\"'
= 0, suggesting a value for w that is less than 1. Doan A990)

recommended a value of w = 0.5 in concert with \321\203
= 0.20.

Several cautions in employing this prior distribution should be noted. First,
for someseriesthe natural prior expectation might be that the series is white noise

rather than an autoregression with unit coefficient. For example, if yn is a series
such as the change in stock prices, then the mean of <#/' should be 0 rather than 1.

Second, many economic series display seasonal behavior. In such cases, \321\204*-\321\200
is likely

to be nonzero for s = 12 and 24 with monthly data, for example. Litterman's prior
distribution is not well suited for seasonaldata, and some researchers suggest using

seasonally adjusted data or including seasonal dummy variables in the regression
before employing this prior distribution. Finally, the prior distribution is not well

suited for systems that exhibit cointegration, a topic discussed in detail in Chapter
19.

Full-Information Bayesian Estimation of a VAR

Litterman's approach to Bayesian estimation of a VAR considered a single
equation in isolation. It is possible to analyze all of the equations in a VAR together
in a Bayesian framework, though the analytical results are somewhat more com-
complicated than for the single-equation case;seeZellner A971, Chapter 8) and Roth-
enberg A973, pp. 139-44) for discussion.

12.3. Numerical Bayesian Methods
In the previous examples, the classof densities used to represent the prior infor-

information was carefully chosen in order to obtain a simple analytical characterization

for the posterior distribution. For many specifications of interest, however, it may
be impossible to find such a class, or the density that best reflects the analyst's

prior information may not be possible to represent with this class. It is therefore

useful to have computer-based methods to calculate or approximate posterior mo-
moments for a quite general classof problems.

Approximating the Posterior Mean by the Posterior Mode

One option is to use the mode rather than the mean of the posterior distri-

distribution, that is, to take the Bayesian estimate 9 to be the value that maximizes

/(9|y). For symmetric unimodal distributions, the mean and the mode will be the

same, as turned out to be the case for the coefficient vector \320\255in Proposition 12.2.
Where the mean and mode differ, with a quadratic loss function the mode is a

suboptimal estimator, though typically the posterior mode will approach the pos-
posterior mean as the sample size grows (see DeGroot, 1970, p. 236).

Recallfrom [12.1.2] and [12.1.3] that the posterior density is given by

[12-3.1]

and therefore the log of the posterior density is

log/(\320\262| y)
= log/(y | \320\262)+ log/(\320\262)

-
log/(\321\203). [12.3.2]

Note that if the goal is to maximize [12.3.2]with respect to 9, it is not necessary
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to calculate/(\321\203), since this does not depend on 9. Theposterior mode can thus be
found by maximizing

log/(\320\262, \321\203)
=

log/(\321\203I \320\262)+ log/(\320\262). [12.3.3]

To evaluate [12.3.2], we need only to be able to calculate the likelihood function

/(y|9) and the density that describes the prior information,/(9). Expression [12.3.2]

can be maximized by numerical methods, and often the same particular algorithms
that maximize the log likelihood will also maximize [12.3.2]. For example,the log

likelihood for a Gaussian regression modelsuch as [12.1.21] can be maximized by

a GLS regression, just as the posterior mode [12.1.39]can be calculated with a
GLS regression.

Tierneyand Kadane'sApproximation

for Posterior Moments

Alternatively, Tierney and Kadane A986) noted that the curvature of the
likelihood surface can be used to estimate the distance of the posterior mode from

the posterior mean, Suppose that the objective is to calculate

\302\243[g(e)|y]
-

\302\243
g(e)-/(e|y) rfe, [12.3.4]

where 9 is an (a x 1) vector of parameters and g: U\" \342\200\224*W is a function of interest.

For example, ifg(9) = 6,, then [12,3,4] is the posterior mean of the first parameter,
while g(9) = 6?gives the second moment. Expression [12.3.1]canbeused to write

[12.3.4] as

J* g(9)-/(y|9)-/(9)rf9 f g(9)-/(y|9)/(9)rf9
\302\243[g(9)|y]

= \342\200\224 \342\200\224 =
-^

. [12.3.5]

Define

/t(9)
^

A/\320\223)log{g(9)-/(y|9)-/(9)} [12.3.6]

and

*(9)-(l/r)log{/(y|9)-/(9)}, [12.3.7]

This allows [12.3.5] to be written

[ exp[T-/i(9)] rf9

J exp[r-A:(9)]rf9

[12.3.8]

Let 9* be the value that maximizes [12.3.6], and consider a second-order

Taylor series approximation to h(fi) around 9*:

s AF*)
\320\2559'

\342\200\242(9
- 9*)

+ z (9 - 9*)'
[12.3.9]

(9
- 9*).2 v\" \" '

[39 36' ,
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Assuming that 9* is an interior optimum of /i(-), the first derivative

[\320\227\320\271(\320\262)/3\320\262']|\320\262_\320\262-is 0. Then [12.3.9] could be expressedas

h(9) s h(9*) - (l/2)F -
\320\262*)'(\320\245*)-'(\320\262

- 9*), [12.3.10]

where

\320\2501\320\223'

When [12.3.10] is substituted into the numerator of [12.3.8], the result is

J \320\265\321\205\321\200[\320\223\320\271(9)]d9

=
J ^expjr-/i(9*)

-
(\320\223/2)(9

-
9*)'B*\320\223'(8

-
\320\262*)|

[12.3.12]

\320\265\321\205\321\200[\320\223-\320\271(9*)]j expj (-\320\223/2)(9
-

9*)'B*)-'(8 - 9*]

\320\262*)]Bir)\"/2|2*/7i1/2

=
\320\265\321\205\321\200[\320\223-\320\271(\320\262*)]B\321\202\320\263)\"/2|2*/\320\223||/2.

The last equality follows becausethe expression being integrated is a N(9*, 2*/\320\223)

density and therefore integrates to unity.

Similarly, the function k(fi) can be approximated with an expansion around
the posterior mode9,

| (e
- 9),

where 9 maximizes [12.3.7] and

[ssu\"'

The denominator in [12.3.8] is then approximated by

\320\265\321\205\321\200[\320\223-\320\220:(9)]rf9 s
\320\265\321\205\321\200[\320\223-\320\220(\320\262)](\320\263\321\217-^\320\245/\320\223!\022.[12.3.14]J*

Tierney and Kadane'sapproximation is obtained by substituting [12.3.12] and

[12.3.14] into [12.3.8]:

[12.3.15]

To calculate this approximation to the posterior mean of g(9), we first find the

value 9* that maximizes (l/T)-{log g(9) + log/(y|9)+ log/(9)}. Then /i(9*) in

[12.3.15] is the maximum value attained for this function and 2* is the negative
of the inverse of the matrix of second derivatives of this function. Next we find

the value 9 that maximizes (l/7\-{log/(y|9)") + log/(9)}, with k(9) the maximum
value attained and X the negative of the inverse of the matrix of second derivatives.
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The required maximization and second derivatives could be calculated analytically
or numerically. Substituting the resulting values into [12.3.15] gives the Bayesian
posterior estimate of g(9).

Monte Carlo Estimation of PosteriorMoments

Posterior moments can alternatively be estimated using the Monte Carlo

approach suggested by Hammersley and Handscomb A964, Section 5.4) and Kloek

and vanDijk A978). Again, the objective is taken to be calculation of the posterior
mean of g(9). Let/(9)be some density function defined on 9 with /(9) > 0 for all

9. Then [12.3.5] can be written

/%(e)-/(y|9)-/(9)d9

\302\243>!\302\253\342\200\242'<\342\200\242>
\320\233

[12.3.16]

/:.

The numerator in [12.3.16] can be interpreted as the expectation of the random

variable {g(9)-/(y|9)-/(9)//(9)}, where this expectation is taken with respect to

the distribution implied by the density /(9). If /(9) is a known density such as
multivariate Gaussian, it may be simple to generate N separate Monte Carlo draws

from this distribution, denoted {9(l),9B) 9W)}. We can then calculate the

average realized value of the random variable across these Monte Carlo draws:

2 (l/yV)-{g(9'\-/(y|9'\")-/(9\"')//(9\"')}.") [12.3.17]

From the law of large numbers, as N \342\200\224*K, this will yield a consistent estimate of

9, [12.3.18]

provided that the integral in [12.3.18] exists. The denominator of [12.3.16]is sim-

similarly estimated from

The integral in [12.3.18] need not exist if the importance density /(9) goes
to zero in the tails faster than the sample likelihood/(y| 9). Even if [12.3.18] does
exist, the Monte Carlo average [12.3.17] may give a poor estimate of [12.3.18]for

moderate N if /(9) is poorly chosen. Geweke A989) provided adviceon specifying

/(9). If the set of allowable values for 9 forms a compactset, then letting /(9) be
the density for the asymptotic distribution of the maximum likelihood estimator is

usually a good approach.
A nice illustration of the versatility of Bayesian Monte Carlo methods for

analyzing dynamic models is provided by Geweke A988a). This approach was

extended to multivariate dynamic systems in Geweke A988b).
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APPENDIX 12.A. Proofs of Chapter 12 Propositions

\342\226\240Proof of Proposition 12.1. Note that the product of [12.1.5]and [12.1.6] can be written

where

[12.A.2]

[12.A.3]
\\ct-Iv 0' 1

,-\342\200\236?\342\200\236\342\231\246\342\200\236\342\226\240L \320\276\342\200\236J

The goal is to rearrange a so that \321\206appears only in the first element. Define

V + T) -17(v+ T)Y
1, [ [12'A-4]

Since l'l = T and \320\223\321\203
= T$, we have

Aa

y-w-lj

y-m-1
[12.A.5]

and

\"
L Vv lT J L

- II {v + T) I

0

0' [12.A.6]

'X*.
Thus,

a'l'a = a'A'fA'J-'X-'A-'Aa =
(Aa)'(AXA') '(Aa)

= a*'(S*) 'a*. [12.A.7]
Moreover, observe that A can be expressed as

\320\237-17(\320\272+ \320\223I\320\237\320\236'!

Lo ir J [i ij\"
Each of these triangular matrices has Is along the principal diagonal and so has unit deter-
determinant, implying that |A| = 1. Hence,

|X*| - |A|-|S|-|A'|= |X|. [12.A.8]

Substituting [12.A.5]through [12.A.8] into [12.A.1] gives

/(\321\203.\320\274;o-2)

1

-^\302\253\342\200\242'(XT'a*

v + T) 0'

0 o-3(Ir + l-l'/y)

2 [y - m-lj L 0 o-3(Ir+ 1-1'

y-m-

[12.A.9]
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\321\205exp
\\2cr-l(v + \320\242)

(\321\203
-

\321\202-1)'A, + 1-1'/\321\203)-'(\320\243
~ \"''I)

2\321\201\321\202:

from which the factorization in Proposition 12.1 follows immediately. \342\226\240

\342\226\240Proof of Proposition 12.2. The product of [12.1.10] and [12.1.11] can be written as

with

X
G-**)xG-+*)

As in the proof of Proposition 12.1, define

(T + A) x (T + A-)

+ X'X)-'X'l 1% 01

i, J Lx ij
_ \320\223(\320\234\"+ X' -(M

Thus,A has unit determinant and

Aa

with

AXA

y
- XmJ

[o--(M
' + X'X)

' 0 1

cr^lr + XMX')J\"

Thus, as in equation [12.A.9],

+ X'X)-
'

0 XMX')

xexJ_i[P ~m*l'p(M
' +X'X) ' 0 ITp-m'll

Pl 2 Ly
-

XmJ [ 0 ^(Ir +
XMX')J [y

-
XmJ J

\342\200\242\"

\342\226\240Proof of Proposition 12.3(a). We have that

/(\321\203,\320\255,o- =
|X) = /(y|p, o--, X)-/(p|o-=, X)-/(o-=|X). [12.A.10]

The first two terms on the right side are identical to [12.1.10]and [12.1.11]. Thus, Proposition
12.2can be used to write [12.A.10]as

/<y.P,\302\253r-3|X)

B7\320\223\320\236--)\"-

1

[B7\320\223<\321\202\320\2422'

\320\242+

x
expJ[-l/B<H)](y-

[12.A.11]

XMX')\"'(y
- Xm)

\320\223(\320\233/2)\320\273\"-\320\276---\"\320\273\"-|-'1\320\265\321\205\321\200[-\320\233\320\276--/2]

1 \320\223(\320\233\320\230)
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Define

A* s A + (y - Xm)'(I,- + \320\245\320\234\320\245')-'(\320\243
~ Xm); [12.A.12]

we will show later that this is the same as the value A* described in the proposition.For

N* = N + T, the density [12.A.11] can be written as

/(y, B,o-=|X)

|M

The second term does not involve p, and the third term does not involve (J or o-\"-. Thus,

[12.A.13] provides the factorization

/(\321\203,\320\222,o-=|X) =
{/(\320\255\320\272-, \321\203,X)H/(\302\260-J|y, X)}-{/(y|X)},

where/Ok 2, \321\203X) is a /V(m*, o--M*) density, /(o\":|y, X) is \320\260\320\223(\320\233\320\223,A*) density, and
/(y|X) can be written as

r)/2]Aw:!|l.r+ XMX'|

(y -
Xm)'(Ir + \320\245\320\234\320\245')\"'(\320\243

- Xm)}\"\"
-

Xm)'[(AM0(Ir + XMX')]-'(y -

where

_ T\\(N

Thus, /(y|X) is a \320\223-dimensional Student's / density with \320\233^degrees of freedom, mean

Xm, and scale matrix (AW)(Ir + XM'X'). Hence, the distributions of Ok\022. \320\243.X) and

(cr~2\\y, X) are as claimed in Proposition 12.3, provided that the magnitude A* defined in

[12.A.12] is the same as the expression in [12.1.28]. To verify that this is indeed the case,
notice that

(Ir + XMX')-' =lT~ X(X'X + M-'J-'X', [12.A.14]

as can be verified by premultiplying [12.A.14] by (Ir + XMX'):

(lT + XMX')[Ir
- X(X'X + M-')-'X']

= Ir + XMX' - X(X'X + M-')-'X' -
XM(X'X)(X'X + M-')-'X'

'X)|(X'
= lT +

XJM(X'X
+ M-')

-
IA

- M(X
=

I7-.

Using [12.A.14], we see that

(y
-

\320\245\321\202)'A\320\263+ XMX')-'(\320\243
~

= (y -
Xm)'[I,-

- X(X'X + M-'J-'X'Ky -
Xm)

= (y - Xb + Xb - Xm)'[I7 -
X(X'X + M'T'X'Ky - Xb + Xb -

Xm)

= (y - Xb)'(y -
Xb) + (b - m)'X'[Ir -

X(X'X + M-')\"'X']X(b - m),
[12.A.15]
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where cross-productterms have disappeared because of the OLS orthogonality condition

(y -
Xb)'X

= 0'. Furthermore,

X'[Ir- X(X'X + M-'J-'X'jX
= [I* -

(X'X)(X'X + M\-']X'X
= [(X'X + M-')(X'X + M-')-' -

(X'X)(X'X + M-')'']X'X
= M-'(X'X + M-f)^'X'X.

This allows A2.A.15] to be written as

(y -Xm)'(Ir + \320\245\320\234\320\245')-'(\320\243
~ Xm)

=
(y

- Xb)'(y -
Xb) + (b

- m)'M '(X'X + M ') 'X'X(b -
m),

establishing the equivalence of [12.A.12]and [12.1.28].

Proof of (b). The joint posteriordensity of (J and cr 2 is given by

/(P.ir-'ly.X)

-,y, X)-/(o--|y, X)

-
\321\201')

\342\200\236.-\342\200\242IKit/v-KI-u|\320\264\302\273

f A*
x

expj
- \342\200\224\342\200\242

[1 + (\320\255
-

m*)'(A*M*) '@ -
\321\202*)]\321\201\321\202

)\" \320\223[(\320\220+ \320\233\320\223)/2],, \342\200\236, , , u + /v)/4

where/(o-2|p, y, X) will be recognized as a T((k + \320\233\320\223),A*[l + (\320\255
- m*)'(A*M*)-' x

(P -
m*)]) density, while/O|y, X) can be written as

x [1 + A/iV'XP
- m*)'[(A*W)M*]-'(P -

m*)]-<tl/v
>'-|,

which is a A-dimensional / density with N* degrees of freedom, mean m*, and scale matrix

(VA

Proof Qf (e). Notice that conditional on y, X, and a-2, the variable

- m*)]'[o-3R(M-'+ X'X)-'R']-
is

distributedx'(m\\-
fr\302\260mProposition 8.1. The variable Q in [12.1.30] is equal to Z-a2N*l

(m\\*), and so conditional on y, X, and a-2, the variable Q is distributed T(m, (mA*)/(o--/V*)):

]
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The joint posterior density of q and cr~- is

f(q, o--|y, X) = f(q\\cr~\\ y, X)-/(o-'|y, X)

=

1 f(^2J I

[12-\320\220\320\2337]

x a- 5m\302\273.+
\"-\302\253l-iiexp[-(/V\302\273 + mq)(\\*IN*)cT 2/2]

X
[ V{ml2)T(N*l2)(N* + mq)\"\"'

* \"'\302\253I

where /(a- -1q, y, X) is a \\\\(m + N*). (N* + mq)(\\*/N*)) density and/(<?|y, X) is an

F(m, N*) density. \342\226\240

Chapter 12 Exercise

12.1. Deduce Proposition 12.1 as a special case of Proposition 12.2.
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13

The Kalman Filter

This chapter introduces some very useful tools named for the contributions of

R. E. Kalman A960, 1963). The idea is to express a dynamic system in a particular
form called the state-space representation. The Kalman filter is an algorithm for
sequentially updating a linear projection for the system. Among other benefits,

this algorithm provides a way to calculate exact finite-sample forecasts and the

exact likelihood function for Gaussian ARMA processes, to factor matrix auto-

covariance-generating functions or spectral densities, and to estimate vector au-
toregressions with coefficients that change over time.

Section 13.1 describes how a dynamic system can be written in a form that
can be analyzed using the Kalman filter. The filter itself is derived in Section 13.2,
and its use in forecasting is described in Section 13.3. Section 13.4 explains how

to estimate the population parameters by maximum likelihood. Section 13.5 ana-
analyzes the properties of the Kalman filter as the sample size grows, and explains
how the Kalman filter is related in the limit to the Wold representation and factoring
an autocovariance-generating function. Section 13.6developsa smoothing algo-
algorithm, which is a way to use all the information in the sample to form the best
inference about the unobserved state of the process at any historical date. Section
13.7describes standard errors for smoothed inferences and forecasts. The use of
the Kalman filter for estimating systems with time-varying parameters is investi-

investigatedin Section 13.8.

13.1. The State-Space Representation
of a Dynamic System

Maintained Assumptions

Let y, denote an (n x 1) vector of variables observed at date t. A rich class

of dynamic models for y, can be described in terms of a possibly unobserved
{r x 1) vector \302\243,known as the state vector. The state-spacerepresentation of the

dynamics of \321\203is given by the following system of equations:

\302\253,+i
=

\320\237,+ v,+ , [13.1.1]

y,
= A'x, + H't + w,, [13.1.2]

where F, A', and H' are matrices of parametersof dimension (r x r), (n x k),
and(n x r), respectively, and x, is \320\260(\320\272\321\2051) vector of exogenous or predetermined
variables. Equation [13.1.1] is known as the state equation, and [13.1.2] is known

372



as the observation equation. The (r x 1) vector v, and the (\320\273\321\2051) vector w, are
vector white noise:

: [13.1.3]
otherwise

f\302\260[

'
~.

T
[13.1.4]

otherwise,

where Q and R are (r x r) and (n x n) matrices, respectively. The disturbances

v, and w, are assumedto be uncorrelated at all lags:

\302\243(v,w;)
= 0 foralUandr. [13.1.5]

The statement that x, is predetermined or exogenous means that x, provides no
information about \302\243,+sor w, +v for s = 0, 1,2, ... beyond that contained in y,_,,
y,_2, . . . , yr. Thus, for example,x, could include lagged values of \321\203or variables
that are uncorrelated with \302\243Tand wT for all \321\202.

The system of [13.1.1] through [13.1.5]is typically used to describe a finite

series of observations {y,, y2, . . . , yT} for which assumptions about the initial

value of the state vector \302\243,are needed. We assume that \302\243,is uncorrelated with

any realizations of v, or w,:

\302\243(v,\342\202\254[)
= 0 for t = 1, 2 T [13.1.6]

\302\243(w,\342\202\254I)
= 0 for t = 1, 2, . . . , T. [13.1.7]

The state equation [13.1.1]implies that \302\243,can be written as a linear function of

(Si. v2, v3 v,):

I, = v, + Fv,_, + F2v,_2 + \342\200\242\342\200\242\342\200\242+ F'-2v2 + F'~%
[\320\237\320\233.\320\246

for t = 2, 3 T.

Thus, [13.1.6] and [13.1.3] imply that v, is uncorrelated with lagged values of \302\243:

\302\243(v,g;) =0 for \321\202= t - 1, t - 2, . . . , 1. [13.1.9]

Similarly,

\302\243(w,?;)
= 6 for \321\202= 1, 2, . . . , T [13.1.10]

PYwv'1 = PTwCA'x + H'\302\243+ w VI

= 0 forT=f-l,t-2 1 LU-i.-Uj

\302\243(v,y;)
= 0 for \321\202= t - 1, t - 2, 1. [13.1.12]

The system of [13.1.1] through [13.1.7] is quite flexible, though it is straight-
straightforwardto generalize the results further to systems in which v, is correlated with

w,.1 The variousiparameter matrices (F, Q,A, H, or R) could be functions of time,
as will be discussed in Section 13.8. The presentation will be clearest, however, if

we focus on the basic form in [13.1.1] through [13.1.7].

'See,for example, Anderson and Moore A979, pp. 105-8).
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Examples of State-Space Representations
Consider a univariate AR{p) process,

y,+ l
- ix =

\321\204,(\321\203,
-

fj.)

Eie.Br)
=

[13.1.13]

for \320\263= \321\202

otherwise.

This could be written in state-space form as follows:

State Equation (r - p):

[13.1.14]

1 0
0 1

.0 0
Observation Equation (n = 1):

v,
= M + [1 0 0]

\320\243t
-

-,,+(

[13.1.15]

That is, we would specify

M.

F =

\320\276

L 6 J

1 \320\236

\320\2361

.0 6

\320\276-20

\320\276\320\276

6 6

\321\204,-1

\320\276

\320\276

\321\204\342\200\236

\320\276

\320\276

6.

\320\243,
=

\320\243, A' =
\320\274 x, = 1

H' = [1 0 \342\200\242\342\200\242\342\200\242
0] w, = 0 R = 0.

Note that the state equation here is simply the first-order vector difference equation
introduced in equation [1.2.5]; F is the same matrix appearing in equation [1.2.3].
The observation equation here is a trivial identity. Thus, we have already seen that

the state-space representation [13.1.14] and [13.1.15] is just another way of sum-

summarizing the AR(p) process [13.1.13]. The reason for rewriting an AR(p) process
in such a form was to obtain a convenient summary of the system's dynamics, and
this is the basic reason to be interested in the state-space representation of any

system. The analysis of a vector autoregression using equation [10.1.11] employed
a similar state-space representation.

As another example,considera univariate MAA) process,

v, =
M + e, + \320\262\320\265,.,. [13.1.16]
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This could be written in state-space form as follows:

Slate Equation (r = 2):

[v]
Observation Equation (\320\273

= 1):

that is,

[13.1.18]

Q-[?S] '\342\226\240-\302\273*\342\226\240-\302\273*-'

H' = [1 \320\262] w,
= \320\236 R = 0.

There are many ways to write a given system in state-space form. For example,
the MAA) process [13.1.16] can also be representedin this way:

State Equation (r -' 2):

Observation Equation (\320\273= 1):

\320\243,
= M + [1 [13.1.20]

Note that the original MA{\\) representation of [13.1.16],the first state-space rep-
representation of [13.1.17] and [13.1.18], and the second state-space representation
of [13.1.19]and [13.1.20] all characterize the same process.We will obtain the
identical forecasts of the process or value for the likelihood function from any of

the three representations and can feel free to work with whichever is most con-
convenient.

More generally, a univariate ARMA(p, q) processcan be written in state-
spaceform by defining r = max{p, q + 1}:

y,
-

\321\206
=

\321\204,(\321\203,-,
-

\320\274)+ <k{y,-z
-

\320\274)+ \342\200\242\342\200\242\342\200\242+ \320\244\320\245\321\203,-\320\263
~

\320\2622\320\265,_2

[13.1.21]

where we interpret <fy
= 0 for/ > p and ty

= 0 for; > q. Consider the following

state-space representation;
State Equation (r = max{p, q + 1}):

i \342\200\242'\342\200\242
\320\244\320\263-l\320\244\320\263

\320\237 \320\237 |E'+I
0

\320\244^

1

0

\320\244\320\263

0

1

... \320\276

... \320\276

\321\204

0

0

1 0J
\320\276

[13.1.22]

L0 0 \342\200\242

Observation Equation (\320\273
= 1):

\321\203,
-

\320\274+ [1 \320\262,\320\2652
\342\200\242\342\200\242\342\226\240

*,_,]\302\253,. [13.1.23]

\320\242\320\276verify that [13.1.22] and [13.1.23]describethe same process as [13.1.21], let
\302\247v

denote the y'th element of \302\243,.Thus, the second row of the state equation asserts
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that

The third row asserts that

\320\254\320\227\320\273-l
=

\320\2542(
= Sl.r-li

and in general the /th row implies that

Thus, the first row of the state equation implies that

or

A - *,L -
\321\2042^2 *,\302\243'\342\204\226,+,

=
\302\253,+.- [13.1.24]

The observation equation states that

y, =
M + A + 0,L + 02\302\2432+ \342\200\242\342\200\242\342\200\242+ *,_,//-%,. [13.1.25]

Multiplying [13.1.25] by A -
\321\204\320\272\320\254

-
\321\204\320\263\320\254\320\263

- \342\200\242\342\200\242\342\200\242-
\321\204,\320\245')and using [13.1.24]

gives

= (l + e,z.+ o2l2 + \342\200\242\342\200\242\342\200\242+ er_,i'-')e,,

which indeed reproduces[13.1.21].
The state-space form can also be very convenient for modeling sums of sto-

stochastic processes or the consequences of measurement error. For example, Fama
and Gibbons A982)wanted to study the behavior of the ex ante real interest rate

(the nominal interest rate i, minus the expected inflation rate \321\202\320\263?).This variable is

unobserved, becausethe econometrician does not have data on the rate of inflation

anticipated by the bond market. Thus, the state variable for this application was

the scalar \302\243,
=

i,
\342\200\224

irj
\342\200\224

\321\206,where \321\206denotes the average ex ante real interest

rate. Fama and Gibbons assumed that the ex ante real rate follows an ARA)
process:

l+l =
\320\2441+ vl+l. [13.1.26]

The econometrician has observations on the ex post real rate (the nominal interest
rate /, minus actual inflation \321\202\320\263,),which can be written as

',
-

\320\251
= (', ~

\320\236+ \302\253
-

\320\251)
= M + \302\243,+ \320\270>\342\200\236[13.1.27]

where w, =
(\321\202\320\263\"

-
\321\202\320\263,)is the error that people make in forecasting inflation. If

people form these forecasts optimally, then w, should be uncorrelated with its own

lagged values or with the ex ante real interest rate. Thus, [13.1.26]and [13.1.27]
are the state equation and observation equation for a state-spacemodel with r =

n = 1, F =
\321\204,v,

= i,
-

\321\202\320\263\342\200\236A'x, = /n, H = 1, and w, =
(\321\202\321\202,*

-
\321\202\320\263,).

In another interesting application of the state-space framework, Stock and
Watson A991) postulated the existence of an unobserved scalar C, that represents
the state of the business cycle.A set of n different observed macroeconomic var-
variables (v,,, v2,, . . . , v,,,) are each assumed to be influenced by the business cycle
and also to have an idiosyncratic component (denoted Xi,) that is unrelated
to movements in

Vy,
for i \320\244j. If the business cycle and each of the idiosyn-

idiosyncraticcomponents could be described by univariate AR{\\) processes, then the
[(\320\273+ 1) x 1] state vector would be

Xu

\320\245\321\212 [13.1.28]
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with state equation

\320\224\320\2232./+1

~\321\204\321\201\320\236\320\236

\320\236\321\204,0

0 0 <fc

6 6 6

0
0
0

\320\244\320\277_

cr

Xu
X*

_Xih_

+

vc.,+ \320\223

V2.l + 1 [13.1.29]

and observation equation

'\321\203\320\277

\320\243\320\263,

\320\243\321\202-

=

~Mi

M2 +

7, 1 0

72 0 1

7,, 6 6

01

1

\"\320\241,\"

\320\245\321\202

[13.1.30]

Thus, \321\203,-is a parameter that describes the sensitivity of the ith series to the business

cycle. To allow for pth-order dynamics, Stock and Watson replaced C, and \\u in

[13.1.28] with the (p x 1) vectors (C,, C,_,, . . . , C,_p+,)' and (*\342\200\236,

] [Xi.i-p*\\)' so tnat ?f 's an - The scalars \321\204,in [13.1.29] areX.p)
then replaced by (p x p) matrices F,- with the structure of the matrix F in [13.1.14],
and [n x (p \342\200\224

1)] blocks of zeros are added between the columns of H' in the

observation equation [13.1.30].

13.2. Derivation of the KalmanFilter
Overview of the Kalman Filter

Considerthe general state-space system [13.1.1] through [13.1.7], whose key
equations are reproducedhere for convenience:

(rxl) (rxr)(rx

\320\243,
= A'-x

\320\263, \320\274 / Q
C(V,V ) = < (rxr]

I 0

\302\243(w,w')
= i (/ix/i)

I 0

The analyst is presumed to have

1) (/x+l)

, + H'-\302\243, + w,
<l) (/1\320\245\320\223)(\320\223\320\245|)(/|Xl)

for t = \321\202

otherwise

for t = \321\202

otherwise.

observed y,, y2, . . . , yr, x,, x2,

[13.2.1]

[13.2.2]

[13.2.3]

[13.2.4]

. . . , xr.
One of the ultimate objectives may be to estimate the values of any unknown

parameters in the system on the basis of these observations. For now, however,

we will assume that the particular numerical values of F, Q,A, H, and R are known

with certainty; Section 13.4 will give details on how these parameters can be es-

estimated from the data.
There are many uses of the Kalman filter. It is motivated here as an algorithm

for calculating linear least squares forecasts of the state vector on the basis of data

observed through date t.

where

%
-

(\320\243,\\\320\243,'-,.\342\200\242\342\200\242\342\200\242- ?\342\200\236x,'. \321\205,'_\342\200\236. . . , x',)' [13.2.5]
and fXSj+il'S/,) denotes the linear projection of \302\243,+l on 41, and a constant. The
Kalman filter calculates these forecasts recursively, generating |\321\2060,|2|,, . . . ,

13.2. Derivation of the Kalman Filter 377



|\321\202-|\321\202--1in succession. Associated with each of these forecasts is a mean squared

error (MSE) matrix, represented by the following (r x r) matrix:

.
- i,+ u,)(\302\253,+.

- 4,+ .|,)']. [13-2.6]

Starting the Recursion
The recursion begins with |,|0, which denotes a forecast of g, based on no

observations of \321\203or x. This is just the unconditional mean of \302\243,,

l.io
=

\302\243(\302\253,),

with associated \320\233/5\320\225

p.io
=

For example, for the state-space representation of the MA{\\) system given in

[13.1.17] and [13.1.18], the state vector was

\320\247.::]-

for which

where o-2 =
\302\243(e,2).

More generally, if eigenvalues of F are all inside the unit circle, then the

process for g, in [13.2.1] is \321\201\320\276variance-stationary. The unconditional mean of \302\243,

can be found by taking expectations of both sides of [13.2.1],producing

\302\243(\302\253,+,)
=

F-\302\243(\302\253,),

or, since \302\243,is covariance-stationary,

(Ir
- F) \342\200\242\302\243(\302\253,)

= 0.

Since unity is not an eigenvalue of F, the matrix (Ir
- F) is nonsingular, and this

equation has the unique solution \302\243(\302\243,)
= 0. The unconditional variance of \302\243can

similarly be found by postmultiplying [13.2.1] by its transpose and taking expec-
expectations:

\302\243(\302\253,+.\302\253;+.)
=

\302\243[(f\302\253,+ v(+1)(\302\253;f' + v;+,)] =
f-\302\243(\302\253,\302\253;)-f- + \302\243(vf+1v;+1):

Cross-product terms have disappeared in light of [13.1.9]. Letting 2 denote the

variance-covariance matrix of ^, this equation implies

2 = F2F' + Q,
whose solution was seen in [10.2.18] to be given by

vecB) = [lr. -
(F\302\256F)]-'-vec(Q).

Thus, in general, provided that the eigenvalues of F are inside the unit circle, the
Kalman filter iterations can be started with |,|0

= 0 and Pl|0 the (r x r) matrix

whose elements expressed as a column vector are given by

vec(P1|0)
= [lr, -

(F\302\256F)]\"l-vec(Q).

If instead some eigenvalues of F are on or outside the unit circle, or if the
initial state \302\243(is not regarded as an arbitrary draw from the process implied by

[13.2.1], then |\321\2060can be replaced with the analyst's best guess as to the initial

value of \302\243[,where \320\240\321\206,,is a positive definite matrix summarizing the confidence in
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this guess. Larger values for the diagonal elements of \320\240,|0register greater uncer-

uncertaintyabout the true value of \302\243,.

Forecasting yt

Given starting values |,|0 and \320\240,|\342\200\236,
the next step is to calculate analogous

magnitudes for the following date, |2|i and P2|,. The calculations for t = 2, 3,
. . . , T all have the same basic form, so we will describe them in general terms
for step t; given 4,|,-i and P,|,_i, the goal is to calculate |1+ 1|, and P,+ ,|,.

First note that since we have assumed that x, contains no information about
|, beyond that contained in 4/,_,,

\302\243(\302\253,!*.\302\253,-.)
=

\302\243(\302\253,!\302\253,-\342\226\240)
=

4,i,-..

Next consider forecasting the value of y,:

*.|,-,-\302\243(\320\243,\320\272-\302\253,-.)\342\226\240

Notice from [13.2.2] that

x,,\302\253,)
= A'x, + \320\235'$\342\200\236

and so, from the law of iterated projections,

y,l,_, =
A'x, + H'-\302\243(&|x,,\302\253,_,)

= A'x, + H'4,|,_,. [13.2.9]
From [13.2.2], the error of this forecast is

y, -
y,|,_, =

A'x, + H't + w,
- A'x, - H'4,|,_, =

H'(\302\253,
-

i|,_.) + w,

with MSE

EKl. ~
\320\243,|,-,)(\320\243,

-
\320\243,,-,)']

=
E[H'(\302\253,

-
4,i,-.)(\302\253,

-
ii,-)'H] + \302\243[w,w;].

UJ-zauj

Cross-product terms have disappeared, since

EK(\302\253,-t|,-.)']-0. [13.2.11]
To justify [13.2.11], recall from [13.1.10]that w, is uncorrelated with \302\243,.Further-

Furthermore,since |,|,_i is a linear function of <?/,_,, by [13.1.11] it too must be uncor-
uncorrelated with w,.

Using [13.2.4] and [13.2.6], equation [13.2.10] can be written

\302\243[(\320\243,
-

y\",|,-i)(y,
-

\320\243\321\204-,)']
=

H'P,|,_,H + R. [13.2.12]

Updating the InferenceAbout \302\243,

Next the inference about the current value of \302\243,is updated on the basis of
the observation of y, to produce

4,i, =
\302\243(\302\253,|\321\203\342\200\236\321\205\342\200\236\302\253,_,)-\302\243(\302\253,!\342\200\242,).

This can be evaluated using the formula for updating a linear projection, equation

[4.5.30]:2

4,i,-i)(y, y,i,-i)]} r13 213i
x {\320\251(\321\203,

-
y,i,-.)(y,

-
\321\203,,,-.)']}\021

x (y, - y,,,-,).
l \342\200\242\" J

:Here 5, corresponds to \320\243,,y, corresponds to Y,. and (x,', 41,'-,)' corresponds to Y, in equation
[4.5.30].
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But

= E{[t -
|,|,_,][H'(\302\253,

-
I,,,-,) + w,]'} [13-2.14]

t -
|,|,_,)(\302\253,

-
I,,,-,)'H]

by virtue of [13.2.11] and [13.2.6]. Substituting [13.2.14]. [13.2.12], and [13.2.9]
into [13.2.13] gives

in = l,|,-,+P,|,-,H(H'P,|,_,H + R)-'(y,-A'x,-H'i,),.l). [13.2.15]
The MSE associated with this updated projection, which is denoted P,|,, can

be found from [4.5.31]:

~ !,|,-i)(y, - y,|,-i)']} [13.2.16]

Producing a Forecast of \302\243,+,

Next, the state equation [13.2.1] is used to forecast ?,+ ,:

i+.i, =
*(\302\253,+i I*,)

=
F-\302\243(\302\253,|\302\253,)+ \302\243(v,+1|\302\253,) [13.2.17]

= Fi|, + 0.

Substituting [13.2.15] into [13.2.17],

i + .|,
= Fi,,_,

\320\223132 181
. +FP,|,_,H(H'P,|,_,H + R)\"'(y, -

A'x,
-

\320\235'|,|(_,).1

\"\342\226\240J

The coefficient matrix in [13.2.18] is known as the gain matrix and is denoted K,:

K, - FP^.HCH'P^.H+ R)\"', {13.2.19]

allowing [13.2.18] to be written

i+l|,
= F|,|,_, + K,(y, -

A'x,
-

H'i|,_,).. ' [13.2.20]

The MSEof this forecast can be found from [13.2.17] and the state:equation
[13.2.1]:

p,+ ii,
=

\302\243[(\302\243,+i
-

!/+ii,)(\302\243,+i
- l,+ i|,)']

\302\243[(F\302\253 F4)(F\302\253 v,+ 1
-

F|,|,)'] [13.2,21]
]

= FP,|,F' + Q,

with cross-product terms again clearly zero. Substituting [13.2.16] into [13.2.21]
produces

P,+ M,
= FPV,

-
\320\240\321\204-.\320\251\320\235'\320\240\321\204-.\320\235

+ R)-lH'P(|,_,]P + Q. [13.2.22]

380 Chapter 13 \\ The Kalman Filter



Summary and Remarks
To summarize, the Kalman filter is started with the unconditional mean and

variance of \302\243,:

in\302\273
=

\302\243(\302\253.)

P1|(,
=

\302\243{[\302\253,
-

\302\243(\302\253,)][\302\253,
-

\302\243(\302\253,)]'}.

Typically, these are given by |M0
= 0 and vec(PM,i)=

[Irr
-

(F\302\256F)]\021-vec(Q).
We then iterate on

\342\202\254|
=

F\342\202\254|i
\320\23732 231

,|,_1H +
R)-1(y,-A'x,-\342\204\226\302\253\342\200\236,_,)

L \342\200\242\342\226\240J

and [13.2.22] for t = 1, 2, . . . , T. The value |(+1|, denotes the best forecast of

|, +, based on a constant and a linear function of (\321\203\342\200\236\321\203,_,, . . . , \321\203,,\321\205\342\200\236\321\205,_ ,, . . . ,

x,). The matrix P,+ ,|, gives the MSE of this forecast. The forecastof y,+, is given

by

y,+ .|,-E(y,+ .|xl+,,\302\253,)
= A'x,+ 1 + H'i+1|, [13.2.24]

with associated MSE

\302\243[(\320\243,+,
-

\320\243,+.|,)(\320\243,+.
-

\320\243,+.|,)']
= H'P,+ 1|,H + R. [13.2.25]

It is worth noting that the recursion in [13.2.22] could be calculated without

ever evaluating [13.2.23]. The values for P,|,_, in [13.2.22] and K, in [13.2.19] are
not functions of the data, but instead are determined entirely by the population
parameters of the process.

An alternative way of writing the recursion for P,+ 1|, is sometimes useful.
Subtracting the Kalman updating equation [13.2.20]from the state equation [13.2.1]
produces

l,+ i
- 4,+ 1|, = F(l, - 4,|,-.)- K,(y,

- A'x, - H'4,1,-,)+ vl+1. [13.2.26]

Further substituting the observation equation [13.2.2] into [13.2.26] results in

S,+ 1
- 4,+ 1|, = (F -

K,H')(\302\253,
-

4,|,_,)
-

K,w, + vl+1. [13.2.27]

Postmultiplying [13.2.27] by its transpose and taking expectations,

= (f -
\320\272,\320\275')\302\243[(\302\253,

-
i,|,.,)(\302\253,

-
I,i,-,)'](F'

- hk;) + k,rk; + q;

or, recalling the definition of P,+ 1|, in equation [13.2.6],

p,+ .i, =
\342\204\226

- k,h')p,|(_,(f'
- hk;) + k,rk; + q. [13.2.28]

Equation [13.2.28] along with the definition of K, in [13.2.19] will produce the
samesequencegenerated by equation [13.2.22].

13.3. Forecasts Based on the State-Space
Representation

The Kalman filter computations in [13.2.22] through [13.2.25] are normally cal-

calculated by computer, using the known numerical values of F, Q, A, H, and R along
with the actual data. To help make the ideas more concrete, however, we now

explore analytically the outcome of these calculations for a simple example.
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Example\342\200\224 Using the Kalman Filter to Find Exact
Finite-SampleForecastsfor an MAG) Process

Consider again a state-space representation for the MA{\\) process:
State Equation (r - 2):

[13.3.1]

Observation Equation (\320\273
= 1):

\320\223\321\2011

[13.3.2]

[13.3.3]

[13.3.4]

v,+ 1
=

[%+1]
[13.3.5]

\320\276*
\320\276]

[1316]

\320\243,
=

\320\243, [13-3.7]

A' =
\321\206 [13.3.8]

x, = 1 [13.3.9]
H' = [1 9] [13.3.10]

w, = 0 [13.3.11]
R = 0. [13.3.12]

The starting values for the filter were described in [13.2.7] and [13.2.8]:

Thus, from [13.2.24], the period 1 forecast is

9\\\\\302\253
-

\320\274+ H'|,|0
=

/\320\273,

with MSE given by [13.2.25]:

E{y^
-

j>,|oJ =
H'P1|AH + R = [1

e]\\\"Q
\320\243,11 4 + 0 = a\\l + 92).

These, of course, are just the unconditional mean and variance of y.
To see the structure of the recursion for t \342\200\2242, 3, . . . , T, consider the basic

form of the updating equation [13.2.23].Noticethat since the first row of F consists

entirely of zeros, the first element of the vector |,+ l|, will always equal zero, for
all t. We see why if we recall the meaning of the state vector in [13.3.3]:

i,+ll,-14:\"! [13.3.13]
L e<\\i -i
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Naturally, the forecast of the future white noise, e,+ i|,, is always zero. The forecast
of yl+l is given by [13;2.24]:

e,|,
The Kalman filter updating equation for the MSE, equation [13.2.21], for

this example becomes

P,+ 1|, - FP,,F' + Q =

[\302\260j]P||f[j J]
+

[\302\253\302\243\302\260].
[13.3.15]

Thus, P,+, |, is a diagonal matrix of the form

[
where the B, 2) element of P,+ ,|, (which we have denoted by pl+,) is the same as
the A, 1) element of P,|,. Recalling [13.2.6] and [13.3.13], this term has the inter-

interpretation as the MSE of e,|,:
p,+,

=
\302\243(e,

-
ilUy. [13.3.17]

The A, 1) element of P,+ ,|, has the interpretation as the MSE of e,+i|,. We have

seen that this forecast is always zero, and its MSE in [13.3.16] is a1 for all t. The
fact that P,+ l|, is a diagonal matrix means that the forecast error (e1+ 1

- e,+ l|,) is
uncorrelated with (e,

- e,|,).
The MSEof the forecast of y,+ , is given by [13.2.25]:

\320\243,+. -\320\233+.|,J
- H'P,+ 1|,H+ R

r2

[13.3.18]

= o-2+ \320\2622\321\200,+1.

Again, the intuition can be seen from the nature of the forecast in [13.3.14]:

=
\302\243(\320\262?+|)+ \320\262\320\251\320\265,

-
I,,,J,

which, from [13.3.17], reproduces [13.3.18].
From [13.2.23],the series for

\321\221,\\,
is generated recursively from

\320\253

=

V

or

\320\262,,,
= {o-2/[o-2 + 0*p,]}-{y, -

\320\274
-

\320\2621,-,|,-,} [13.3.19]

starting from the initial value eO|U
= 0. Note that the value for e,|, differs from the

approximation suggested in equations [4.2.36] and [4.3.2],

e, = y, -
M

-
81,_, I,, = 0,

in that [13.3.19] shrinks the inference I, toward zero to take account of the nonzero

variancep, of \321\221,_||,_(
around the true value e,_,.

The gain matrix K, in equation [13.2.19]is given by
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Finally, notice from [13.2.16] that

The A, 1) element of P,|, (which we saw equals p,+ ,) is thus given by

The recursion in [13.3.21] is started with pl = a* and thus has the solution

It is interesting to note what happens to the filter as t becomes large. First

consider the case when \\\320\262\\s 1. Then, from [13.3.22],

lim p,+, = 0,

and so, from [13.3.17],

e,\\,
-^ e,.

Thus, given a sufficient number of observations on y, the Kalman fiker inference

e,l, converges to the true value e,, and the forecast [13.3.14]converges-to that of

the Wold representation for the process. The Kalman gain in [13.3.20] converges
to @, 1)'.

Alternatively, consider the case when \\\320\262\\> 1. From [13.3.22}, we have

_ o-2fl2'(l
-

\320\2622)_ <\321\202\\\\
-

\320\2622)

and

hmp,+ l ~ >0.

No matter how many observations are obtained, it will not be possible to know

with certainty the value of the nonfundamental innovation e, associatedwith date

t on the basis of (yr y,_,, . . . , yt). The gain is given by
a2 a2 _ J_

a1 + \320\2622\321\200,

~\"
a2 -

<j\\\\
-

\320\2622)

~
fl2'

and the recursion [13.3.19] approaches

\302\253\342\200\236,
=

(\320\243\320\2622)-(\321\203,-M- \302\273\302\253,_,\342\200\236_,)

or

\320\262\321\221,\320\270
=

{\\16)-{\321\203,
- ii- \320\262\321\221,_,|,_,).

Recalling [13.3.14], we thus have

or

\320\233+1|,
-

\320\274

which again is the y4/?(=o) forecast associated with the invertible MAA) represen-
representation.Indeed, the forecasts of the Kalman filter with \320\262replaced by <?\"' and a2

replaced by 92cr2 will be identical for any t; see Exercise 13.5.

Calculating s-Period-Ahead Forecasts
with the Kalman Filter

The forecast of y, calculated in [13.2.24] is an exact finite-sample forecast of
y, on the basis of x, and \"?/,_,

= (y,'-i, y,'-2 \320\243\\<x'-i< x/-2. \342\200\242\342\200\242\342\200\242. \"',)'. If x,

384 Chapter 13 \\ The Kalman Filter



is deterministic, it is also easy to use the Kalman filter to calculate exact finite-

sample s-period-ahead forecasts.
The state equation [13.2.1] can be solvedby recursive substitution to yield

\302\243 = Fv\302\243+ F(~'v + Fv~2v -, + \342\200\242\342\200\242\342\200\242+F'v , + vS,+, \302\253.+ v,+ ,+* v, + 2 + v,+,_, -h v1+,
[13\320\26723]

for s = 1,2
The projection of \302\243,+,on \302\243,and \320\247\320\243,is given by

E(&+M,'%) = F\"t- [13.3.24]
From the law of iterated projections,

1/+\320\273|,
= ^E,+J*,) =

F-'l,,,. [13.3.25]
Thus, from [13.3.23] the s-period-ahead forecast error for the state vector is

5/+\320\273
-

5/+\302\273|i
- Ei

Si|/^
+ v(+1 + v, + 2

[13.3.26]

with MSE

P,+..|,= F'P^F'Y + F-'Q(F')\"-1 + F'-2Q(F')'-J [13.3.27]
+ \342\200\242\342\200\242\342\200\242+ FQF' + Q.

To forecast the observed vector y1 + v, recall from the observation equation

that

There are advantages if the state vector is defined in such a way that x, is deter-

deterministic, so that the dynamics of any exogenous variables can be represented
through \302\243.If x, is deterministic, the s-period-ahead forecast of \321\203is

The forecast error is

with MSE

E[(yl+,
-

\320\243,+\320\273|,)(\320\243,+.,
-

\320\243/+..||)']
=

\320\235'\320\2401+ \320\244\320\235
+ R. [13.3.30]

13.4. Maximum Likelihood Estimation of Parameters

Using the Kalman Filter to Evaluate
the Likelihood Function

The Kalman filter was motivated in Section 13.2 in terms of linear projections.
The forecasts |,|,_, and y,|,_, are thus optimal within the set of forecasts that are

linear in (x,, <?/,_,), where <?/,_, = (y,'_,, y,'_2 \321\203'\342\200\236\321\205,'_\342\200\236\321\205,'_2,. . . , x',)'. If
the initial state g, and the innovations {w,, v,},r_, are multivariate Gaussian, then
we can make the stronger claim that the forecasts |,|,_i and y,|,_, calculated by
the Kalman filter are optimal among any functions of (x,, '?/,_,). Moreover,if g,
and {w,, v,},^.l are Gaussian, then the distribution of y, conditional on (x,, \"?/,_i)

is Gaussian with mean given by [13.2.24] and variance given by [13.2.25]:

\321\203,|\321\205\342\200\236\302\253,_,
~

N((\\'x, + H'4,,_,), (H'P,|,_,H + R));
that is,

x exp{-i(y,
-

A'x,
-

H'i^O'CH'P,,,,^ + R)-'
[LiALl

x (y,
- A'x, - H'|,,,_,)} for (=1,2 \320\223.
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From [13.4.1], it is a simple matter to construct the sample log likelihood,

>,|\321\205\342\200\236\302\253,-,). [13.4.2]
,= i

Expression [13.4.2] can then be maximized numerically with respect to the unknown

parameters in the matrices F, Q, A, H, and R; see Burmeister and Wall A982) for
an illustrative application.

As stressed by Harvey and Phillips A979), this representation of the likelihood
is particularly convenient for estimating regressions involving moving average terms.
Moreover, [13.4.2]gives the exact log likelihood function, regardless of whether
the moving average representation is invertible.

As an illustrative example, suppose we wanted to estimate a bivariate regres-
regressionmodel whose equations were

\320\243\320\263,
= a2x, + u2n

where x, is a (A: x 1) vector of exogenous explanatory variables and a, and a2 are
(k x 1) vectors of coefficients; if the two regressions have different explanatory
variables, the variables from both regressions are included in x, with zeros appro-
appropriately imposed on a, and a2. Suppose that the disturbance vector follows a bi-
bivariate MAA) process:

with (eu,
defining

)'
~ i-i-d. N@, ft). This model can be written in state-space form by

I, =

Q =

62,

e,,_

\302\2432.,-

\320\236-\320\246

O-2I

0

0

O\"l2

O22

0

0

IT\320\223

0

0

0
0

0-
0
0
0.

'0
0
1
.0

0
0
0
1

A'

0 0\"

0 0

0 0
0 0.

v,+ l
e2.l +

0

0

\342\200\236,= [i
\320\276\320\262\342\200\236

el2] =

o-

0
0
0

p \342\200\224
M|0

~

\320\236-\320\246

Oil

0

0

a-|2
\320\236-22

0

0

0
0

\302\260\"n

O-2I

0

0

O-I2

\320\236-22

where
<\321\202\321\206

=
\302\243(\320\265,-,\320\265,-,).

The Kalman filter iteration is started from

Inn
~

Maximization of [13.4.2]is started by making an initial guess as to the nu-

numerical values of the unknown parameters. One obvious way to do this is to regress

yu on the elements of x, that appear in the first equation to get an initial guess for

a,. A similar OLS regression for y2 yields a guess for a2. Setting \320\262\320\270
=

\320\26212
=

&u =
<?22

= 0 initially, a first guess for \320\233could be the estimated variance-covariance
matrix of the residuals from these two OLS regressions. For these initial numerical

values for the population parameters, we could construct F, Q, A, H, and R from
the expressions just given and iterate on [13.2.22] through [13.2.25] for t = 1,2,
. . . , T - 1. The sequences{i,|,_i},1iand {P,!,-,},7!, resulting from these iter-
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ations could then be used in [13.4.1] and [13.4.2] to calculate the value for the log
likelihood function that results from these initial parameter values. The numerical
optimization methods described in Section 5.7 can then be employed to makebetter
guessesas to the value of the unknown parameters until [13.4.2] is maximized. As
noted in Section 5.9, the numerical search will be better behaved if ft is param-
parameterized in terms of its Cholesky factorization.

As a second example, consider a scalar Gaussian ARMAA, 1) process,

y, -
\320\274

=
\321\204(\321\203,-,

-
ix) + e, + fle,^,

with e,
~ i.i.d. N@, a2). This can be written in state-space form as in [13.1.22]

and [13.1.23] with r = 2 and

+ \320\233 _ [V \320\236]

A' =
\320\274 x,

= 1 H' = [1 \320\262] R = 0

\320\236]
l oj

~\321\2042)

_
\321\2043)

This value for E*, !\320\276was obtained by recognizing that the state equation [13.1.22]
describes the behavior of 5, =

(\342\200\242?\342\200\236\342\200\242?,_,,\342\226\240\342\200\242\342\226\240, z,_r+,)', where z, =
\321\204,\320\263,_1+

\321\2042\320\263,_2+ \342\200\242'\342\200\242+ \321\204,\320\263,_\320\263+ e, follows an AR(r) process.For this example, r = 2,
so that P,|0 is the variance-covariance matrix of two consecutive draws from an

ARB) process with parameters \321\204^
=

\321\204and <fc
= 0. The expressions just given

for F, Q, A, H, and R are then used in the Kalman filter iterations. Thus, expression
[13.4.2]allows easy computation of the exact likelihood function for an ARMA(p, cf)

process. This computation is valid regardless of whether the moving average pa-
parameters satisfy the invertibility condition. Similarly, expression [13.3.29] gives the
exact finite-sample i-period-ahead forecast for the process and [13.3.30] its MSE,
again regardless of whether the invertible representation is used.

Typically, numerical search procedures for maximizing [13.4.2] require the
derivatives of the log likelihood. Thesecan be calculated numerically or analytically.

To characterize the analytical derivatives of [13.4.2], collect the unknown param-
parametersto be estimated in a vector \320\262,and write FF), QF), \320\220(\320\262),\320\235(\320\262),and RF).

Implicitly, then, |,|,_[(8) and
\320\240,|,_,(\320\262)

will be functions of \320\262as well, and the
derivative of the log of [13.4.1]with respect to the ith element of \320\262will involve

\320\260|<(/_|(\320\262)/3\320\262;and \320\227\320\240,|,_|(\320\262)/\320\227\320\262,-.These derivatives can also be generated recur-

recursivelyby differentiating the Kalman filter recursion, [13.2.22] and [13.2.23], with

respect to 0,; see Caines A988, pp. 585-86) for illustration.
For many state-space models, the EM algorithm of Dempster, Laird, and

Rubin A977) offers a particularly convenient means for maximizing [13.4.2], as

developed by Shumway and Stoffer A982) and Watson and Engle A983).

Identification

Although the state-space representation gives a very convenient way to cal-
calculate the exact likelihood function, a word of caution should be given. In the

absence of restrictions on F, Q, A, H, and R, the parameters of the state-space

representation are unidentified\342\200\224more than one set of values for the parameters
can give rise to the identical value of the likelihood function, and the data give us

no guide for choosing among these. A trivial example is the following system:
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State Equation (r - 2):

l,+ , =
[j^J

[13-4.3]

Observation Equation {n - 1):

>, = eu + elr [13.4.4]

Here, F = 0, Q = iZ.1 \302\2602, A' = 0, H' = [1 1],and R = 0. This model asserts

that y, is white noise, with mean zero and variance given by (erf + cr2.). The reader

is invited to confirm in Exercise 13.4 that the log of the likelihood function from

[13.4.1] and [13.4.2] simplifies to

'\302\260SY\"Y\"' v'yr'y7-\"-\"y'
r [1345]

= -G72)logB7r)
- G72) log(o-2 + ar\\)

-
\302\243yV[2(cr] + ar\\)\\.
i= i

Clearly, any values for cr2 and a\\ that sum to a given constant will produce the
identical value for the likelihood function.

The MA(Y) process explored in Section 13.3 provides a second exampleof
an unidentified state-space representation. As the reader may verify in Exercise

13.5, the identical value for the log likelihood function [13.4.2] would result if \320\262

is replaced by \320\262'1and cr2 by 02cr2.

These two examplesillustrate two basic forms in which absence of identifi-
identificationcan occur. Following Rothenberg A971), a model is said to be globally

identified at a particular parameter value 8n if for any value of 8 there exists a

possible realization \320\247\320\243\321\202for which the value of the likelihood at 8 is different from

the value of the likelihood at 6n. A model is said to be locally identified at 60 if

there exists a 5 > 0 such that for any value of 8 satisfying (8
\342\200\224

60)'F
\342\200\224

6n) < 5,
there exists a possible realization of 4)Tfor which the value of the likelihood at \320\262

is different from the value of the likelihood at 80.Thus, global identification implies
local identification. The first example, [13.4.3] and [13.4.4], is neither globally nor

locally identified, while the MAA) example is locally identified but globally un-
unidentified.

Local identification is much easier to test for than global identification. Roth-

Rothenberg A971) showed that a model is locally identified at 8n if and only if the

information matrix is nonsingular in a neighborhood around 6,,.Thus, a common

symptom of trying to estimate an unidentified model is difficulty with inverting the
matrix of secondderivatives of the log likelihood function. One approach to check-
checkingfor local identification is to translate the state-space representation back into

a vector ARMA model and check for satisfaction of the conditions in Hannan

A971); see Hamilton A985) for an example of this approach. A second approach
is to work directly with the state-space representation, as is done in Gevers and

Wertz A984) and Wall A987). For an illustration of the second approach, see
Burmeister, Wall, and Hamilton A986).

Asymptotic Properties of Maximum Likelihood Estimates

If certain regularity conditions are satisfied, then Caines A988, Chapter 7)
showed that the maximum likelihood estimate Br basedon a sample of size \320\223is

consistent and asymptotically normal. These conditions include the following: A)
the model must be identified; B) eigenvalues of F are all inside the unit circle; C)
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apart from a constant term, the variables x, behave asymptotically like a full-rank

linearly indeterministic covariance-stationary process; and D) the true value of \320\262

does not fall on a boundary of the allowable parameter space. Pagan A980, Theo-
Theorem4) and Ghosh A989) examined specialcasesof state-space models for which

VT.^p.r(er -
\320\262,,)

-^ N@, 1\342\200\236), [13.4.6]

where a is the number of elements of \320\262and $2d.t 's the (a x a) information matrix

for a sample of size T as calculated from second derivatives of the log likelihood

function:
, \320\255\302\2731\320\2768/(\321\203,|\321\205\342\200\236\320\246,.,;\320\262)

[13.4.7]

A common practice is to assume that the limit of $2d.t as T-* \302\260\302\260is the same as
the plim of

. _i-DT
\321\202

[13.4.8]

which can be calculated analytically or numerically by differentiating [13.4.2].

Reported standard errors for 8r are then square roots of diagonal elements of

Quasi-Maximum Likelihood Estimation

Even if the disturbances v, and w, are non-Gaussian, the Kalman filter can

still be used to calculate the linear projection of y,+, on past observables. Moreover,
we can form the function [13.4.2] and maximize it with respect to \320\262even for non-
Gaussian systems. This procedure will still yield consistent and asymptotically Nor-
Normalestimates of the elements of F, Q, A, H, and R, with the variance-covariance

matrix constructed as describedin equation [5.8.7]. Watson A989, Theorem 2)
presented conditions under which the quasi-maximum likelihood estimates satisfy

VT(er -
\320\262\342\200\236)

\320\224W@, [^d^op-^d]-')' [13.4.9]
where $1D is the plim of [13.4.8] when evaluated at the true value 80 and $Or 's

the outer-product estimate of the information matrix,

\302\273OP
= plim (i/\320\263)2 [h(e0, %)][\321\212(%, <\302\273,)]',

i-1

where

\320\264\320\262

13.5. The Steady-State Kalman Filter

Convergence Propertiesof the Kalman Filter

Section 13.3 applied the Kalman filter to an MAA) processand found that

when |\320\262|
< 1,
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whereas when \\\320\262\\> 1,

It turns out to be a property of a broad classofstate-spacemodels that the sequences

{P/+i|,},1i and {K,}/li converge to fixed matrices, as the following proposition
shows.

Proposition 13.1: Let F be an (r x r) matrix whose eigenvalues are all inside the
unit circle, let H' denote an arbitrary (n x r) matrix, and let Q and R be positive

semidefinite symmetric (r x r) and (n x n) matrices, respectively. Let {P,+ i|,}/_,
be the sequence of MSE matrices calculated by the Kalman filter,

P/+.k =
F[P/|,-\302\273

-
P/|,-,H(H'P,|/_,H + RJ-'H'P,,,.,^' + Q, [13.5.1]

wftere iteration on [13.5.1] is initialized by letting \320\226*,|(l
\302\243>efAe positive semidefinite

(r x r) matrix satisfying

vec(P, ,\342\200\236)
= [I,.

- (F \302\256F)]
-' \342\226\240

vec(Q). [13.5.2]

77\302\273en{P,+11,}\302\243.| \320\270a monotonically nonincreasing sequence and converges as T\342\200\224*\302\260=

ro a steady-state matrix P satisfying

P = F[P
-

\320\240\320\251\320\235'\320\240\320\235+ RIH'P]F' + Q. [13.5.3]
Moreover, the steady-state value for the Kalman gain matrix, defined by

\320\232\342\226\240
FPH(H'PH + R)-1, [13.5.4]

has the property that the eigenvalues of (F -
KH') all lie on or inside the unit circle.

The claim in Proposition 13.1 that P,+ i|, =\302\243P,\\,-i means that for any real

(r x 1) vector h, the scalar inequality h'P,+ 1|,h s h'P,j(_,h holds.
Proposition 13.1 assumes that the Kalman filter is started with P,|0 equal to

the unconditional variance-covariance matrix of the state vector \302\243,.Although the

sequence {P,+i|,} converges to a matrix P, the solution to [13.5.3] need not be

unique; a different starting value for P,|0 might produce a sequencethat converges
to a different matrix P satisfying [13.5.3]. Under the slightly stronger assumption
that either Qor R is strictly positive definite, then iteration on [13.5.1] will converge
to a unique solution to [13.5.3],where the starting value for the iteration P^,, can
be any positive semidefinite symmetric matrix.

Proposition 13.2: Let F be an (r x r) matrix whose eigenvalues are all inside the
unit circle, let H' denote an arbitrary (n x r) matrix, and let Q and R be positive

semidefinite symmetric (r x r) and (n x n) matrices, respectively, with either Q or
R strictly positive definite. Then the sequence of Kalman MSE matrices {P,+11,},11
determined by [13.5.1] converges to a unique positive semidefinite steady-state matrix

P satisfying [13.5.3], where the value ofPis the same for any positive semidefinite

symmetric starting value for P,|0. Moreover, the steady-state value for the Kalman

gain matrix \320\232in [13.5.4] has the property that the eigenvalues o/(F - KH')are all

strictly inside the unit circle.

We next discuss the relevance of the results in Propositions 13.1 and 13.2
concerning the eigenvalues of (F - KH').
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Using the Kalman Filter to Find the Wold Representation
and Factoran Autocovariance-Generating Function

Consider a system in which the explanatory variables (x,) consist solely of a

constant term. Without loss of generality, we simplify the notation by assuming
that A'x, = 0. For such systems, the Kalman filter forecast of the state vector can
be written as in [13.2.20]:

i + i|,= H,\\,-x + K,(y,- H'i,|,-,). [13.5.5]
The linear projection of y,+, on the observed finite sample of its own lagged values
is then calculated from

\320\243\320\274-\320\244
=

\302\243(y,+i|y,, \320\243,- , \320\2431)
=

\320\235'|,+1|\342\200\236 [13.5.6]

with MSE given by [13.2.25]:

\302\243[(\320\243,+ ,
-

\320\243,+\321\206,)(\320\243,\320\270
-

\320\243,+,|,)']
= H'P,+ 1|,H + R. [13.5.7]

Consider the result from applying the Kalman filter to a covariance-stationary

process that started up at a time arbitrarily distant in the past. From Proposition

13.1, the difference equation [13.5.5]will converge to

&+M<
=

H/|/-i + K(y, - H'l,,.,), [13.5.8]
with \320\232given by [13.5.4]. The forecast [13.5.6]will approach the forecast of y,, ,
based on the infinite history of its own lagged values:

\302\243(\320\243,+ ||\320\243,.\320\243,-..\342\200\242\342\200\242\342\226\240)
=

H'i+I|(. [13.5.9]
The MSEof this forecast is given by the limiting value of [13.5.7],
\320\235\321\203,*,

-
\302\243(\321\203,+1|\321\203\342\200\236\321\203,- )][\321\203,+,

-
\302\243(\321\203,+1|\321\203\342\200\236\321\203,-,,...)]'}

= \320\235'\320\240\320\235+ R,
L135-1(JJ

where P is given by [13.5.3].

Equation [13.5.8] can be written

|,+ l|/= (F - KH')Li+.|,+ Ky, [13.5.11]

for L the lag operator. Provided that the eigenvalues of (F -
KH') are all inside

the unit circle, [13.5.11] can be expressedas
4+.|, = P, -

(F
\"

KH')q-'Ky,

= [I, + (F
- KH)L + (F - KH'J^2 + (F

- KH'KZ/ + \342\226\240\342\226\240
-]Ky,.

[13.5.12]

Substituting [13.5.12] into [13.5.9] gives a steady-state rule for forecasting \321\203,+ t as

a linear function of its lagged values:

\302\243(\320\243,+1|\320\243,,\320\243,- )
= H'[Ir -

(F
-

KHWKy,. [13.5.13]

Expression [13.5.13] implies a VAR(v>) representation for y, of the form

y,+ 1
= H'[I,

- (F -
KH')Z.]-\302\273Ky, + e(+I, [13.5.14]

where

e,+ 1 =\320\243,+1
-

\302\243(y/+i|y,.y,-i. \342\200\242\342\200\242\342\200\242)\342\200\242 [13.5.15]

Thus, e,+1 is the fundamental innovation for y,+ i- Since er+1 is uncorrelated with

y,_;-for any/a 0, it is alsouncorrelated with e,_y
=

y,_;-
-

\302\243(y,_y|y,-,-_i, y, -y-2.
. . .) for any/ \320\2630. The variance-covariance matrix of e,+ 1 can be calculated using
[13.5.15]and [13.5.10]):

\302\243(e,+le,'+l)
=

\302\243{[y,+ l
-

\302\243(\321\203,+ 1|\321\203\342\200\236\321\203,_\342\200\236. . .)]

x [\321\203,+,
\"

\302\243(\321\203,+.|\321\203\342\200\236\320\243,-,..-.)]'} [13.5.16]

= \320\235'\320\240\320\235+ R.
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Note that [13.5.14] can be written as

{I,, - H'[I,- (F
-

KH')L]-lKL}yl+l = e/+l. [13.5.17]
The following result helps to rewrite the VAR(<\302\273)representation [13.5.17] in the
Wold \320\234\320\233(*>)form.

Proposition 13.3: Let F, H', and \320\232be matrices of dimension (\320\263x \320\263),(\320\273\321\205r), and

(r x n), respectively, such that eigenvalues o/F and of (F
- KH') are all inside

the unit circle, and let z be a scalar on the complex unit circle. Then

{I,, + H'(I, - Fz)-'Kz}{I,,- H'[I,- (F
- KH')z]~'Kz} = I,,.

Applying Proposition 13.3, if both sides of [13.5.17]are premultiplied by

(I,, + H'(I, - FL)~lKL),the result is the Wold representation for y:

y,+ 1
= {I,, + H'(Ir - FL)-'KL}e,+i. [13.5.18]

To summarize, the Wold representation can be found by iterating on [13.5.1]
until convergence. The steady-state value for P is then used to construct \320\232in

[13.5.4]. If the eigenvalues of (F - KH') are all inside the unit circle, then the
Wold representation is given by [13.5.18].

The task of finding the Wold representation is sometimes alternatively posed
as the question of factoring the autocovariance-generating function of y. Applying

result [10.3.7] to [13.5.16] and [13.5.18], we would anticipate that the autocovar-

autocovariance-generating function of \321\203can be written in the form

Gv(z) = {I,, + H'(I, - Fz)-'Kz}{H'PH+ R}

x {1\342\200\236+ K'(Ir
- F'z-T'Hz\021}.

L \342\200\242\342\200\242J

Compare [13.5.19] with the autocovariance-generating function that we would have

written down directly from the structure of the state-space model. From [10.3.5],
the autocovariance-generating function of \302\243is given by

Gs(z) = [Ir - Fz]-'Q[Ir- F'z-\302\273]-\302\273,

while from [10.3.6] the autocovariance-generating function of y, =
H'\302\243,+ w, is

GY(z) = H'[I, -
Fz]\"'Q[Ir

- F'z-']-'H + R. [13.5.20]
Comparing [13.5.19] with [13.5.20] suggests that the limiting values for the Kalman

gain and MSE matrices \320\232and P can be used to factor an autocovariance-generating
function. The following proposition gives a formal statement of this result.

Proposition 13.4: Let F denote an (r x r) matrix whose eigenvalues are all inside the

unit circle; let Q and R denote symmetric positive semidefinite matrices of dimension

(r x r) and (n x n), respectively; and let H' denote an arbitrary {n x r) matrix. Let

P be a positive semidefinite matrix satisfying [13.5.3] and let \320\232be given by [13.5.4].
Suppose that eigenvalues of (F - KH')are all inside the unit circle. Then

H'[Ir - Fz]\"'Q[Ir- F'z\"']-'H+ R

+ K'(IF'z-1)-lHz-1}
l ' J

A direct demonstration of this claim is provided in Appendix 13.A at the end
of this chapter.

As an example of using these results, consider observations on a univariate

ARA) process subject to white noise measurement error, such as the state-space
system of [13.1.26]and [13.1.27] with fx

= 0. For this system, F =
\321\204,Q = a\\,

A = 0, H = 1, and R =
&%,. The conditions of Proposition 13.2 are satisfied as

long as \\\321\204\\< 1, establishing that \\F
-

KH\\ =
\\\321\204

-
K\\ < 1. From equation
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[13.5.14], the y4/?(\302\260\302\260)representation for this process can be found from

\320\243,*1
= [1

-
(\320\244

~
\320\232)\320\246'1\320\232\321\203,+ \320\265(+ \342\200\236

which can be written

[1
-

(\321\204
-

K)L]y,+ l
= Ky, + [1 -

(\321\204
- K)L]el+l

or

\320\243,*1
=

\320\244\320\243,+ el+l
-

(\320\244
- K)e,. [13.5.22]

This is an ARMA(\\, 1) processwith AR parameter given by \321\204and MA parameter
given by -{\321\204

- K). The variance of the innovation for this process can be cal-
calculated from [13.5.16]:

E{e}+1) =
a2w + P. [13.5.23]

The value of P can be found by iterating on [13.5.1]:

[135 24]
\320\233 P,|,_,) + <r\\,

starting from \320\240\321\2060
=

<\321\202\320\263\321\2031{\\
-

\321\2042),until convergence. The steady-state Kalman

gain is given by [13.5.4]:

\320\232=
\321\204\320\240\320\246\320\2602\302\273,+ \320\240). [13.5.25]

As a second example, consider adding an MA(q,) process to an MA(q2)

process with which the first process is uncorrelated at all leads and lags. This could

be represented in state-space form as follows:
State Equation (r - q, + q2 + 2):

\320\270,

\302\253,.;\342\200\236+,

v,

v,_^+,

=

\320\236'\320\236\320\236'\320\236

1,\342\200\236
\320\236\320\236\320\236

\320\236'\320\236\320\236'\320\236

\320\2360 1(\342\200\236\320\236

<</, +1/2+2) *(</, + </. + 2)2)

\"
\320\230,

\"

\320\230--\302\253.

0

6

\"/+1
0

6

[13.5.26]

Observation Equation (n = 1):

\320\243,
=

[!\302\253,\302\253, . [13.5.27]

Note that all eigenvalues of F are equal to zero. Write equation [13.5.18]in the

form

= {I,, + H'(If F2L2

[13.5.28]

Let q \321\210
max{^!, q2}, and notice from the structure of F that F'+/ = 0 for/ = 1,

2, Furthermore, from [13.5.4], F'K = F' +
1PH(H'PH + R)\021

= 0. Thus
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[13.5.28] takes the form

yl+l = {1 + H'(Ir + VL + \302\2452L2

+ \342\200\242\342\200\242\342\200\242+ F'-'L'-OKLle^, [13.5.29]
= {1 + 6,L + 62L2 + \342\226\240\342\226\240\342\226\240+ 84L4}el+l,

where

0, = H'F'-'K for/ =1,2 9.
This provides a constructive demonstration of the claim that an MA(q{) process
plus an MA{q2) process with which it is uncorrelated can be described as an

M/4(max{^|, q2})process.
The Kalman filter thus provides a general algorithm for finding the Wold

representation or factoring an autocovariance-generating function\342\200\224we simply it-

iterate on [13.5.1] until convergence, and then use the steady-state gain from [13.5.4]
either in [13.5.14] (for the AR(*>)form) or in [13.5.18] (for the \320\234\320\233(\302\273)form).

Although the convergent values provide the Wold representation, for any

finite t the Kalman filter forecasts have the advantage of calculating the exact
optimal forecast of y,+ l based on a linear function of {y,, y,_b . . . , y,}.

13.6. Smoothing
The Kalman filter was motivated in Section 13.2 as an algorithm for calculating a

forecast of the state vector \302\243,as a linear function of previous observations,

&i,-.-\302\243(\342\202\254,!\302\253,-.), [13.6.1]

where \302\253,_,
= (y,'_,, y,'.z y[, x,'_,, x,'_2 x,)'. The matrix P,,,., rep-

represented the MSE of this forecast:

i,-i -
\302\243[(\342\202\254,

-
ii,-i)(i,

- i|,-i)']. [13.6.2]
For many uses of the Kalman filter these are the natural magnitudes of interest.
In some settings, however, the state vector (-, is given a structural interpretation,
in which case the value of this unobserved variable might be of interest for its own

sake. For example, in the model of the business cycle by Stock and Watson, it
would be helpful to know the state of the business cycle at any historical date t.
A goal might then be to form an inference about the value of (-, based on the full

set of data collected, including observations on y,, y, + ], . . . , yT, x,, x,+ b . . . ,

xT. Such an inference is called the smoothed estimate of (-,, denoted

111\320\242-\320\250,\\*\321\202)- [13.6.3]

For example, data on GNP from 1954 through 1990might be used to estimate the

value that ^ took on in 1960. The MSE of this smoothed estimate is denoted

P,ir-\302\243[(i,
-

iirXi, -iir)']- [13.6.4]
In general, P,|r denotes the MSEof an estimate of 5, that is based on observations
of \321\203and x through date \321\202.

For the reader's convenience, we reproduce here the key equations for the
Kalman filter:

l,|,
= i|,-i + P,|,-1H(H'P/|/.IH+ R)-'(y,- A'x,

-
H'|(|(_,) [13.6.5]

i+1|, = F|,|, [13.6.6]
P,|,= P,|/-,- \320\240\321\204-.\320\251\320\235'\320\240\321\204-.\320\235

+ RJ-'H'P,,,., [13.6.7]

P,+ l|, = FP,,,F'+ Q. [13.6.8]
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Consider the estimate of \302\243,based on observations through date t, |,|,. Suppose
we were subsequently told the true value of \302\243,+1. From the formula for updating

a linear projection, equation [4.5.30],the new estimate of \302\243,could be expressed
as3

,+. - i+.|,)(i,+. - i+,|,)']}-' [13.6.9]
i

The first term in the product on the right side of [13.6.9] can be written

by virtue of [13.2.1] and [13.6.6].Furthermore, v,+ , is uncorrelated with (-, and

\302\243,,,.Thus,

\302\243[(\302\253,
\"

i|,)(i,+ ,
\" i + .|,)']

= E[(&
-

!,\342\200\236)(\302\253,
-

i,,)'P'] = P,,,F'. [13.6.10]
Substituting [13.6.10] and the definition of P,+ l!, into [13.6.9] produces

Defining

J, = P,|,F'P,-'i|n [13.6.11]

we have

\320\250,11/+1.\320\244/)
=

l/|, + J/(?/+i - i,+i|,)- [13.6.12]
Now, the linear projection in [13.6.12] turns out to be the same as

\302\243(\302\253,l\302\253,+i,\302\253r); [13.6.13]

that is, knowledge of y,+,or x,+yfor/>0would be of no added value if we already
knew the value of \302\243/+i-To see this, note that y,+/ can be written as

yl+]
= A

xt+j
+ H (F' \302\243(+i+ F' v,+2 + F -v,+ , + \342\200\242\342\200\242\342\200\242+ v,+/)+ w,+y.

But the error

\302\243,
-

\302\243(\302\243,|&+\342\200\236\302\253,) [13.6.14]

is uncorrelated with \302\243,+,,by the definition of a linear projection, and uncorrelated
with xl+i, w,+y, v,+>, v,+y_,, . . . , v,+2 under the maintained assumptions. Thus,
the error [13.6.14] is uncorrelated with yt+J or xt+j for/ > 0, meaning that [13.6.13]
and [13.6.12] are the same, as claimed:

'\302\243(l/l&+i. \302\253r)
=

i|/ + J,(\342\202\254,+i
-

i+1|,). [13.6.15]

It follows from the law of iterated projections that the smoothed estimate,
E^l'Hr), can be obtained by projecting [13.6.15] on <?/r. In calculating this pro-
projection, we need to think carefully about the nature of the magnitudes in [13.6.15].
The first term, |,|\342\200\236indicates a particular exact linear function of <?/,; the coefficients

of this function are constructed from population moments, and these coefficients

should be viewed as deterministic constants from the point of view of performing

a subsequent projection. The projection of |,|, on <S/r is thus still |,^, this same

'Here, Y, = \302\243\342\200\236Y, = {,\342\200\236.\342\200\236and Y, = \302\253,.
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linear function of <S/,\342\200\224wecan't improve on a perfect fit!4 The term J, in [13.6.11]
is also a function of population moments, and so is again treated as deterministic
for purposes of any linear projection. The term |,+, |,isanother exact linear function
of 4},.Thus, projecting [13.6.15] on <%)T turns out to be trivial:

or

iir
= ii/ +

\302\253i+nr- i+ii/)- [13.6.16]

Thus, the sequence of smoothed estimates {i,^},7!, is calculated as follows.

First, the Kalman filter, [13.6.5] to [13.6.8], is calculated and the sequences
{|\321\204\320\2541|.{|(+||/}\302\2431\320\274{\321\200\321\204}\320\223\302\253|.and {P,+ i|,}/=~o' are stored. The smoothed estimate

for the final date in the sample, |\320\223|\320\223,is just the last entry in {|,|,}/\"_,. Next, [13.6.11]
is used to generate {J,},^1. From this, [13.6.16]is used for t = T \342\200\2241 to calculate

\320\247\321\202-\\\\\321\202
\342\200\224

lr-i|r-i +
Jr~i(\302\243r|7-

~
%,\321\202\\\321\202~\\)-

Now that ir-iir has been calculated, [13.6.16]can be used for / = T - 2 to

evaluate

Ir-zir =
\320\272\321\202-\320\263\\\320\263~\320\263

+ J7--2(ir-i|r
~

\320\262\320\263-\320\275\320\263-\320\263)-

Proceeding backward through the sample in this fashion permits calculation of the

full set of smoothed estimates, {\302\243,\\\320\242}\320\242=i-

Next, consider the mean squared error associatedwith the smoothed estimate.

Subtracting both sides of [13.6.16] from 5, produces

or

?i ~
ii|?\342\200\242

+ J/5i+i|7-
=

%i
~

i/|/ + Jiii+iii-
Multiplying this equation by its transpose and taking expectations,

\302\243[(\302\253,
-

iirXi/
- iir)'] +

j,\302\243[(i+nr!;+.ir)]j;

=
\302\243[(i,

-
ii,)d,

- in)'] +
j,\302\243[(i,+l|'i;+lii)]j;-

l J

The cross-product terms have disappeared from the left side because i,+ ||r is a

linear function of 4}T and so is uncorrelated with the projection error (-, - i,|r.
Similarly, on the right side, i,+ i|, is uncorrelated with 5,

~
h,\\,

Equation [13.6.17] states that

iii7-i;+nr)] +
\302\243[(i,+ii4;+n,)]}j;. [13.6.14

4The law of iterated projections states that

The law of iterated projections thus allows us to go from a larger information set to a smaller. Of

course, the same operation does not work in reverse:

We cannot go from a smaller information set to a larger.
An example may clarify this point. Let v, be an i.i.d. zero-mean sequence with

Then

and
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The bracketed term in [13.6.18] can be expressedas

[13.6.19]
The second-to-last equality used the fact that

since the projection error (\302\243,+1
- |, + i|7) is uncorrelated with |, + \320\2347-.Similarly,

\302\243((-,+lil+H,)
=

\302\243D/+ ,|,i;+,|,). Substituting [13.6.19] into [13.6.18] establishes that

the smoothed estimate |,\320\263\320\263
has MSE given by

p,i7-
=

P/i, + j/(p,+H7-
- p,+n/)j;- [13.6.20]

Again, this sequence is generated by moving through the sample backward starting

with t = T - 1.

13.7. StatisticalInferencewith the Kalman Filter

The calculation of the mean squared error

Pr|, =
\302\243[(|T

-
\302\243r|,)(\302\243T

-
\302\243r|,)']

described earlier assumed that the parameters of the matrices F, Q, A, H, and R

were known with certainty. Section 13.4 showed how these parameters could be
estimated from the data by maximum likelihood. There would then be some sam-

sampling uncertainty about the true values of these parameters, and the calculation of

Pr|, would need to be modified to obtain the true mean squared errors of the
smoothed estimates and forecasts.5

Suppose the unknown parameters are collectedin a vector 8. For any given

value of 8, the matrices F(8), Q(8),A(8), H(8), and R(8) could beused to construct

|\320\223|\320\223(8)and \320\240,|\320\263(\320\262)in the formulas presented earlier; for \321\202s T, these are the

smoothed estimate and MSE given in [13.6.16] and [13.6.20], respectively; while

for \321\202> T, these are the forecast and its MSE in [13.3.25] and [13.3.27]. Let
%)T

=
(y\302\243,,yJ._M . . . , \321\203{, x'T, xf_,, . . . , x,')' denote the observed data, and let

8(i denote the true value of 8. The earlier derivations assumed that the true value

of 8 was used to construct |T|r(Oo) and \320\240\321\202|\320\223(\320\262\320\277).

Recall that the formulas for updating a linear projection and its MSE, [4.5.30]
and [4.5.31], yield the conditional mean and conditional MSE when applied to
Gaussian vectors; see equation [4.6.7]. Thus, if {v,}, {w,}, and\302\243iare truly Gaussian,
then the linear projection |T|r(Oo) has the interpretation as the expectation of \302\243r

conditional on the data,

|\321\202|\320\263(8\342\200\236)
= E(i-T\\<VT); [13.7.1]

while PT|r@()) can be described as the conditional MSE:

\320\240\320\263|\321\202-(\320\262\320\276)
=

\320\225\320\250\320\263
~

1\320\263|\320\263(\320\262\320\277)][1\320\263
-

1\321\202|\320\263(\320\265\342\200\236)\320\2231\302\2537-\320\254[13.7.2]

Let 8 denote an estimate of 8 basedon \320\244\321\203-,and let |r| r(8) denote the estimate

that results from using \320\262to construct the smoothed inference or forecast in [13.6.16]

This discussion is based on Hamilton A986).
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or [13.3.25].The conditional mean squared error of this estimate is

E\342\204\226r
-

4r|r(*)][lr
-

4r|r(\302\253)]'l\302\2537-}

=
\302\243{[\302\253r

\"
1\320\263|7-(\320\262\320\276)

+ IrlrPu)
\"

lr|7-(*)]
X [It

-
4\320\263|\320\263(\320\262\320\276)

+
4\320\263|7-(\320\262\320\276)

-
4\321\202|\320\263(*)]'1\302\253\320\263} [13.7.3]

+ \302\243{[1,|\320\263(\320\262\342\200\236)
-

|\321\202|7-(\320\262)][4\320\263|7-(\320\262\320\276)
\"

4\320\263|\320\263(\320\262)]'1\302\253\302\273*.

Cross-product terms have disappeared from [13.7.3], since

\302\243{[\320\253\320\265\342\200\236)
-

|T,rD)][ir
-

lnr(e,,)]'l\302\2537-}

=
[4\320\263|\320\263(\320\262\320\276)

-
IrlT-(ft)]

X ^{[\302\253r
-

1\320\263|7-(\320\262,,)]'1\302\2537-}

=
[4\320\263|\320\263(\320\262\320\276)

-
4r|r(*)] X 0'.

The first equality follows because
|\320\263|\321\202-(\320\262\320\277)

and %\320\263\\\321\202\320\244)
are known nonstochastic

functions of <5/r, and the second equality is implied by [13.7.1]. Substituting [13.7.2]
into [13.7.3] results in

4r|7-(*)][ir 4wr(*)]l\302\253r} rn
_ ,,

=
\320\240\321\202|\320\263(\320\262\342\200\236)

+ \302\243{[4\320\263|7-(\320\262\342\200\236)
-

4\320\263|7-(*)][4\320\263|7-(\320\262\342\200\236)
-

4r|I-(*)]'l\302\253r}.
l J

Equation [13.7.4] decomposes the mean squared error into two components.
The first component, \320\240\320\263|\320\223(\320\262\342\200\236),might be described as the \"filter uncertainty.\" This
is the term calculated from the smoothing iteration [13.6.20]or forecast MSE
[13.3.27]and represents uncertainty about \302\243Tthat would be present even if the

true value en were known with certainty. The secondterm in [13.7.4],

\302\243{[iir(e\302\273)
-

iir(*)][4,|7-(e0)
- 4r|7-(*)]'b

might be called \"parameter uncertainty.\" It reflects the fact that in a typical sample,
6 will differ from the true value 6,,.

A simple way to estimate the size of eachsourceof uncertainty is by Monte
Carlo integration. Suppose we adopt the Bayesian perspective that \320\262itself is a

random variable. From this perspective, [13.7.4] describes the MSE conditional on

\320\262=
\320\262,,-Suppose that the posterior distribution of \320\262conditional on the data <%IT is

known; the asymptotic distribution for the MLE in [13.4.6] suggests that \320\2621^3/\321\202-

might be regarded as approximately distributed NF, A/\320\223)
\342\200\242$ ~'), where \320\262denotes

the MLE. We might then generate a large number of values of \320\262,say,

8A), 8B> \320\262'2\0200\302\273,drawn from a N (\320\262,A/\320\223)-^\021) distribution. Foreachdraw

(/'), we could calculate the smoothed estimate or forecast
4\321\202|\320\263(\320\262(-\-")The devia-

deviations of these estimates across Monte Carlo draws from the estimate |\321\202|7-(\320\262)

can be used to describehow sensitive the estimate |\321\202|\320\263(\320\262)is to parameter uncer-
uncertainty about \320\262:

1
21XXI

~2 [4\321\211-(\320\265(\302\273)
-

4\320\277\320\263(\320\262)][4,|\320\263(\320\265\302\253\")
-

\320\253\302\273)\320\223- [13-7.5]

This affords an estimate of

\302\243{[t|rF)
-

4\320\263|\320\263(*)][4\320\263|7-(\320\262)
-

4r|7-(*)]'l\302\253r}.

where this expectation is understood to be with respect to the distribution of \320\262

conditional on <Hr.

For each Monte Carlo realization \320\262(\302\273,we can also calculate \320\240\321\202|\320\263(\320\262(/>)from

[13.6.20] or [13.3.27]. Its average value across Monte Carlo draws,
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provides an estimate of the filter uncertainty in [13.7.4],

Again, this expectation is with respect to the distribution of
The sum of [13.7.5] and [13.7.6] is then proposed as an MSE for the estimate

|r|T(8) around the true value \302\243T.

13.8. Time-Varying Parameters

State-Space Model with Stochastically Varying Coefficients

Up to this point we have been assuming that the matrices F, Q, A, H, and

R were all constant. The Kaiman filter can also be adapted for more general state-

space models in which the values of these matrices depend on the exogenous or

lagged dependent variables included in the vector x,. Consider

\342\202\254,+i
=

F(*,)\302\253, + v,+ , [13.8.1]

y, = a(x,) + [H(x,)]'\302\243, + w,. [13.8.2]

Here F(x,) denotesan (r x r) matrix whose elementsare functions of x,; a(x,)
similarly describes an (n x 1) vector-valued function, and H(x,) an (r x n) matrix-

valued function. It is assumedthat conditional on x, and on data observed through
date t - 1, denoted

%-i = (y;-i,y,'-2 y|, x;_,,x;_2,... ,x',)\\
the vector (v,'+1, w,')' has the Gaussian distribution

Note that although [13.8.1] to [13.8.3] generalize the earlier framework by allowing
for stochastically varying parameters, it is more restrictive in that a Gaussian dis-
distribution is assumed in [13.8.3]; the role of the Gaussian requirement will be

explained shortly.
Suppose it is taken as given that \321\221,^,.,

~
W(i,|,_i, P,|,_,). Assuming as

before that x, contains only strictly exogenous variables or lagged values of y, this
also describesthe distribution of \302\243,|x,,%,_,. It follows from the assumptions in

[13.8.1] to [13.8.3]that

[13.8.4]

Conditional on x,, the terms a(x,), H(x,), and R(x,) can all be treated as deter-
deterministic. Thus, the formula for the conditional distribution of Gaussian vectors
[4.6.7]can be used to deduce that6

g,|y,, x,, \302\253,_,
-

\302\243,\\%
~

Mi|,, P,|,), [13.8.5]

\"Here Y, = y,, Y, = %\342\200\236^ = a(x,)+ [\320\251\321\205,)]%,-\320\270\320\250- i|,-,, \320\237..
= {[H(x,)]'P,|,.,H(x,) +

R(x,)},\320\237,,=
\320\240,\342\200\236.\342\200\236and \320\237,,= P,|,_,H(x,).
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where

P h i In Xlfv ^FfllYv M 'D 14/v ^ J_ D/v \321\207\320\242\342\200\224I
bt\\t

\342\200\224
S/l/\342\200\2241~* I \"H'\342\200\2241**\\*//LI v \320\263/J*^H/~ 1 V '/ *^V*//J

[13.8.6]
x [y, -

\320\240,\342\200\236
=

P,|,_,
-

[13.8.7]

It then follows from [13.8.1] and [13.8.3] that \342\202\254,+,|<&,
~

N(\302\243,+1|,, \320\240,+\321\206,),where

i+,|,
=

F(x,)i|, [13.8.8]
P,+ ,|,

=
F(x,)P,|,[F(x,)]' + Q(x,). [13.8.9]

Equations [13.8.6] through [13.8.9] are just the Kalman filter equations [13.2.15],
[13.2.16],[13.2.17],and [13.2.21] with the parameter matrices F, Q, A, H, and R

replaced by their time-varying analogs. Thus, as long as we are willing to treat the
initial state \302\243,as N(|||0, P,|i,), the Kalman filter iterations go through the same as

before. The obvious generalization of [13.4.1] can continue to be used to evaluate
the likelihood function.

Note, however, that unlike the constant-parameter case, the inference [13.8.6]
is a nonlinear function of x,. This means that although [13.8.6] gives the optimal

inference if the disturbances and initial state are Gaussian, it cannot be interpreted
as the linear projection of \302\243,on %, with non-Gaussian disturbances.

Linear Regression Models with Time-Varying Coefficients
Oneimportant application of the state-space model with stochastically varying

parameters is a regression in which the coefficient vector changes over time. Con-

Consider

y,
= x,'P, + w,, [13.8.10]

where x, is a (A: x 1) vector that can include lagged values of \321\203or variables that
are independent of the regression disturbance wr for all \321\202.The parameters of the
coefficient vector are presumed to evolve over time according to

(P,+ ,
- P) = F(p, - p) + v,+ l. [13.8.11]

If the eigenvalues of the (\320\272\321\205k) matrix F are all inside the unit circle, then p has

the interpretation as the average or steady-state value for the coefficient vector.
If it is further assumed that

\342\200\242-]-\"([!]\342\200\242 ft\"])-
\023-8121

then [13.8.10] to [13.8.12] will be recognized as a state-spacemodel of the form
of [13.8.1]to [13.8.3] with state vector g,

= p,
- p. The regression in [13.8.10]

can be written as

y, = x;p + x,'g, + w,, [13.8.13]

which is an observation equation of the form of [13.8.2] with a(x,) = x,'P,
H(x,) = x,, and R(x,)

= a2. These values are then used in the Kalman filter

iterations [13.8.6] to [13.8.9]. A one-period-ahead forecast for [13.8.10] can be
calculated from [13.8.4] as
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where {|,|,_,},7-, is calculated from [13.8.6] and [13.8.8]. The MSE of this forecast
can also be inferred from [13.8.4]:

E[(y, - x;p -
\321\205;!,,,-,J^,, <*,_,]

=
x;p,|,.,x, + <\320\273

where {P,|,_,},'\"-, is calculated from [13.8.7] and [13.8.9]. The sample log likelihood

is therefore

log/0-,|x,,
< = -{Til)

- A/2)

2

The specification in [13.8.11] can easily be generalized to allow for a pth-
order VAR for the_coefficient vector p, by defining g; = [(p, - P)', (P,_,- P)',
. . . , (P,_,, + ,

- P)'] and replacing [13.8.11] with

~\320\244,\320\244,\342\226\240\342\200\242\342\200\242
\320\244,,_

I* 0* 0

0 I*
\342\200\242\342\200\242\342\200\2420

\320\276\320\276 h

\320\272

0

0

0

g, +
0+

0

0

Estimation of a VAR with Time-Varying Coefficients

Section 12.2 describedLitterman's approach to Bayesian estimation of an

equation of a vector autoregression with constant but unknown coefficients. A

related approach to estimating a VAR with time-varying coefficients was developed
by Doan, Litterman, and Sims A984).Although efficiency might be improved by

estimating all the equations of the VAR jointly, their proposal was to infer the

parameters for each equation in isolation from the others.

Suppose for illustration that equation [13.8.10] describes the first equation
from a VAR, so that the dependent variable (y,) is yu and the (k x 1) vector of
explanatory variables is x, = (l,y,'.,, y,'_2 \320\243,'-,,)',where y, - (y,,,y2,
y,,,)' and k = np + 1. Thecoefficient vector is

\320\236,= Id \320\244i I \320\24411 \342\200\242\342\200\242\342\200\242(P\\ * \320\244\\t * (P it i* \342\200\242' m. ....\320\250* \\ I.'* ~1I./T T-l^.f1 1 \"\320\223|f (./ ' ~ 11.1' T li.f 1 T'|//./1

where
\321\204'^\\

is the coefficient relating yu to
>>\321\203.,_.,.

This coefficient is allowed to be
different for each date t in the sample.

Doan, Litterman, and Sims specified a Bayesian prior distribution for the

initial value of the coefficient vector at date 1:

p,
~ N(fi, P,|()). [13.8.14]

The prior distribution is independent acrosscoefficients,so that P^, is a diagonal
matrix. The mean of the prior distribution, p, is that used by Litterman A986) for

a constant-coefficient VAR. This prior distribution holds that changes in yu are

probably difficult to forecast, so that the coefficient on >\302\273,_,_,is likely to be near
unity and all other coefficients are expected to be near zero:

P = @, 1, 0, 0 0)'. [13.8.15]
As in Section 12.2, let \321\203characterize the analyst's confidence in the prediction that

\321\204\\\\\\is near unity:

\320\244\\\\\\
~

',',!, is nearSmaller values of \321\203imply more confidence in the prior conviction that

unity.

The coefficient \321\204\\*},relates the value of variable 1 at date 1 to its own value
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\321\217periods earlier. Doan, Litterman, and Sims had more confidence in the prior
conviction that \321\204\\*?\320\273is zero the greater the lag, or the larger the value of s. They
represented this with a harmonic series for the variance,

\320\244\320\270\320\273
~

W@, y2/s) for s =
2, 3, . . . , p.

The prior distribution for the coefficient relating variable 1 to lags of other
variables was taken to be

/= 2, 3, .... \320\270

* = 1,2 p\"
[13.8.16]

As in expression [12.2.4], this includes a correction (f ,2/f2) for the scale of yu

relative to
yjt, where rf is the estimated variance of the residuals for a univariate

fixed-coefficient AR(p) process fitted to series;'. The variance in [13.8.16] also
includes a factor w2 < 1 representing the prior expectation that lagged values of

\320\243/for; \320\2441 are less likely to be of help in forecasting y, than would be the lagged
values of y, itself; hence,a tighter prior is used to set coefficients on yf to zero.

Finally, let g describe the variance of the prior distribution for the constant

term:

c,., ~N@,g-r2).
To summarize, the matrix P,|() is specifiedto be

where

\320\222=

\321\201=

p.

V
0

0

0
\021

0

0

0

0

y2/2

0

0
0

w42l
0

0

*\342\200\242*?

0

0

0

y2/3

0

w

(\320\222

0

0

2\321\2022/

0

0'

\302\256C)J

0
\"

0

0

y2lp_

0

0

0

[13.8.17]

For typical economic time series, Doan, Litterman, and Sims recommended using
y2

= 0.07, w2 = 1/74, and g
= 630. This last value ensures that very little weight

is given to the prior expectation that the constant term is zero.
Each of the coefficients in the VAR is then presumed to evolve over time

according to a first-order autoregression:

P,+, =
1\320\223.-\320\240,+ A

- ir,)-p + v,+ l. [13.8.18]

Thus, the samescalar ir8 is used to describe a univariate ARA) process for each
element of p,; Doan, Litterman, and Sims recommended a value of irB

= 0.999.

The disturbance v, is assumed to have a diagonal variance-covariance matrix:

\302\243(v,v,')
= Q. [13.8.19]

For all coefficients except the constant term, the variance of the ith element of v,
was assumed to be proportional to the corresponding element of P,|(). Thus, for

i = 2, 3, . . . , k, the row i, column i element of Q is taken to be v7 times the row

i, column i element of
\320\240,|\342\200\236.

The A, 1) element of Q is taken to be \321\202\321\202-,times the

B, 2) elementof
\320\240\321\204.

This adjustment is used becausethe A, 1) element of P,|(,
representsan effectively infinite variance corresponding to prior ignorance about
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the value for the constant term. Doan, Litterman, and Sims recommended ir7
=

10 ~7
as a suitable value for the constant of proportionality.
Equation [13.8.18]can be viewed as a state equation of the form

&+, =
F\302\243,+ v,+ 1, [13.8.20]

where the state vectoris given by \302\243,
=

(\320\255,
\342\200\224

\320\255)and F =
\321\211-1\320\272.The observation

equation is

yu
= x;p + x,'g, + wu. [13.8.21]

The one parameter yet to be specified is the variance of wu, the residual in the

VAR. Doan, Litterman, and Sims suggested taking this to be 0.9 times rf.

Thus, the sequence of estimated state vectors {I,!,},7!, is found by iterating

on [13.8.6] through [13.8.9]starting from
\302\243i|\302\273_=

0 and Pl|() given by [13.8.17], with

F(x,) =
\321\211-1\320\272,Q(x,)

=
\321\217\321\203\320\240a(x,) = x;p with P given by [13.8.15],_H(x,)_

=

x,, and R(x,) = 0.9-T?.The estimated coefficient vector is then P,|,
= P + |,|,.

Optimal one-period-ahead forecasts are given by j?i.,+ i|,
= x',0,|,.

Optimal s-period-ahead forecasts are difficult to calculate. However, Doan,
Litterman, and Sims suggested a simple approximation. The approximation takes
the optimal one-period-ahead forecasts for each of the n variables in the VAR,

y, + ]|,, and then treats these forecasts as if they were actual observations on y,+ I.

Then\302\243(y,+2|y,, y,_, y,) is approximated by \302\243(y,+2|y,+ l, \321\203, \321\203,)eval-

evaluated at y,+ ,
=

\302\243(\321\203,+||\321\203\342\200\236\321\203,-1 yi). The law of iterated expectations does

not apply here, since E(y,+2\\y,+ ,, y,, . \342\200\242\342\200\242, yi) is a nonlinear function of y,+ l.

However, Doan, Litterman, and Sims argued that this simple approach gives a

good approximation to the optimal forecast.

APPENDIX 13.A. Proofs of Chapter13Propositions

\342\226\240Proof of Proposition 13.1.7 Recall that \320\240,*\321\206,has the interpretation as the MSE of the
linear projection of |,+ , on <S/, - (y,\\ y,'M, . . . , y\\, x,', x,'_,, . . . , xj)',

Suppose for some reason we instead tried to forecast{,t, using only observations 2,3
t, discarding the observation for date t = 1. Thus, define 41* \321\210(\321\203(',y('_ y'lt x(',
x,'_i, . . . , xl)', and let

\320\240^\320\244-\320\250\320\225^\320\231^,!*,')]. [13.\320\220.2]

Then clearly, [13.A.2] cannot be smaller than [13.A.1], since the linear projection
\302\243A,4.A%,)made optimal use of 41*along with the added information in (y',, x\\)'. Specif-
Specifically,if h is any (r x 1)vector, the linear projection of \320\263,,.,

= h'|,+ l on 41, has MSE given

by

|

Similarly, the linear projectionof \320\263,+| on 41* has MSE h'P^,|,h, with

h'P,+ ,,,h\302\243h'P;+l|,h. [13.A.3]
But for a system of the form of [13.2.1] and [13.2.2] with eigenvalues of F inside the unit
circle and time-invariant coefficients, it will be the case that

AfS\302\243[\302\243(|,4.,|y,,\321\203,.\342\200\236. . . , \321\203,,\321\205\342\200\236\321\205,. x,)]
= MSE[E(&\\y,_,, y,_2, . . . , \321\203\342\200\236x,. \342\200\236x,_2 x,)],

that is,

Pi'+ii' =
\"\"'i/-i-

Hence, [13.A.3] implies that

h'P,4.,|,hs;h'P,|,.,h

The arguments in the proofs of Propositions 13.1and 13.2 are adapted from Anderson and Moore

A979, pp. 76-82).
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for any (r x 1) vector h. The sequence of scalars {h'P,, n,h},'l, is thus monotonically
nonincreasing and is bounded below by zero. It therefore convergesto some fixed non-

negative value. Since this is true for any (rxl) vector h and since the matrix P,,,,, is symmet-
symmetric,it follows that the sequence{P,, ,|,},r , converges to some fixed positive semidefinite ma-

matrixP.

To verify the claims about the eigenvalues of the matrix (F - KH'), note that if P is
a fixed point of [13.5.3], then it must also be a fixed point of the equivalent difference

equation [13.2.28]:
P =

(F
- KH')P(F - KH')' + KRK' + Q. [13.A.41

Let x denote an eigenvector of (F - KH')'and A its eigenvalue:

(F - KH')'x = Ax. [I3.A.5]

Although F, K, and H are all real, the eigenvalue A and eigenvector x could be complex.
If x\" denotes the conjugate transpose of x, then

x\"(F - KH')P(F -
KH')'x

= [(F
- KH')'x]\"P[(F -

KH')'x]
= [Ax]\"P[Ax]
= |A|:x\"Px.

Thus, if [13.A.4] is premultiplied by x\" and postmultiplied by x, the result is

x\302\273Px= |A|-x\"Px + x\"(KRK' + Q)x.

or

(I - |A|:)x\"Px = x\"(KRK' 4- Q)x. ]|3,A.6]

Now, (KRK' + Q)is positive semidefinite, so the right side of [13.A.6] isnonnegative.

Likewise, P is positive semidefinite, so x\"Px is nonnegative. Expression [13.A.6]then

requires |A| s I, meaning that any eigenvalue of (F
- KH') must be on or inside the unit

circle, as claimed. \342\226\240

\342\226\240Proof of Proposition 13.2. First we establish the final claim of the proposition,concerning

the eigenvalues of (F
- KH'). Let P denote any positive semidefinite matrix that satisfies

[I3.A.4], and let \320\232be given by [13.5.4]. Notice that if Q is positive definite, then the right
side of [13.A.6]is strictly positive for any nonzero x, meaning from the leftside of [13. A.6]
that any eigenvalue A of (F - KH') is strictly inside the unit circle. Alternatively, if R is

positive definite, then the only way that the right side of [13,A.6] could fail to be strictly
positive would be if K'x = 0. But from [13. A.5], this would imply that F'x = Ax, that is,
that x is an eigenvector and A is an eigenvalue of F'. This, in turn, means that A is an

eigenvalue of F, in which case |A| < I, by the assumption of stability of F. Thus, there
cannot be an eigenvector x of (F

- KH')' associatedwith an eigenvalue whose modulus is

greater than or equal to unity if R is positive definite.
Turning next to the rest of Proposition 13.2, let {P, \320\230|,}denote the sequence that

results from iterating on [13.5.1]starting from an arbitrary positive semidefinite initial value

Pil,,. We will show that there exist two other sequences of matrices, to be denoted

{?,, \342\200\236,}and {\320\240,\320\270|,},such that

P.-MI, \302\243\320\240.\321\211,SP,,,|, for all f,

where

lim P, + M,
= limP,,.,,, = P

and where P does not depend on \320\240\321\206\342\200\236.The conclusion will then be that {P,+ i|,} converges
to P regardlessof the value of P(|ll.

To construct the matrix P,,,,, that is to be offered as a lower bound on P,, \321\206\342\200\236
consider the sequence {P,,,,,} that results from iterating on [13.5.1] starting from the
initial value \320\240,,,,

= \320\236.This would correspond to treating the intial state J, as if known

with certainty:

?,,\342\200\236,
= MSE[E(t \320\270I*,,*,)]. [13.A.7]

Note that yi and x, are correlated with JM , for t = 1,2,... only through the value of {,,
which means that we could equally well write

P,,,i, =
\342\204\226\320\225[\320\201&\342\200\236\342\204\226:\320\233\321\205)\320\252[13.\320\220.8]

where <S/* \302\273(y,', y,'_,, . . . , yi, x,', x,'_, xi)'. Added knowledge about |2 could not
hurt the forecast:

||<*\320\2341)], [13.A.9]
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and indeed, |, is correlated with |,+ 1 for f = 2, 3, . . . only through the value of {,:

\320\273\321\210-[\302\243(\302\253,,,|<s/?, fe. {.)] =
\321\210\302\243[\302\243({1+||\302\253;,\321\203]. [13.\320\220.\320\256]

Because coefficients are time-invariant,

\320\250\302\243[\302\243(\302\253,+ 1|*\320\223,\320\243]
=

\320\233\302\253\302\243[\302\243(|,|<81,...\302\253,)]
= P.I.-.- [13.A.111

Thus,[13.A.10]and [13.A.11] establish that the left side of [13.A.9] is the same as P,,, ,,
while from [13.A.8] the right side of [L3.A.9] is the same as P,,.,,,. Thus, [13.A.9]states

that

so that {\320\240/4.\321\206,}is a monotonically nondecreasingsequence; the farther in the past is the

perfect information about \302\243,,the less value it is for forecasting |,+ 1.

Furthermore, a forecast based on perfect information about {,, for which \320\240,(\321\206,

gives the MSE, must be better than one basedon imperfect information about {,, for which
P,,,i, gives the MSE:

P,t,i,sp,.,|, for all f.

Thus. P, ,,|, puts a lower bound on P, \321\211,.as claimed. Moreover, since the sequence
{P,, \320\246,}is monotonically nondecreasing and bounded from above, it converges to a fixed

value P satisfying [13.5.3] and [13.A.4].
Toconstruct an upper bound on P,, ,|,, consider a sequence {PM ,,,} that begins with

P||\"
=

P||i.. 'he same starting value that was used to construct {\320\240,\321\206|,}.Recall that P,,,,,
gave the MSE of the sequence |,,,,, describedin equation [13.2.20]:

iui, = Fii. . + \320\232,(\320\243.
\"

A'x,- H'ii,-,)-

Imagine instead using a sequence of suboptimal inferences {|,+undefined by the recursion

i.Mi, = F|,|, , + K(y, - A'x, -
\320\230'!,,,.,), [13.\320\220.12]

where \320\232is the value calculated from [13.5.4] in which the steady-state value for P is taken
to be the limit of the sequence {P,,,,,}. Note that the magnitude |,,,,, so defined is a

linear function of 4l, and so must have a greater MSE than the optimal inference |,,,,,:

Thus, we have established that

?n il. \342\200\224P.\320\251.- P|-u|/
and that P, hl|/ \342\200\224>P. The proof will be complete if we can further show that P,,,,,

-\342\200\242P.

Parallel calculations to those leading to [13.2.28] reveal that

P,M|, = (F - KH')P,|,-.(F- KH')' + KRK' + Q. [I3.A.I3]
Apply the vec operator to both sides of [13.A.13]and recall Proposition 10.4:

vec(P, + l|,)
= \320\226vec(P,,, ,) + \321\201= [l,.: + 8 + 94-+9M|t + t vec(Pl|0),

where

\320\226- (F - KH') \302\256(F
- KH')

\321\201= vec(KRK' + Q).
Recall further that since either R or Q is positive definite, the value of \320\232has the

property that all eigenvalues of (F -
KH') are strictly less than unity in modulus. Thus, all

eigenvalues of \320\257are also strictly less than unity in modulus, implying that

limvec(P,M|,)
= (I,: -

\302\256,)\"c,

the same value regardlessof the starting value for
\320\240||\342\200\236.

In particular, if the iteration on
[13.A. 13] is started with P,,,, = P, this being a fixed point of the iteration, the result would
beP,+ M,

= Pfor all t. Thus,

lim P,+ l|,
= P,

regardless of the value of P,,,, =
P,,,, from which the iteration for \320\240/\320\247.\321\206,is started. \342\226\240
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\342\226\240Proof of Proposition 13.3. Observe that

{I,, + H'(I, -
Fz)-'Kz}{In

- H'[I, -
(F

- KH')z]-'Kz}
= I,, -

H'[Ir
-

(F - KH')z]-'Kz+ H'(I,- Fz)-'Kz

- {H'(Ir - Fz)-'Kz}{H'[If-
(F

- KH')z]-'Kz} [13.A.14]

=
I,, +

H'| -[I, -
(F

- KH')z]-' 4- [I, -
Fz]\021

-
[Ir

- Fz]-'KH'z[I, -
(F

- KH')z]-' |kz.

The term in curly braces in the last line of [13.A. 14]is indeed zero, as may be verified by

taking the identity

-[Ir -
Fz] + [I, - (F -

KH')z]
- KHz = 0

and premultiplying by [I,
-

Fz]\021 and postmultiplying by [I,
- (F - KH')z]-':

-[Ir -
(F

- KH')z]-' 4- [Ir
- Fz]'1

-
[lr

- Fz]-'KH'z[I, -
(F

- KH')z]-' = 0. \342\226\240 [13.A. 15]

\342\226\240Proof of Proposition 13.4. Notice that

{I,, + H'(I, - Fz)-'Kz}{H'PH+ R}{I,, + K'(Ir - F'z-')-'Hz-'}
= {H'PH + R} 4- H'(I, - Fz)'K{H'PH4- R}z [13.A.16]

+ {H'PH4- R}K'(I, -
F'z-^-'Hz\021

+ H'(Ir - Fz)-'K{H'PH + R}K'(I, - F'z-')-'H.
Now [13.5.4] requires that

K{H'PH 4- R}
= FPH [13.A.17]

{H'PH + R}K' = H'PF' [13.A.18]
K{H'PH + R}K' =

FPHfH'PH + R}'H'PF'
= FPF'

- P + Q, f13A19'

with the last equality following from [13.5.3]. Substituting [13.A.17]through [13.A.19] into

[13.A.16] results in

{I,, + H'(Ir - Fz)-'Kz}{H'PH4- R}{I,, + K'(I, - F'z-^-'Hz-1}
=

{H'PH + R} + H'(Ir - Fz)'FPHz+ H'PF'(Ir
- Fz ^'Hz1

+ H'(I, - Fz)-'{FPF'
- P + Q}(I,- F'z-')-'H

\320\263 [13.\320\220.20]
= R + H'jp 4-(Ir- Fz)-'FPz4- PF'(Ir- F'z-')-'z-'

4- (Ir- Fz)-'{FPF' - P + Q}(I,.- F'z-

The result in Proposition 13.4follows provided that

P 4- (Ir
- Fz)\"'FPz + PF'(Ir - F'z-^-'z-' [13.A.21]

+ (Ir - Fz)-'{FPF' -
P}(Ir

- F'z\021)-' = 0.

To verify that [13.A.21] is true, Start from the identity

(Ir -
Fz)P(Ir

- F'z-1) 4- FPz(Ir
- F'z-1) [13.A.22]

4- (I, -
Fz)PF'z-' 4- FPF' - P = 0.

Premultiplying [13.A.22] by (I, -
Fz)\021 and postmultiplying by (I,

-
F'z\021)-' confirms

[13.A.21]. Substituting [13.A.21] into [13.A.20] produces the claim in Proposition 13.4. \342\226\240

Chapter 13 Exercises

13.1. Suppose we have a noisy indicator \321\203on an underlying unobservedrandom variable

\321\203
=

\302\243+ s.
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Supposemoreover that the measurement error (e) is /V@, \321\2022),while the true value f is

N(n, a2), with e uncorrelated with f. Show that the optimal estimate of f is given by

with associated MSE

E[t -
E(t\\y)Y

=
^^-

Discuss the intuition for these results asr-\302\273\302\273and \321\2022\342\200\224\302\2730.

13.2. Deduce the state-space representation for an AR(p) model in [13.1.14] and [13.1.15]
and the state-space representation for an MA{\\) model given in [13.1.17] and [13.1.18] as
special cases of that for the ARMA(r, r - 1)model of [13.1.22] and [13.1.23].
13.3. Is the following a valid state-space representationof an MA(\\) process?
State Equation:

Observation Equation'.

13.4. Derive equation [13.4.5] as a special case of [13.4.1] and [13.4.2] for the model

specified in [13.4.3] and [13.4.4] by analysis of the Kalman filter recursion for this case.

13.5. Consider a particular MA(\\) representation of the form of [13.3.1] through [13.3.12]
parameterized by @, \320\276--)with 10| < 1.The noninvertible representation for the same process
is parameterized by @, a2) with 0 = 1/0and &- = \320\2622\321\201\320\2632.The forecast generated by the
Kalman filter using the noninvertible representation satisfies

\320\233\320\274|,
=

\320\220'\321\205(\320\230+ H'|,M|, = ft + \320\265\320\265',,,,

where
\321\221,\342\200\236

= {a2l\\a2 + \320\2622\321\200,]}{\321\203,
-

/\320\273
-

0e,_ ,\342\200\236.,}.The MSE of this forecast is

\302\243(j,(,
-

u+M,J =
\320\275'\320\240,\320\270|,\320\275+ r = <?= + e2pltl,

where pltl =
(\321\201\321\202-\321\2212')/A+ \321\2212+ \321\2214+ \342\200\242\342\200\242\342\200\242+ \320\26221).Show that this forecast and MSE are

identical to those for the process as parameterized using the invertible representation
@, cr2). Deduce that the likelihood function given by [13.4.1] and [13.4.2] takeson the same
value at @, a2) as it does at @, <f2).

13.6. Show that e, in equation [13.5.22] is fundamental fory,. What principle of the Kalman

filter ensures that this will be the case? Show that the first autocovariance of the implied

MA{\\) error process is given by

-(\321\204
- K)E(e') =

-\321\204\320\2602*

while the variance is

[1 4- (\321\204
- Kf]E(E-) = A + <\320\230<\320\2635,+ ai.

Derive these expressions independently, using the approach to sums of ARMA processes
in Section 4.7.

13.7. Consideragain the invertible MA(\\) of equations [13.3.1] to [13.3.12]. We found

that the steady-state value of P,,,_, is given by

P ~ ' 0 0

From this, deduce that the steady-state value of P,,,+J= 0 for j = 0, 1, 2, .... Give the

intuition for this result.
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14

Generalized Method

of Moments

Suppose we have a set of observations on a variable y, whose probability law

depends on an unknown vector of parameters 6. Onegeneral approach to estimating
6 is based on the principle of maximum likelihood\342\200\224we choose as the estimate 6
the value for which the data would be most likely to have been observed. A

drawback of this approach is that it requires us to specify the form of the likelihood

function.

This chapter exploresan alternative principle for parameter estimation known

as generalized method of moments (GMM). Although versions of this approach

have been used for a long time, the general statement of GMM on which this

chapter is based was only recently developed by Hansen A982). The key advantage
of GMM is that it requires specification only of certain moment conditions rather

than the full density. This can also be a drawback, in that GMM often does not

make efficient use of all the information in the sample.
Section 14.1introduces the ideas behind GMM estimation and derives some

of the key results. Section 14.2 shows how various other estimators can be viewed

as special cases of GMM, including ordinary least squares, instrumental variable
estimation, two-stage least squares, estimators for systems of nonlinear simulta-
simultaneousequations, and estimators for dynamic rational expectations models. Exten-
Extensionsand further discussion are provided in Section 14.3. In many cases, even
maximum likelihood estimation can be viewed as a special case of GMM.Section
14.4explores this analogy and uses it to derive some general asymptotic properties

of maximum likelihood and quasi-maximum likelihood estimation.

14.1. Estimation by the Generalized Method
ofMoments

Classical Method of Moments

It will be helpful to introduce the ideas behind GMM with a concrete example.
Consider a random variable Y, drawn from a standard t distribution with v degrees

of freedom, so that its density is

\320\234\321\203\320\273v) =

where \320\223(')is the gamma function. Supposewe have an i.i.d. sample of size T {yx,

\320\243\320\263,\342\226\240\342\226\240\342\226\240> \320\243\321\202)and want to estimate the degrees of freedom parameter v. One
approach is to estimate v by maximum likelihood. This approach calculates the
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sample log likelihood

2(\") = 2 \\ogfyXy,; v)

and chooses as the estimate v the value for which i\302\243(e)is largest.
An alternative principle on which estimation of v might be based reasons as

follows. Provided that v > 2, a standard t variable has population mean zero and

variance given by

Ma
- E(YJ) =

vl{v
- 2). [14.1.2]

As the degrees of freedom parameter (v) goesto infinity, the variance [14.1.2]
approaches unity and the density [14.1.1] approachesthat of a standard N@, 1)
variable. Let fax denote the average squared value of \321\203observed in the actual

sample:

\320\2202.7--0/\320\223)%yl [14.1.3]
/= 1

For large T, the sample moment (\320\2242\320\263)should be close to the population moment

\320\253:

'

p
M2.7--* M2-

Recalling [14.1.2], this suggests that a consistent estimate of v can be obtained by

finding a solution to

vl{v
- 2) = &.,. [14.1.4]

or

\302\273r=~^T. [14.1.5]
\320\2342.\320\223

~ l

This estimate exists provided that far > 1, that is, provided that the sampleseems
to exhibit more variability than the N@, 1) distribution. If we instead observed

\320\2242.\320\263\342\200\2241. the estimate of the degrees of freedom would be infinity\342\200\224a N@, 1)
distribution fits the sample second moment better than any member of the t family.

The estimator derived from [14.1.4] is known as a classicalmethod of moments

estimator, A general description of this approach is as follows. Given an unknown

(a x 1)vector of parameters 6 that characterizes the density of an observed variable

y,, suppose that a distinct population moments of the random variable can be
calculated as functions of 6, such as

\302\243(\320\243|)
= MiW for/\302\253/,,i2.

...,<..__
[14.1.6]

The classical method of moments estimate of 6 is the value 6r for which these
population moments are equated to the observed sample moments; that is, \302\2477-is

the value for which

M,(\302\247r)
= (VT)ty' for/= /\342\200\236i2, ... ,io.

An early example of this approach was provided by Pearson A894).

Generalized Method of Moments

In the example of the t distribution just discussed, a single sample moment

(Alt) was used to estimate a single population parameter (v). We might also have
made use of other moments. For example, if v > 4, the population fourth moment

of a standard t variable is
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and we might expect this to be closeto the sample fourth moment,

We cannot choose the single parameter v so as to match both the sample second

moment and the samplefourth moment. However, we might try to choose v so as

to be as closeas possibleto both, by minimizing a criterion function such as

Q(v, \320\243\321\202,\320\243\321\202-i. >i)sg'Wg, [14.1.7]

where

Here W is a B x 2) positive definite symmetric weighting matrix reflecting the

importance given to matching each of the moments. The larger is the A,1) element
ofW, the greater is the importance of being as close as possibleto satisfying [14.1.4].

An estimate based on minimization of an expression such as [14.1.7] was
called a \"minimum chi-square\" estimator by Cramer A946, p. 425),Ferguson

A958), and Rothenberg A973) and a \"minimum distance estimator\" by Malinvaud

A970). Hansen A982) provided the most general characterization of this approach
and derived the asymptotic properties for serially dependent processes.Most of

the results reported in this section were developed by Hansen A982), who described
this as estimation by the \"generalized method of moments.\"

Hansen's formulation of the estimation problem is as follows. Let w, be an

(h x 1) vector of variables that are observedat date t, let 6 denote an unknown

(a x 1) vector of coefficients, and let hF, w,) be an (r x 1) vector-valued function,

h: (R\302\260x R'1) \342\200\224\302\273Rr. Since w, is a random variable, so is hF, w,). Let 6\342\200\236denote

the true value of 6, and suppose this true value is characterized by the property
that

\302\243{h(e0,w,)}
= 0. [14.1.9]

The r rows of the vector equation [14.1.9]aresometimes described as orthogonality
conditions. Let 4)T^

(y/'T, w^-i, . . . , w|)' be a (Th x 1) vector containing all

the observations in a sample of size T, and let the (r x 1) vector-valued function

gF; <3/r) denote the sample average of hF, w,):

gF; <$T) -
A/\320\223)2 hF, w,). [14.1.10]

Notice that g: R\" -* Rr. The idea behind GMM is to choose 6 so as to make the

sample moment gF; \023/r) as close as possible to the population moment of zero;
that is, the GMM estimator 6r is the value of 6 that minimizes the scalar

6F; <?/,.)
= [gF; <Wr)]'W7{g(e; \302\253\302\253M], [14.1.11]

where {Wr}r-1 is a sequenceof (r x r) positive definite weighting matrices which

may be a function of the data \320\251\321\202.Often, this minimization is achieved numerically

using the methods described in Section 5.7.

The classical method of moments estimator of v given in [14.1.5] is a special
caseof this formulation with w, = y,, 6 =

v, Wr = 1, and

AF, w,) = y) -
vl{v

-
2)

gF; <9/r)
=

A/\320\223)2 yi ~
\"/(\"

- 2).
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Here, \320\263= a = 1 and the objective function [14.1.11] becomes

The smallest value that can be achieved for Q(r) is zero, which obtains when v is
the magnitude given in [14.1.5].

The estimate of v obtained by minimizing [14.1.7] is also a GMM estimator

with r = 2 and

{'\342\226\240-^i}

\320\2704 \342\226\240

{v
- 2){v -

4)

Here, gF; <3/r) and Wr would be as described in [14.1.7] and [14.1.8].
A variety of other estimators can also be viewed as examples of GMM,

including ordinary least squares, instrumental variable estimation, two-stage least

squares, nonlinear simultaneous equations estimators, estimators for dynamic ra-

rational expectations models, and in many cases even maximum likelihood. These
applications will be discussed in Sections 14.2 through 14.4.

If the number of parameters to be estimated (a) is the same as the number

of orthogonality conditions (r), then typically the objective function [14.1.11] will

be minimized by setting

g(*/-;\302\2537-)
= 0. [14.1.12]

If a = r, then the GMM estimator is the value 6r that satisfies these r equations.
If instead there are more orthogonality conditions than parameters to estimate

(r > a), then [14.1.12] will not hold exactly. How close the ith element of

gFr; <3/r) is to zero depends on how much weight the ith orthogonality condition

is given by the weighting matrix Wr.
For any value of 6, the magnitude of the (/\342\226\240x 1) vector gF; <3/r) is the sample

mean of T realizations of the (r x 1) random vector hF, w,). If w, is strictly

stationary and h(-) is continuous, then it is reasonable to expect the law of large

numbers to hold:

g@; <9/r)
\320\233

\302\243{hF, w,)}.

The expression \302\243{hF, w,)} denotes a population magnitude that depends on the
value of 6 and on the probability law of w,. Suppose that this function is continuous
in 6 and that 60 is the only value of 6 that satisfies [14.1.9].Then, under fairly

general stationarity, continuity, and moment conditions, the value of \302\247rthat min-

minimizes [14.1.11] offers a consistent estimate of \320\2620;see Hansen A982), Gallant and
White A988), and Andrews and Fair A988) for details.

Optimal Weighting Matrix

Suppose that when evaluated at the true value 6,,, the process {hF0, w,)},'__,.
is strictly stationary with mean zero and vth autocovariance matrix given by

r, =
\302\243{[h(eA)w,)][h(eA, w,_,.)]'}. [14.1.13]

Assuming that these autocovariances are absolutely summable, define

S =
\302\243\320\223,.. [14.1.14]
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Recall from the discussion in Section 10.5 that S is the asymptotic variance of the

sample mean of hFn, w,):
S = lim r.\302\243{[g(e(,;<3/r)][g(e0;<3/r)]'}.

The optimal value for the weighting matrix Wr in [14.1.11] turns out to be
given by S~\\ the inverse of the asymptotic variance matrix. That is, the minimum

asymptotic variance for the GMM estimator 6r is obtained when 6r is chosen to

minimize

/\342\226\240)
= [g(e; <&r)]'s-'[g(e; <s/r)]. [14.1.15]

Toseethe intuition behind this claim, consider a simple linear model in which we
have r different observations (yt, \321\203\321\212. . . , yr) with a different population mean
for each observation (ju,, \321\2062 /j.r). For example, y{ might denote the sample
mean in a sample of \320\223,observations on some variable, y2 the sample mean from
a secondsample, and so on. In the absenceof restrictions, the estimates would

simply be \320\224,
= >,for i = 1,2, . . . ,r. In the presence of linear restrictions across

the m's, the best estimates that are linear functions of the y's would be obtained
by generalized least squares. Recall that the GLS estimate of \321\206is the value that
minimizes

(y
-

|1)'\320\237-'(\321\203
- |i), [14.1.16]

where \321\203
= (yu y2, . . . , yr)', \321\206.

= (ju,, \320\2642,. . . , \321\206\320\263)',and ft is the variance-
covariance matrix of \321\203

\342\200\224
(*\342\200\242:

ft = E[(y
-

The optimal weighting matrix to use with the quadratic form in [14.1.16] is given
by il~'. Just as ft in [14.1.16] is the variance of (y

-
\321\206.),so S in [14.1.15] is the

asymptotic variance of VT'g(-)-
If the vector process {hF,>,w,)},x, _,. were serially uncorrelated, then the ma-

matrix S could be consistently estimated by

S\302\243
=

A/\320\223)2 [hF0, w,)][h(eA, w,)]'. [14.1.17]

Calculating this magnitude requires knowledge of \320\2620,though it often also turns out

that

Sr -
A/\320\223)2 [h@r. w,)][hFr, w,)]' \320\233S [14.1.18]

t-i

for 6r any consistent estimate of 60, assuming that h(e0, w,) is serially uncorrelated.
Note that this description of the optimal weighting matrix is somewhat cir-

circular\342\200\224beforewe can estimate 6, we need an estimate of the matrix S, and before
we can estimate the matrix S, we need an estimate of 6. Thepractical procedure
used in GMM is as follows. An initial estimate \320\262îs obtained by minimizing
[14.1.11]with an arbitrary weighting matrix such as Wr = Ir. This estimate of \320\262

is then used in [14.1.18] to produce an initial estimate UfK Expression [14.1.11]
is then minimized with Wr =

[S^11]\021 to arrive at a new GMM estimate \320\262'\320\2631.This

process can be iterated until \320\262'/1
=

\320\262(/+1),though the estimate based on a single
iteration \320\262^1has the same asymptotic distribution as that based on an arbitrarily

large number of iterations. Iterating nevertheless offers the practical advantage

that the resulting estimates are invariant with respect to the scaleof the data and

to the initial weighting matrix for Wr.
On the other hand, if the vector process{\320\254(\320\262\342\200\236,w,)}\"..\302\273 is serially correlated,
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the Newey-West A987) estimate of S could be used:

\302\247r
= to.r + \302\243U

- [vt(q + l)]}(f,.r + t,',r),
where

[hF, w,
1

[14.1.19]

[14.1.20]

with 6 again an initial consistent estimate of \320\262\342\200\236.Alternatively, the estimators

proposed by Gallant A987), Andrews A991), or Andrews and Monahan A992)
that were discussed in Section 10.5could alsobe applied in this context.

Asymptotic Distribution of the GMM Estimates

Let 67 be the value that minimizes

tg(e;\302\253r)]'Sf'[\302\253(\342\200\242;*/\342\226\240)]. [14.1.21]

with \302\247rregarded as fixed with respect to 6 and \302\247rA S. Assuming an interior
optimum, this minimization is achieved by setting the derivative of [14.1.21]with

respect to 6 to zero. Thus, the GMM estimate 6r is typically a solution to the

following system of nonlinear equations:

(rxr) (rxl) (<xl)

Here [3gF; <?/r)/36']| \320\262~\320\262,denotes the (r x a) matrix of derivatives of the function

gF; \023/r), where these derivatives are evaluated at the GMM estimate \302\247r.

Since gF0; <3/\320\263)is the sample mean of a processwhose population mean is
zero, g(-) should satisfy the central limit theorem given conditions such as strict

stationarity of w,, continuity of hF, w,), and restrictions on higher moments. Thus,
in many instances it should be the case that

VTg(e0; <?/,-)i mo, s).
Not much more than this is needed to conclude that the GMM estimator 6r is

asymptotically.Gaussian and to calculate its asymptotic variance. The following

proposition, adapted from Hansen A982), is proved in Appendix 14.A at the end

of this chapter.

Proposition 14.1: Let gF; <3/r) be differentiable in \320\262for all <3/\320\263,and let \320\262\320\263be the

GMM estimator satisfying [14.1.22] withr>a. Let$T}xT=l be a sequenceofpositive

definite (r x r) matrices such that \302\247rAs, with S positive definite. Suppose, further,

that the following hold:

(b) Vf g(e,,; N(Q, S); and

(c) for any sequence {\320\262\321\202)\321\202-1satisfying 6* \342\200\224\302\2736,,, it is the case that

].pliJ\302\253ii) }.\342\200\236..
[\320\253...23]

e=\302\273vJ I aB
e\302\273e,,J <rx<o

with the columns ofD' linearly independent.

Then

VT(er -
\320\262\342\200\236)

\320\224N@, V), [14.1.24]

414 Chapter 14 \\ Generalized Method of Moments



where

V = {DS-'D1}-1.

Proposition 14.1 implies that we can treat 6r approximately as

6r \302\273
N(%, Vr/r), [14.1.25]

where

The estimate \302\247rcan be constructed as in [14.1.18] or [14.1.19], while

\320\273, 3gF; V

&
=

~1^

Testing the Overidentifying Restrictions

When the number of orthogonality conditions exceedsthe number of param-
parametersto be estimated (r> a), the model is overidentified, in that more orthogonality
conditions were used than are needed to estimate 6. In this case, Hansen A982)
suggested a test of whether all of the sample moments represented by gFV; \"\"\320\263)

are as close to zero as would be expected if the corresponding population moments

\302\243{hF|,, w,)} were truly zero.
From Proposition 8.1 and condition (b) in Proposition 14.1, notice that if the

population orthogonality conditions in [14.1.9] were all true, then

[V?-g(e,,; <?/r)]'S-1[Vf-g(eA; <3/\320\263)]
\320\224X\\r). [14.1.26]

In [14.1.26], the sample moment function gF; <3/r) is evaluated at the true value
of 6,>.One's first guess might be that condition [14.1.26] also holds when [14.1.26]
is evaluated at the GMM estimate 6r. However, this is not the case. The reason
is that [14.1.22] implies that a different linear combinations of the (r x 1) vector

g(\302\247r;<?/r) are identically zero, these being the a linear combinations obtained when

gFr; <3/r) is premultiplied by the (a x r) matrix

f 3g@; \320\247/\321\202

[ 36'

For example, when a - r, all linear combinations of gFr; \"\"\320\263)are identically zero,
and if 6(| were replaced by \302\247r,the magnitude in [14.1.26] would simply equal zero
in all samples.

Since the vector gFr; 4)T)contains (r
\342\200\224

a) nondegenerate random variables,
it turns out that a correct test of the overidentifying restrictions for the case when
r> a can be based on the fact that

[Vf -g(er; ^r^'Sf'tVT-g^r; \302\260\320\243\321\202)]
-^ x\\r

- a). [14.1.27]
Moreover, this test statistic is trivial to calculate, for it is simply the sample size T
times the value attained for the objective function [14.1.21] at the GMM estimate

Unfortunately, Hansen's x2 test based on [14.1.27] can easily fail to detect a

misspecified model (Newey, 1985). It is therefore often advisable to supplement
this test with others described in Section 14.3.

14.2. Examples
This section shows how properties of a variety of different estimators can be ob-
obtained as special cases of Hansen's results for generalized method of moments
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estimation. To facilitate this discussion, we first summarize the results of the pre-

preceding section.

Summary of GMM

The statistical model is assumed to imply a set of r orthogonality conditions

of the form

\302\243{h(e,,,w,)}
= 0, [14.2.1]

(\302\253D (rxl)

where w, is a strictly stationary vector of variables observed at date t, 6,, is the true
value of an unknown (a x 1) vector of parameters, and h(-) is a differentiable

/\342\226\240-dimensionalvector-valued function with r sl a. The GMM estimate \302\247ris the

value of 6 that minimizes

[g(e; \302\253,01'Sf'[\302\253(\342\200\242;*/\342\226\240)], [14.2.2]
(lxr) {rxr) (rxl)

where

g@; <9/\320\263)
=

A/\320\223)2 hF, w,) [14.2.3]
(rxl) 1=1 (rxl)

and &Tis an estimate of

S = lim A/\320\223)2 S \302\243{[hF0, w,)][h(e,,, *-,_\342\200\236)]'}. [14.2.4]
(\320\223\320\245\320\223)T-* /=l !\342\200\242--\302\253|\320\223\320\245|| (IXC)

The GMM estimate can be treated as if

\320\262\320\263
=

\320\233^(\320\262\342\200\236,Vr/\320\223). [14.2.5]

where

vr ={6r-Sf-6;.)}- [H.2.6]
(\320\236\320\245\320\230)(,,Xr) (\320\223\320\245\320\223)(\320\223\320\245\320\236)

and

a, _U' ~
[142\320\233]

(\320\263\321\205\342\200\236)

We now explore how these results would be applied in various special cases.

Ordinary Least Squares
Consider the standard linear regression model,

\320\243,
= x,'P + \320\270\342\200\236 [14.2.8]

for x, a (A: X 1) vector of explanatory variables. The critical assumption needed
to justify OLS regression is that the regression residual u, is uncorrelated with the

explanatory variables:

E(x,u.) = 0. [14.2.9]

'Under strict stationanty, the magnitude

\302\243{[h(e,,,w,)][h(e,,, w, ,.)]\342\226\240}
= \320\223,

does not depend on (. The expression in the text is more general than necessary under the staled

assumptions. This expression is appropriate for a characterization of GMM that does not assume strict

stationarity. The expression in the text is also helpful in suggesting estimates of S that can be used in
various special cases described later in this section.
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In other words, the true value Po is assumed to satisfy the condition

E[x,(y, - x;p0)]= 0. [14.2.10]
Expression [14.2.10] describes \320\272orthogonality conditions of the form of [14.2.1],
in which w, = (y,, x,')\\ 6 = p, and

hF, w,)
= x,(y,

- x,'P). [14.2.11]
The number of orthogonality conditions is the same as the number of unknown

parameters in p, so that r = a = k. Hence,the standard regression model could
be viewed as a just-identified GMM specification. Since it is just identified, the

GMM estimate of P is the value that sets the sample average value for [14.2.11]
equal to zero:

0 =
g(\302\2477;%) = (VT) 2 *,(y,

~
*:P\"r). [14.2.12]

I

Rearranging [14.2.12] results in

\320\201*,\320\243,
=

\\ 2 XX f Pr
,-x L'-i J

Pr =
[S x,x,'J ji x,y,J,

[14.2.13]

which is the usual OLS estimator. Hence, OLS is a specialcaseof GMM.

Note that in deriving the GMM estimator in [14.2.13] we assumed that the

residual u, was uncorrelated with the explanatory variables, but we did not make

any other assumptions about heteroskedasticity or serial correlation of the residuals.

In the presence of heteroskedasticity or serial correlation, OLS is not as efficient

as GLS. Because GMMuses the OLS estimate even in the presence of hetero-

heteroskedasticity or serial correlation, GMM in general is not efficient. However, recall
from Section 8.2 that one can still use OLS in the presence of heteroskedasticity
or serial correlation. As long as condition [14.2.9] is satisfied, OLS yields a con-

consistent estimate of p, though the formulas for standard errors have to be adjusted
to take account of the heteroskedasticity or autocorrelation.

The GMM expression for the variance of p7 is given by [14.2.6]. Differen-

Differentiating[14.2.11], we see that

*'P)
[14.2.14]

D- ar

Substituting [14.2.11] into [14.2.4] results in

\320\263

S = lim A/\320\223)2 2 \302\243k\302\253,-A*;-,} [14.2.15]
7-.J-. <\302\253| \320\263- - *

Suppose that \320\270,is regarded as conditionally homoskedastic and serially un-

uncorrelated:

, , jV\302\243(x,x,')
for v = 0

(.0 for v \320\2440.
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In this case the matrix in [14.2.15] should be consistently estimated by

Sr= &\320\2301/\320\223)2 *.*/'. [14.2.16]/-1
where

for \320\271,
= y,

- x,'Pr the OLS residual. Substituting [14.2.14] and [14.2.16] into

[14.2.6] produces a variance-covariancematrix for the OLS estimate pr of

(i/nvr = (wnUiiT)2 *,*;U3t(vt) 2
xa'J

A/\320\2732
x,x;}

=
\320\276-\321\206

2 x/x\302\253'

Apart from the estimate of a2, this is the usual expression for the variance of the
OLS estimator under these conditions.

On the other hand, suppose that u, is conditionally heteroskedastic and serially
correlated. In this case, the estimate of S proposedin [14.1.19] would be

Sr = f,,r + 2 (I -
\320\230? + l)]}(f,,r + Kt).I--1

where

\320\263

f,-.r
= (VT) 2 \320\271,\320\271,-,.\321\205,\321\205,'-,,.

Under these assumptions, the GMM approximation for the variance-covariance
matrix of pr would be

\320\225[\321\204\321\202
-

PXPr
- P)'] = (vt)\\(vt) 2 x,x; Sf' (i/\320\263)2 *,*:]

= t\\ 2 x^; Sri.E \302\253\320\273;.

which is the expression derived earlier in equation [10.5.21]. White's A980) het-

eroskedasticity-consistent standard errors in [8.2.35] are obtained as a special case
when q

= 0.

Instrumental Variable Estimation

Consideragain a linear model

\320\243,
= z,'P + \320\270\342\200\236 [14.2.17]

where z, is a (A: x 1) vector of explanatory variables. Suppose now that some of
the explanatory variables are endogenous, so that E(z,u,) \320\2440. Let x, be an

(r x 1) vector of predetermined explanatory variables that are correlated with z,
but uncorrelated with u,:

E(x,u,) = 0.
The r orthogonality conditions are now

E[x,(y,
-

\320\263;\321\200\342\200\236)]
= 0. [14.2.18]

This again will be recognized as a specialcaseof the GMM framework in which

w,
= (y,, z,', x,')', 6 = P,a = k, and

hF,w,)
=

x,(>>, -\320\263;\321\200). [14.2.19]
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Suppose that the number of parameters to be estimated equals the number
of orthogonality conditions (a = \320\272=

\320\263).Then the model is just identified, and

the GMM estimator satisfies

\320\263

0 = g(bT;<tlT) =
A/\320\223)2 x,(>,

- z,'Pr) [14.2.20]

or

=

JS xXf 12)
\\,y,>.

which is the usual instrumental variable estimator for this model. To calculate the

standard errors implied by Hansen's A982) general results, we differentiate [14.2.19]
to find

\320\255\320\262'

[14.2.21]

\321\202

The requirement in Proposition 14.1 that the plim of this matrix have linearly

independent columns is the same condition that was needed to establish consistency

of the IV estimator in Chapter 9, namely, the condition that the rows of \302\243(z,x,')

be linearly independent. The GMMvariance for |Jr is seen from [14.2.6]to be

(l/r)Vr=
A/\320\223)\320\257A/\320\223)^2,\321\205\321\204?'[A/\320\223)2x,z;l|

, [14.2.22]

where Sr is an estimate of

S = lim A/\320\223)2 2 \302\243{\302\253,\302\253,.,.x,x;_,.}. [14.2.23]

If the regression residuals {\320\270,}are serially uncorrelated and homoskedastic with

variance a1, the natural estimate of S is

\302\247\320\263
=

\320\260\320\2301/\320\223)2 x,x; [14.2.24]

for a\\
=

A/\320\223)S/li (y,
- z,'prJ. Substituting this estimate into [14.2.22] yields

\320\244
-

\320\240\320\233
-

*2r{[s ^x;] [
i x'x;] [i x'z;]}

[iH]
the same result derived earlier in [9.2.30]. On the other hand, a heteroskedasticity-
and autocorrelation-consistent variance-covariance matrix for IVestimation is given
by

~
PXPr-

P)']^^ix,Z;j S/-[i^;]
. [14-2.25]
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where

Sr =
\320\223\342\200\236.\320\263+ \302\243{1

- [v/(q + l)]}(f,,r + f ;,r), [14.2.26]

f,.r =
A/\320\223) \302\243\320\271,\320\231,.,.\321\205,\321\205;_\342\200\236

\320\273,
=

\321\203,
- z;f$r.

Two-Stage Least Squares
Consider again the linear model of [14.2.17]and [14.2.18], but suppose now

that the number of valid instruments r exceedsthe number of explanatory variables
k. For this overidentified model, GMM will no longer set all the sample orthog-
orthogonalityconditions to zero as in [14.2.20], but instead will be the solution to [14.1.22],

0= J\302\243IL_L__l2 I x Sf' x [gFr; %,-)]
I ae' e=eJ

[14.2.27]

=

{-(i/\320\263)
\302\243

*,x;J$Fi{(i/r)
2 *,(>, -

z;pr)},
with the last line following from [14.2.21] and [14.2.20]. Again, if u, is serially

uncorrelated and homoskedastic with variance a2, a natural estimate of S is given

by [14.2.24]. Using this estimate, [14.2.27]becomes
i-irr 1 = 0. [14.2.28]

As in expression [9.2.5], define

Thus, \302\247'is \320\260(\320\272\321\205r) matrix whose ith row represents the coefficients from an
OLS regression of z,, on x,. Let

z, - S'x,
be the (\320\272\321\2051) vector of fitted values from these regressions of z, on x,. Then

[14.2.28] implies that

S My, - *;Pr)= \302\260

or

Thus, the GMM estimator for this case is simply the two-stage least squares esti-
estimator as written in [9.2.8]. The variance given in [14.2.6] would be

(i/r)vr =
(i/\320\263)

jj(i/r)
2

\302\253,x;]fiF'[(i/r)
i

x,z;j J
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as earlier derived in expression [9.2.25]. A test of the overidentifying assumptions
embodied in the model in [14.2.17] and [14.2.18] is given by

Tte(*r;*/-)]'SF'[\302\253(*/\342\226\240; */\342\226\240)]

2 *,(

This magnitude will have an asymptotic x2 distribution with (r
- k) degrees of

freedom if the model is correctly specified.

Alternatively, to allow for heteroskedasticity and autocorrelation for the re-
residuals u,, the estimate Sr in [14.2.24] would be replaced by [14.2.26]. Recall the
first-order condition [14.2.27]:

= 0. [14.2.29]

If we now define

z, = 8'x,

then [14.2.29] implies that the GMM estimator for this case is given by

Pr = 2
%yj-

This characterization of $T is circular\342\200\224in order to calculate jjj-, we need to know

i, and thus UT, whereas to construct &T from [14.2.26] we first need to know $r.
The solution is first to estimate P using a suboptimal weighting matrix such as

Sr =
(l/rJ,r\302\273iX,x;, and then to use this estimate of S to reestimate p. The

asymptotic variance of the GMM estimator is given by

\302\243[(Pr
- PXPr - P)'] * \320\263

I [2 \302\273'1['']s?{2 x'z'']j

\342\226\240

Nonlinear Systems of Simultaneous Equations
Hansen'sA982) GMM also provides a convenient framework for estimating

the nonlinear systems of simultaneous equations analyzed by Amemiya A974),
Jorgenson and Laffont A974), and Gallant A977). Suppose that the goal is to
estimate a system of n nonlinear equations of the form

y,
= f (\320\262,\320\263,)+ u,

for z, a (k x 1) vector of explanatory variables and 6 an (a x 1) vector of unknown

parameters. Let x,, denote a vector of instruments that are uncorrelated with the

/th element of u,. Ther orthogonality conditions for this model are

hF, w,)
= [\320\243\321\212

\320\233\320\243,\320\270
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where /,F, z,) denotes the ith element of fF, z,) and w, = (y;, z,', x,')'. The
GMM estimate of 6 is the value that minimizes

B@; \320\252\321\202)
-

[A/\320\223)
2 h@,

w,)]
Sf

[A/\320\223)
2 hF,

w,)j,
[14.2.30]

where an estimate of S that could be used with heteroskedasticity and serial cor-
correlation of u, is given by

f,,r= A/\320\223)2 [h(e,w,)][hF, w,_,,)
1

Minimization of [14.2.30] can be achievednumerically. Again, in order to evaluate

[14.2.30], we first need an initial estimate of S. One approach is to first minimize

[14.2.30] with Sr = lr, use the resulting estimate 6 to construct a better estimate
of Sr, and recalculate 6; the procedure can be iterated further, if desired. Iden-

Identification requires an order condition (r >
a) and the rank condition that the columns

of the plim of D^- be linearly independent, where

6' - ,,m T 3h(e' w'}

r

Standard errors for 6r are then readily calculated from [14.2.5] and [14.2.6].

Estimation of Dynamic Rational Expectation Models

People's behavior is often influenced by their expectations about the future.

Unfortunately, we typically do not have direct observations on these expectations.
However, it is still possible to estimate and test behavioral models if people's

expectations are formed rationally in the sense that the errors they make in fore-

forecasting are uncorrelated with information they had available at the time of the
forecast. As long as the econometncian observes a subset of the information people
have actually used, the rational expectations hypothesis suggests orthogonality
conditions that can be used in the GMM framework.

For illustration, we consider the study of portfolio decisions by Hansen and
Singleton A982).Letc,denote the overall level of spending on consumption goods
by a particular stockholder during period t. The satisfaction or utility that the
stockholder receives from this spending is represented by a function u(c,), where
it is assumed that

>0 ^<0.
dc, dcf

The stockholder is presumed to want to maximize

2 /8T\302\243Mc,+T)|x,*}, [14.2.31]

where x* is a vector representing all the information available to the stockholder

at date t and ^ is a parameter satisfying 0 < fi < 1. Smaller values of /3 mean that
the stockholder placesa smaller weight on future events. At date t, the stockholder
contemplates purchasing any of m different assets, where a dollar invested in asset

i at date t will yield a gross return of A + ru+,) at date t + 1; in general this rate

of return is not known for certain at date t. Assuming that the stockholder takes
a position in each of these m assets, the stockholder's optimal portfolio will satisfy

u'(c,) =
/8\302\243{A+ ru+l)u'(cl+l)\\xf} for i = 1, 2, . . . , m, [14.2.32]
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where \320\270'(\321\201,)
=

\320\264\320\270/\320\264\321\201,.\320\242\320\276see the intuition behind this claim, suppose that condition
[14.2.32]failed to hold. Say, for example,that the left side were smaller than the

right. Suppose the stockholder were to save one more dollar at date t and invest
the dollar in asset i, using the returns to boost period t + 1 consumption. Following
this strategy would cause consumption at date t to fall by one dollar (reducing
[14.2.31]by an amount given by the left side of [14.2.32]),while consumption at

date t + 1 would rise by A + rLl+1) dollars (increasing [14.2.31] by an amount

given by the right side of [14.2.32]).If the left side of [14.2.32]were lessthan the

right side of [14.2.32],then the stockholder's objective [14.2.31]would be improved
under this change. Only when [14.2.32] is satisfied is the stockholder as well off
as possible.2

Supposethat the utility function is parameterized as

for \321\203> 0 and \321\203\320\2441

u(c,) = 1 -
\321\203

log c, for 7=1.

The parameter \321\203is known as the coefficient of relative risk aversion, which for this

class of utility functions is a constant. For this function, [14.2.32] becomes

\321\201\320\223
=

/8\302\243{A+ \320\263\342\200\236+1)\321\201\320\223\320\233|\321\205,*}.[14.2.33]

Dividing both sides of [14.2.33]by c,'y results in

1 =
/S\302\243{A+ r,.,+ l)(c, + I/c,)-\302\273|x;}, [14.2.34]

where c, could be moved inside the conditional expectation operator, since it rep-
represents a decision based solely on the information contained in x*. Expression

[14.2.34] requires that the random variable described by

1 - /8{A + riJ+l)(cl+l/c,)-y} [14.2.35]
beuncorrelated with any variable contained in the information set x* for any asset

i that the stockholder holds. It should therefore be the case that

\302\243{[1
- /8{A + rUfI)(c,+1/<l)'yHi(}= 0, [14.2.36]

where x, is any subset of the stockholder's information set x* that the econome-

trician is also able to observe.

Let 6 = (j8, y)' denotethe unknown parameters that are to be estimated,
and let w, = (r, ,+l, r,.,+l, . . . , rml+l, cl+l/c,, x',)' denote the vector of variables
that are observed by the econometrician for date t. Stacking the equations in

[14.2.36] for i = 1, 2, . . . , m produces a set of r orthogonality conditions that
can be used to estimate 6:

\"[1
-

/8{A

I1
\"

\302\2530
h(..wf)-

Jl
-

/8{A + rmJ+l)(ct+l/c,)-y}]x,_
The sample averagevalue of hF, w,) is

g@; *T) -
A/\320\223)2 hF, wf),

1

Il4.2.37]

and the GMM objectivefunction is

\320\261(\320\262)
= [g(e; <&r)]'Sf'[g(e; \302\253\320\263)]. [14.2.\320\2278]

This expression can then be minimized numerically with respect to 6.
According to the theory, the magnitude in [14.2.35] should be uncorrelated

with any information the stockholder has available at time t, which would include

^For further details, see Sargent A987).
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lagged values of [14.2.35]. Hence, the vector in [14.2.37] should be uncorrelated

with its own lagged values, suggesting that S can be consistently estimated by

2 {W*. w,)][h<*. w,)]'},

where 6 is an initial consistent estimate. This initial estimate 6 could be obtained

by minimizing [14.2.38] with \302\247r
= Ir.

Hansen and Singleton A982) estimated such a model using real consumption

expenditures for the aggregate United States divided by the U.S. population as

their measure of c,. For ru, they used the inflation-adjusted return that an investor
would earn if one dollar was invested in every stock listed on the New York Stock
Exchange, while \320\263\321\212was a value-weighted inflation-adjusted return corresponding

to the return an investor would earn if the investor owned the entire stock of each

company listed on the exchange. Hansen and Singleton's instruments consisted of
a constant term, lagged consumption growth rates, and lagged rates of return:

x, =
A, c,/c,_,,c,_,/c,_2, . . . , c,_, + ,/c,_f,r,;, r,.;_i, . . . ,

''ij-f + l' \320\2232.\320\277rU-\\> \342\200\242\342\200\242\342\200\242> r2.r-C+l) \342\200\242

When ( lags are used, there are 3t + 1 elements in x,, and thus r = 2C<!+ 1)
separate orthogonality conditions are represented by [14.2.37]. Since a = 2 pa-
parameters are estimated, the x2 statistic in [14.1.27] has 6t degreesof freedom.

14.3. Extensions

GMM with Nonstationary Data

The maintained assumption throughout this chapter has been that the (A x 1)
vector of observed variables w, is strictly stationary. Even if the raw data appear
to be trending over time, sometimesthe model can be transformed or reparame-
terized so that stationarity of the transformed system is a reasonable assumption.

For example, the consumption series {c,}used in Hansen and Singleton's study

A982) is increasing over time. However, it was possible to write the equation to be
estimated [14.2.36] in such a form that only the consumption growth rate (c,+ ,/c,)

appeared, for which the stationarity assumption is much more plausible. Alter-

Alternatively, suppose that some of the elements of the observed vector w, are presumed
to grow deterministically over time according to

w,
= a + 8-f + wf, [14.3.1]

where a and 8 are (A x 1) vectors of constants and w,* is strictly stationary with

mean zero. Suppose that the orthogonality conditions can be expressedin terms

of w? as

\302\243{f@,,,w;)}
= 0.

Then Ogaki A993) recommended jointly estimating 6, a and 8 using

to construct the moment condition in [14.2.3].

Testing for Structural Stability

Suppose we want to test the hypothesis that the (a x 1) parameter vector 6
that characterizes the first \320\223\342\200\236observations in the sample is different from the value
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that characterizes the last T -
T,, observations, where To is a known change point.

One approach is to obtain an estimate \320\262,.,-,,based solely on the first Tt)observations,
minimizing

\321\202\342\200\236)2 \321\214(\320\262\342\200\236
w,)j srl^i/r,,)

2 \321\206\320\262\342\200\236
Wf)j,

[14-3-2]

where, for example, if {\320\232(\320\2620,w,)} is serially uncorrelated,

Si.r,, = A/\320\223\320\276)2 [h(e,.ril, w,)][h(e,.rcl, w,)]'.
1r- 1

Proposition 14.1 implies that

V7Ue,.r,,
-

\320\262,)
\320\233tf@. V,) [14.3.3]

as 7\",, \342\200\224\302\273oo,where V, can be estimated from

for

o,-G I.\320\223\321\206

Similarly, a separate estimate \320\262\320\263.\320\263-\320\223\320\270can be based on the last T \342\200\224
Tt, observations,

with analogous measuresS^.r-nn^2.t-t\302\253i D2.r-r,p and

2.r_ril
-

\320\2622)
\320\233W@, V2) [14.3.4]

as 7\" -
7\",, \342\200\224\342\231\246oo. Let \321\202\320\263=

\320\223\321\206/\320\223denote the fraction of observations contained in
the first subsample. Then [14.3.3] and [14.3.4] state that

VT(e,.r,,
-

\320\262,)-^N@, V,/ir)

VT(e2.T_.r,, - e2)i;v(o, v2/(i
-

\321\202\320\263))

as \320\223-\302\273oo, Andrews and Fair A988) suggested using a Wald test of the null

hypothesis that \320\262,
= 62, exploiting the fact that under the stationarity conditions

needed to justify Proposition 14.1, \320\262,is asymptotically independent of 62:

Then \320\220\320\263->\321\205\320\263(\320\260)under the null hypothesis that \320\262,
= 62.

One can further test for structural change at a variety of different possible
dates, repeating the foregoing test for all Tu between, say, 0.157\"and 0.85\320\223and

choosing the largest value for the resulting test statistic Ar. Andrews A993) de-
described the asymptotic distribution of such a test.

Another simple test associates separate moment conditions with the obser-

observations before and after Tt) and uses the x2 test suggested in [14.1.27] to test the
validity of the separate sets of conditions. Specifically, let

for t <
\320\223\320\276

[0 for t > To.
If hF, w,) is an (r x 1) vector whose population mean is zero at 60, define

f conti

f 1
\"

[0

The a elements of \320\262can then be estimated by using the 2r orthogonality conditions

given by \302\243{h*F0, w,, d^} = 0 for t - 1, 2, . . . , T, by simply replacing hF, w,)
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in [14.2.3] with h*F, w,, d,,) and minimizing [14.2.2] in the usual way. Hansen's

X2 test statistic describedin [14.1.27] based on the h*() moment conditions could

then be comparedwith a*2Br
- a) critical value to provide a test of the hypothesis

that 6, = 62.
A number of other tests for structural change have been proposedby Andrews

and Fair A988) and Ghysels and Hall A990a, b).

GMM and EconometricIdentification

For the portfolio decision model [14.2.34],it was argued that any variable

would be valid to include in the instrument vector x,, as long as that variable was

known to investors at date t and their expectations were formed rationally. Essen-
Essentially,[14.2.34] represents an asset demand curve. In the light of the discussion of
simultaneous equations bias in Section 9.1, one might be troubled by the claim
that it is possible to estimate a demand curve without needing to think about the

way that variables may affect the demand and supply of assets in different ways.
As stressed by Garber and King A984), the portfolio choice model avoids

simultaneous equations bias because it postulates that equation [14.2.32] holds

exactly, with no error term. The model as written claims that if the econometrician
had the same information x* used by investors, then investors' behavior could be

predicted with an R2 of unity. If there were no error term in the demand for oranges
equation [9.1.1], or if the error in the demand for oranges equation were negligible

compared with the error term in the supply equation, then we would not have had
to worry about simultaneous equations bias in that example, either.

It is hard to take seriously the suggestion that the observed data are exactly

described by [14.2.32] with no error. There are substantial difficulties in measuring
aggregate consumption, population, and rates of return on assets. Even if these

aggregates could in some sense be measured perfectly, it is questionable whether
they are the appropriate values to be using to test a theory about individual investor

preferences. And even if we had available a perfect measure of the consumption

of an individual investor, the notion that the investor's utility could be represented
by a function of this precise parametric form with \321\203constant across time is surely

hard to defend.
Once we. acknowledge that an error term reasonably ought to be included in

[14.2.32], then it is no longer satisfactory to say that any variable dated t or earlier
is a valid instrument. The difficulties with estimation are compounded by the

nonlinearity of the equations of interest. If one wants to take seriously the possibility
of an error term in [14.2.32] and its correlation with other variables, the best
approach currently available appears to be to linearize the dynamic rational ex-
expectations model. Any variable uncorrelated with both the forecast error people
make and the specification error in the model could then be used as a valid in-

instrument for traditional instrumental variable estimation; see Sill A992) for an

illustration of this approach.

Optimal Choice of Instruments

If one does subscribe to the view that any variable dated t or earlier is a valid

instrument for estimation of [14.2.32],this suggests a virtually infinite set of possible
variables that could be used. One's first thought might be that, the more orthog-

orthogonality conditions used, the better the resulting estimates might be. However,
Monte Carlo simulations by Tauchen A986) and Kocherlakota A990) strongly
suggest that one should be quite parsimonious in the selection of x,. Nelson and
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Startz A990) in particular stress that in the linear simultaneous equations model
y,

\342\200\242=z,'P + u,, a good instrument not only must be uncorrelated with u,, but must
also be strongly correlated with z,. See Bates and White A988), Hall A993), and

Gallant and Tauchen A992) for further discussion on instrument selection.

14.4. GMM and MaximumLikelihoodEstimation

In many cases the maximum likelihood estimate of 8 can alsobeviewed as \320\260\320\241MM

estimate. This section exploresthis analogy and shows how asymptotic properties
of maximum likelihood estimation and quasi-maximum likelihood can be obtained

from the previous general results about GMM estimation.

The Score and Its Population Properties

Let y, denote an (n x 1) vector of variables observed at date f, and let %, =

(\320\243,'.\320\243/'-\321\214\342\200\242\342\200\242\342\200\242. yi)' denote the full set of data observed through date f. Suppose
that the conditional density of the fth observation is given by

/(\320\243,|%-,;6). [14.4.1]
Since [14.4.1]is a density, it must integrate to unity:

f \320\223\320\253%-\320\223,\320\262)\321\2011\321\203,
= 1, [14.4.2]

where & denotesthe set of possible values that y, could take on and / dy, denotes
multiple integration:

J \320\233(\320\243,)dy,
=

J J
\342\200\242\342\200\242\342\200\242

J
h(yu, \321\203\321\212,. . . , ym) dyu dy2,

\342\226\240\342\226\240\342\226\240
dy,,,.

Since [14.4.2] holds for all admissible values of 6, we can differentiate both sides
with respect to 6 to conclude that

L [14.4.3]

The conditions under which the order of differentiation and integration can be
reversed as assumed in arriving at [14.4.3] and the equations to follow are known
as \"regularity conditions\" and are detailed in Cramer A946). Assuming that these

hold, we can multiply and divide the integrand in [14.4.3] by the conditional density

or

[3'Oe/y-;e)/(yJ^-,; 0)^ = 0. [14.4.4]

Let hF, %,) denote the derivative of the log of the conditional density of the

fth observation:

\320\26010\302\253/(\320\243|*'-;\320\265). [14.4.5]

If there are a elements in \320\262,then [14.4.5] describes an (a x 1) vector for each

date t that is known as the score of the fth observation. Since the score is a function

of1!/,, it is a random variable. Moreover,substitution of [14.4.5] into [14.4.4] reveals
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that

jM
hF, \302\253,)/(y,|\302\253,_,;6) rfy, = 0. [14.4.6]

Equation [14.4.6] indicates that if the data were really generated by the density
[14.4.1], then the expected value of the score conditional on information observed
through date t - 1 should be zero:

\302\243{hF, %,)!%,_,}
= 0. [14.4.7]

In other words, the score vectors{hF,%,)}\320\223-1should form a martingale difference
sequence.This observation prompted White A987) to suggest a general specifi-
specificationtest for models estimated by maximum likelihood based on whether the

sample scores appear to be serially correlated. Expression [14.4.7]further implies

that the score has unconditional expectation of zero, provided that the uncondi-

unconditionalfirst moment exists:

\302\243{hF, %,)}
= 0. [14.4.8]

Maximum Likelihood and GMM

Expression [14.4.8] can be viewed as a set of a orthogonality conditions that

could be used to estimate the a unknown elements of 6. The GMM principle

suggests using as an estimate of 6 the solution to

0 =
A/\320\223)\302\243hF, %). [14.4.9]

But this is also the characterization of the maximum likelihood estimate, which is
based on maximization of

2(e) =
\302\243iog/(yf|\302\253f_i;e),
1=1

the first-order conditions for which are

f-';e)
= 0, [14.4.10]

assuming an interior maximum. Recalling [14.4.5],observe that [14.4.10] and [14.4.9]
are identical conditions\342\200\224the MLE is the same as the GMM estimator based on
the orthogonality conditions in [14.4.8].

The GMM formula [14.2.6] suggests that the variance-covariance matrix of
the MLE can be approximated by

\320\225[\321\204\321\202
~

\320\265\342\200\236)(\320\262\320\263
-

\320\262\320\270)']
=

\320\260/\320\223\320\234\320\234\320\263'\320\261\320\263}-1,[14.4.11]

where

\321\202
~

lax \320\260) >-\320\262\321\202

\302\243
t>-t>T

\321\203
32iog/(y,l%-i;e)

[14.4.12]
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Moreover,the observation in [14.4.7] that the scores are serially uncorrelated

suggests estimating S by

Sr =
A/\320\223)2 [\320\232\302\273,\302\253,)][hF, \302\253,)]'. [14.4.13]

77ie Information Matrix Equality

Expression [14.4.12] will be recognized as -1 times the second derivative
estimate of the information matrix. Similarly, expression [14.4.13]is the outer-

product estimate of the information matrix. That these two expressions are indeed

estimating the same matrix if the model is correctly specified can be seen from

calculations similar to those that produced [14.4.6]. Differentiating both sides of
[14.4.6]with respect to \320\262'reveals that

h(e,'
)\320\274

v ' \" ae'
or

[h(e, \302\253,)][h(e, \302\253,)]\320\243(\321\203,1*,-.;\320\262)rfy, \302\253-
\302\243\320\264\320\254{^\320\243

f(y ,]%-,\342\226\240,\320\262)rfy,.

This equation implies that if the model is correctly specified, the expected value
of the outer product of the vector of first derivatives of the log likelihood is equal
to the negative of the expected value of the matrix of secondderivatives:

|
1

\320\223'-1]5 JL J \320\223]

Expression [14.4.14] is known as the information matrix equality. Assuming that

A/7) 2,1, \302\243,-\320\2249, a positive definite matrix, we can reasonably expect that for

many models, the estimate &T in [14.4.13] converges in probability to the infor-

information matrix $ and the estimate D'T in [14.4.12] converges in probability to

-\342\226\240>.Thus, result [14.4.11] suggests that if the data are stationary and the estimates
do not fall on the boundaries of the allowable parameter space, it will often be the
casethat

\320\243/\320\246\320\264\321\202
-

\320\262\320\276)
-^

\320\234\320\262,*\"'), [14.4.15]

where the information matrix $ can be estimated consistently from either -6'r '\"

[14.4.12] or S-r in [14.4.13].

In small samples, the estimates -\320\254'\321\202and &T will differ, though if they differ

too greatly this suggests that the model may be misspecified. White A982) devel-
developedan alternative specification test based on comparing these two magnitudes.

The Wald Test for Maximum Likelihood Estimates

Result [14.4.15] suggests a general approach to testing hypotheses about the
value of a parameter vector \320\262that has been estimated by maximum likelihood.
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Considera null hypothesis involving m restrictions on 6 represented as gF) = 0
where g: \342\204\226-* Rm is a known differentiable function. The Wald test of this hy-

hypothesis is given by

(Ixml dim) (nxn) (\302\273x\302\273i) (mxl)

which converges in distribution to a *2(m) variable under the null hypothesis.

Again, the estimate of the information matrix $\321\202could be based on either -Dr
in [14.4.12] or Sr in [14.4.13].

The Lagrange Multiplier Test

We have seen that if the model is correctly specified, the scores

{hF(>, %,)}\320\223_1often form a martingale difference sequence. Expression [14.4.14]
indicates that the conditional variance-covariance matrix of the fth score is given
by $,. Hence, typically,

t\\{VT) 2 h(e(l, %)
j

\302\273\321\202
'

[A/\320\223)
i hF0,

<&,)]
\320\233

\321\205\320\234-[14-4.17]

Expression [14.4.17] does not hold when 0(l is replaced by 6r, since, from [14.4.9],
this would cause [14.4.17]to be identically zero.

Suppose; however, that the likelihood function is maximized subject to m
constraints on 6, and let 6r denote the restricted estimate of 6. Then, as in the

GMM test for overidentifying restrictions [14.1.27], we would expect that

hFr,
%)j $f|(l/r)

2 hFr,

The magnitude in [14.4.18] was called the efficient score statistic by Rao A948)
and the Lagrange multiplier test by Aitchison and Silvey A958). It provides an

extremely useful class of diagnostic tests, enabling one to estimate a restricted
model and test it against a more general specification without having to estimate
the more general model. Breusch and Pagan A980), Engle A984), and Godfrey

A988) illustrated applications of the usefulness of the Lagrange multiplier principle.

Quasi-Maximum Likelihood Estimation

Even if the data were not generated by the density f(y,\\4l,-i; 6), the or-

orthogonality conditions [14.4.8] might still provide a useful description of the pa-

parameter vector of interest. For example,supposethat we incorrectly specified that

a scalar series y, came from a Gaussian AR(l) process:

lOg/(y,|\302\253,-,; 0)
= -i lOgBir) - { lOg(CT2)

_
{yi

_

with \320\262=
(\321\204,a2)'. The score vector is then

{\321\203'
\"

\321\204\321\203'-1)\321\203-1'\320\2602

which has expectation zero whenever

E[(y,
- *>,-,)>,-,] = 0 [14.4.19]

\320\225[(\320\243,
-

\320\244\320\243,-\320\245J]
- o\\ [14.4.20]

430 Chapter 14 | Generalized Method of Moments



The value of the parameter \321\204that satisfies [14.4.19] corresponds to the coefficient
of a linear projection of y, on y,-, regardless of the time series process followed
\320\252\321\203\321\203\342\200\236while a2 in [14.4.20] is a general characterization of the mean squared error

of this linear projection. Hence,the moment conditions in [14.4.8] hold for abroad

class of possible processes,and the estimates obtained by maximizing a Gaussian
likelihood function (that is, the values satisfying [14.4.9]) should give reasonable
estimates of the linear projection coefficient and its mean squared error for a fairly

general class of possibledata-generating mechanisms.

However, if the data were not generated by a Gaussian AR{\\) process, then

the information matrix equality no longer need hold. As long as the score vector
is serially uncorrelated, the variance-covariance matrix of the resulting estimates
could be obtained from [14.4.11]. Proceeding in this fashion\342\200\224maximizing the like-

likelihood function in the usual way, but using [14.4.11] rather than [14.4.15] to cal-
calculate standard errors\342\200\224was first proposed by White A982), who described this

approach as quasi-maximum likelihood estimation,}

APPENDIX 14. A. Proof of Chapter 14 Proposition

\342\226\240Proof of Proposition 14.1. Let g,(8; <HT) denote the rth element of g(8; 4)T),so that

g,: R\" -> R1. By the mean-value theorem,

g,Fr; \320\2471\321\202)
-

&(\320\262\342\200\236;^t) + [d/(e*T; \320\247/\320\242)]'\321\204\321\202
~

\320\262\342\200\236), [14.\320\220.1]

where

dX9*T', *r) = -&\302\261-t\342\200\224

(\302\253\321\205\320\274ae

for some 8*r between 6,, and 8r; notice that d(: R\" -\342\231\246R\". Define

(rx,,|

[d,(81r; %r)]'

Stacking the equations in [14.A.1] in an (r x 1) vector produces

g(e,.; <HT)
=

8(\320\262\342\200\236;<HT) + DH*r -
\320\262,,).

If both sides of [14.A.3] are premultiplied by the (a x r) matrix

f ag(e; %)

[14.A.2]

[14.A.3]

the result is

x[g(e.;\302\253r)] [14.A.4]

'For further discussion, see Gourieroux, Monfort, and Trognon A984), Gallant and White A988),
and Wooldridge A991a, b).
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But equation [14.1.22] implies that the left side of [14.A.4]is zero, so that

[14.A.5]

Sf x[g(e,,;%r)].

Now, D*T in [14.A.I] is between \320\262\342\200\236and 8r, so that 6*r-> \320\2620for each i. Thus, condition

(c) ensures that each row of D^- converges in probability to the corresponding row of D'.
Then [14.A.5]implies that

V?(8r -
8\342\200\236)\320\233-{DS-'D'}\"' x {DS-'VT-g(e\302\273; %r)}.

\320\241\302\253-{DS-'D'}
' x DS1,

[14.A.6]
Define

so that [14. A.6] becomes

VT(8r -
\320\262\342\200\236)

Recall from condition (b) of the proposition that

Vr-g(e,,;<sir)-i/v(e,s).
It follows as in Example 7.5 of Chapter 7 that

VT(8r -
\320\262\342\200\236)\320\224/V@, V),

where
V = CSC = {DS-'D'}-'DS-' x S x S 'D'{DS-'D'}-'\342\200\242={DS-'D'}-',

as claimed. \342\226\240

[14.A.7]

Chapter 14 Exercise

14.1. Consider the Gaussian linear regressionmodel,

y, = x,'p + u,,
with u,

~ i.i.d. N@, a-2) and u, independent of xTfor all / and \321\202.Define \320\262\320\267\320\262(\321\2001,a-2)'. The

log of the likelihood of (y,,y2, \342\226\240\342\226\240\342\226\240, yT) conditional on (xlt x,, . . . , xr) is given by

=
-(\320\223/2)logBir)

-
(\320\223/2)log(\302\253r\302\253)

- 2 (\320\243,
-

\":

(a) Show that the estimate Di in [14.4.12] is given by

d; .=

where \320\271,=
(\321\203,

- x,'p,) and pr and o-> denote the maximum likelihood estimates,

(b)Show that the estimate Sr in [14.4.13] is given by

ST -
2 \320\271; 2

(c) Show that plim(Sr)
= -plim(Dr) \342\200\242=9, where

L 0' l/Bo
for Q = plim(l/T) 2,T.,x,x,'.
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(d) Consider a set of m linear restrictions on \320\255of the form RP = \320\263for R a known
(m x k) matrix and \320\263a known (\320\263\320\260\321\2051) vector. Show that for $T = -Dr, the Wald test
statistic given in [14.4.16] is identical to the Wald form of the OLS x2 test in [8.2.23] with

the OLS estimate of the variance s\\ in [8.2.23] replacedby the MLE a\\.

(e) Show that when the lower left and upper right blocksof Sr are set to their plim
of zero, then the quasi-maximum likelihood Wald test of Rp = \320\263is identical to the hetero-
skedasticity-consistent form of the OLS x2 test given in [8.2.36].
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15

Models

of Nonstationary
Time Series

Up to this point our analysis has typically been confined to stationary processes.
This chapter introduces several approaches to modeling nonstationary time series

and analyzes the dynamic properties of different models of nonstationarity. Con-

Consequences of nonstationarity for statistical inference are investigated in subsequent

chapters.

15.1. Introduction

Chapters 3 and 4 discussed univariate time series models that can be written in the

form

y, =
/x + e, + i/f,e,_, + \321\2042\320\265,_2+ \342\226\240\342\226\240\342\226\240=/*+ \320\244(\320\246\320\265\342\200\236[15.1.1]

where 2*_0|i/fy|
< =\302\273,roots of \321\204(\320\263)

= 0 are outside the unit circle, and {e,}is a
white noise sequence with mean zero and variance a-2. Two features of such proc-
processes merit repeating here. First, the unconditional expectation of the variable is
a constant, independent of the date of the observation:

E(y,) =
\320\264.

Second, as one tries to forecast the series farther into the future, the forecast

y,+s\\,
=

\302\243(\321\203,+,\\\321\203\342\200\236y,-\\, \342\226\240\342\226\240\342\226\240)converges to the unconditional mean:

I'm pl+sU
= fi.

s\342\200\224\342\231\246*

These can be quite unappealing assumptions for many of the economic and

financial time series encountered in practice. For example, Figure 15.1 plots the
level of nominal gross national product for the United States since World War II.

There is no doubt that this series has trended upward over time, and this upward
trend should be incorporated in any forecasts of this series.

There are two popular approachesto describing such trends. The first is to

include a deterministic time trend:

y, = a + 8t + \321\204(\320\246\320\265,. [15.1.2]

Thus, the mean /u, of the stationary1 process [15.1.1]is replacedby a linear function
of the date t. Such a process is sometimes describedas trend-stationary, because if

one subtracts the trend a + St from [15.1.2], the result is a stationary process.
Thesecond specification is a unit root process,

A
- L)y, = S + *{L)en [15.1.3]

'Recall that \"stationary\" is taken to mean \"covariance-stationary.\"
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FIGURE 15J U.S. nominal GNP, 1947-87.

where \321\204A)\320\2440. For a unit root process,a stationary representation of the form
of [15.1.1]describeschanges in the series. For reasons that will become clear

shortly, the mean of A
- L)y,is denoted 5 rather than p.

The first-difference operator A
- L) will come up sufficiently often that a

special symbol (the Greek letter \320\224)is reserved for it:

by, =
y,

- y,-\\-

The prototypical example of a unit root processis obtained by setting \321\204(\320\254)

equal to 1 in [15.1.3]:

y,
= y,.l+8+ e,. [15.1.4]

This process is known as a random walk with drift S.
In the definition of the unit root process in [15.1.3], it was assumed that \321\204A)

is nonzero, where \321\204A)denotes the polynomial

\321\204(\320\263)
= 1 + \321\204^1+ \321\2042\320\2632+ \342\226\240\342\200\242\342\226\240

evaluated at 2 = 1. To see why such a restriction must be part of the definition
of a unit root process, suppose that the original series y, is in fact stationary with
a representation of the form

\320\243,
=

M + \321\205(\320\246\320\265,.

If such a stationary series is differenced, the result is

A
- L)y, =

A
-

L)x(L)e, \321\210
\321\204(\320\254)\320\265\342\200\236

where \321\204(\320\254)
= A

- L)x(L). This representation is in the form of [15.1.3]\342\200\224if the

original series y, is stationary, then so is \320\224\321\203,.However, the moving average operator
\321\204(\320\254)that characterizes Ay, has the property that \321\204A)

= A
- 1)-^A) = 0.When

we stipulated that \321\204A)\320\2440 in [15.1.3], we were thus ruling out the possibility
that the original series y, is stationary.

It is sometimesconvenient to work with a slightly different representation of
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the unit root process [15.1.3]. Considerthe following specification:

y, = a+ 8t + \320\270\342\200\236 [15.1.5]

where u, follows a zero-mean ARMA process:

*'=\"(\"'+ e,L + b2V- + \342\200\242\342\226\240\342\226\240+
e4L\302\253)e,

[15\320\2336]

and where the moving average operator A + e,L + B2L2+ \342\226\240\342\226\240\342\200\242+ \320\262\321\207\320\254\")is

invertible. Suppose that the autoregressive operator in [15.1.6] is factored as in

equation [2.4.3]:

If all of the eigenvalues A|, A2, . . . , \\p are inside the unit circle, then [15.1.6] can
be expressedas

1 + 0,L + 62L2 + \342\200\242\342\200\242\342\200\242+ 6qL*
\"' ~

A -
A,L)A

- \\2L) \342\200\242\342\200\242\342\226\240
A

-
\\pL)

S' \"

with 2/Lji^l < oo and roots of \321\204(\320\263)
= \320\236outside the unit circle. Thus, when

|A,| < 1 for all i, the process [15.1.5] would just be a special case of the trend-

stationary process of [15.1.2].
Supposeinstead that A, = 1 and |A,| < 1 for i = 2, 3, .... p.Then [15.1.6]

would state that

A
- L)(l -

A2L)A
- A3L) \342\226\240\342\200\242\342\226\240

A
- KL)u, ... _.lj.l./11 i Q T L Q f I i _L H Y \320\247\\\320\263-\342\200\224(i. \321\202\"v\\Li i I/t Lt \"\320\223 \320\273U.. Li JSf,

implying that

f 0,L + 62L2+ \342\200\242\342\226\240\342\200\242+ e4L\"1
<x

\"
L)u' =

(i

with 2*_()|(/f*| < a> and roots of \321\204*(\320\263)
= \320\236outside the unit circle. Thus, if [15.1.5]

is first-differenced, the result is

A
- L)y, =

A
- L)a + [8t -

8(t
- 1)] + A

- L)u, = 0 + 5 + \321\204*(\320\246\320\265\342\200\236

which is of the form of the unit root process [15.1.3].
The representation in [15.1.5] explains the use of the term \"unit root process.\"

Oneof the roots or eigenvalues (A,) of the autoregressive polynomial in [15.1.6]
is unity, and all other eigenvalues are inside the unit circle.

Another expression that is sometimes used is that the process [15.1.3] is
integrated of order 1. This is indicated as \321\203,

~ 1A). The term \"integrated\" comes

from calculus; if dy/dt
= x, then \321\203is the integral of x. In discrete time series, if

Ay,
=

\321\205\342\200\236then \321\203might also be viewed as the integral, or sum over t, of x.

If a process written in the form of [15.1.5] and [15.1.6]has two eigenvalues

A, and A2 that are both equal to unity with the others all inside the unit circle,
then second differences of the data have to be taken before arriving at a stationary
time series:

A
- Lfy, = \320\272+ ML)*,-

Such a process is said to be integrated of order 2, denoted \321\203,
~

1B).
A general process written in the form of [15.1.5]and [15.1.6] is called an

autoregressive integrated moving average process, denoted ARIMA(p, d, q). The
first parameter (p) refers to the number of autoregressive lags (not counting the

unit roots), the second parameter (d) refers to the order of integration, and the

third parameter (q) gives the number of moving average lags.Taking rfth differences

of an ARIMA(p, d, q) produces a stationary ARMA(p, q) process.
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15.2. Why Linear Time Trends and Unit Roots?
One might wonder why, for the trend-stationary specification [15.1.2], the trend
is specified to be a linear function of time (St) rather than a quadratic function

(8t + yt2) or exponential (e5'). Indeed, the GNP series in Figure 15.1, like many

economic and financial time series, seems better characterized by an exponential
trend than a linear trend. An exponential trend exhibits constant proportional

growth; that is, if

y,
= e*. [15.2.1]

then dyldt
= Sy,. Proportional growth in the population would arise if the number

of children born were a constant fraction of the current population. Proportional

growth in prices (or constant inflation) would arise if the government were trying

to collect a constant level of real revenues from printing money. Such stories are
often an appealing starting point for thinking about the sources of time trends, and

exponential growth is often confirmed by the visual appearance of the series as in

Figure 15.1. For this reason, many economists simply assume that growth is of the

exponential form.

Notice that if we take the natural log of the exponential trend [15.2.1], the

result is a linear trend,

Thus, it is common to take logs of the data before attempting to describe them
with the model in [15.1.2].

Similar arguments suggest taking natural logs before applying [15.1.3]. For
small changes, the first difference of the log of a variable is approximately the same

as the percentage change in the variable:

A - L) log(j>,)
= \\o&y,ly,-l)

= iog{i + [b,-y,-x)iy,-&
=

(y,
- y,-i)iyt-i,

where we have used the fact that for x close to zero, log(l + a:) = x.2Thus, if the

logs of a variable are specified to follow a unit root process,the assumption is that

the rate of growth of the series is a stationary stochastic process. The same argu-

arguments used to justify taking logs before applying [15.1.2] also suggest taking logs
before applying [15.1.3].

Often the units are slightly more convenient if log(y,) is multiplied by 100.

Then changes are measured directly in units of percentage change. For example,
if A

- L)[100 x log(y,)]= 1.0,then y, is 1% higher than y,_y.

15.3. Comparison of Trend-Stationary
and Unit Root Processes
This section compares a trend-stationary process [15.1.2]with a unit root process
[15.1.3]in terms of forecasts of the series, variance of the forecast error, dynamic

multipliers, and transformations needed to achieve stationarity.

!See result [A.3.36] in the Mathematical Review (Appendix A) at the end of the book.
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Comparison of Forecasts
To forecast a trend-stationary process [15.1.2],the known deterministic com-

component (a + 8t) is simply added to the forecast of the stationary stochastic com-

component:

Here %+s\\i denotes the linear projection of y,+i. on a constant and y,, y,_b . . . .
Note that for nonstationary processes, we will follow the convention that the \"con-
\"constant\" term in a linear projection, in this case a + 8(t + s), can be different for
each date t + s. As the forecasthorizon (s) grows large, absolute summability of

{\321\204/}implies that this forecast convergesin mean square to the time trend:

E[y,+sU
-a- 8(t + 5)]2-\302\2730 as *-\302\273\302\273.

To forecast the unit root process [15.1.3], recall that the change \320\224\321\203,is a

stationary process that can be forecast using the standard formula:

y,. y<-u

The level of the variable at date t + s is simply the sum of the changes between t

and t + s:

+ (\320\243,+1
~

\320\243,)+ \320\243, [15.3.3]

= byt+s + \320\224\321\203,+.,-,+ \342\226\240\342\226\240\342\226\240+ \320\224\321\203,+, + \321\203,.

Taking the linear projection of [15.3.3]on a constant and y,, y,_u . . . and sub-

substituting from [15.3.2] gives

9<+,\\t
= byt+,\\t +

\320\224\320\233+\302\273-1|/
+ \342\226\240\342\226\240\342\226\240+

\320\224.\320\243/+\320\246/
+ y,

= {5 + \321\204,\320\262,+ </fJ+1e,_ l + \321\204,+ 2\320\265,-\320\263+ ' \342\226\240
\342\226\240}

+ {8 + (/\320\263,_,\320\265,+ ^\320\261,_, + \321\2043+}\320\265,_2+ \342\226\240\342\226\240
\342\226\240}

+ \342\226\240\342\226\240\342\226\240+ {5 + i/f,e( + \321\2042\320\265,_1+ \321\2043\320\265,-2+\342\226\240\342\200\242\342\226\240}+ \321\203,

or

y,+s\\,
= s8 + \321\203,+ (\321\204,+ ^_, + \342\200\242\342\226\240\342\226\240+ \321\204,)\320\265,

\320\2674
+ (^+1 + \320\244,+ \342\226\240\342\226\240\342\226\240+ ^\320\263)\320\265,-1+ \342\226\240\342\200\242\342\226\240\342\226\240

Further insight into the forecastofa unit root process is obtained by analyzing

some special cases. Consider first the random walk with drift [15.1.4], in which

\321\204\321\205
=

\321\2042
= \342\226\240\342\226\240\342\226\240= 0. Then [15.3.4] becomes

y,+s\\,
= s8 + y,.

A random walk with drift 5 is expected to grow at the constant rate of 5 per period
from whatever its current value y, happens to be.

Considernext an ARIMA(fi, 1, 1) specification (\321\2041
=

\320\262,\321\2042
=

\321\204\321\212
= \342\200\242\342\200\242\342\200\242

= 0). Then

yl+lU
= s8 + \321\203,+ fle,. [15.3.5]

Here, the current level of the series y, along with the current innovation e, again
defines a base from which the variable is expected to grow at the constant rate 5.
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Notice that e, is the one-period-ahead forecasterror:

s, =
y,

-
9,\\,-i-

It follows from [15.3.5] that for 5 = 0 and s = I,

9,+ w,
=

\321\203,+ \320\235\321\203,
-

y,\\,-i) [15.3.6]
or

A + i|,
= A + \320\262)\321\203,

-
#,\342\200\236_,. [15.3.7]

Equation [15.3.7] takes the form of a simple first-order difference equation, relating

9i+i\\i t0 'ts own 'agged value and to the input variable A + ff)y,. Provided that

|0| < 1, expression [15.3.7] can be written using result [2.2.9] as

+ (-0J[A + 0)y,_2] + (-0K[A + \320\262)\321\203,_3]+ \342\226\240\342\226\240\342\226\240
[15.3.8]

=
\320\236+ \320\276)2 (-oyy.-j.

Expression [15.3.7]is sometimes described as adaptive expectations, and its impli-
implication [15.3.8] is referred to as exponential smoothing; typical applications assume
that -1 < \320\262< 0. Letting y, denote income,Friedman A957) used exponential
smoothing to construct one of his measures of permanent income. Muth A960)
noted that adaptive expectations or exponential smoothing corresponds to a rational
forecast of future income only if y, follows an ARIMA(Q, 1, 1) processand the

smoothing weight (-0) is chosen to equal the negative of the moving average
coefficient of the differenced data @).

For an ARIMA@, 1, q) process, the value of y, and the q most recent values

of \320\262,influence the forecasts 9<+\\\\n 9i+2\\n \342\226\240\342\200\242\342\200\242, 9t+4\\n but thereafter the series is

expected to grow at the rate 5. For an ARIMA(p, 1, q), the forecast growth rate

asymptotically approaches 5.
Thus, the parameter 5 in the unit root process [15.1.3] plays a similar role to

that of 5 in the deterministic time trend [15.1.2]. With either specification, the

forecast y,+s\\, in [15.3.1] or [15.3.4]convergesto a linear function of the forecast

horizon j with slope 5; see Figure 15.2.Thekey difference is in the intercept of

the line. For a trend-stationary process, the forecast converges to a line whose

intercept is the same regardless of the value of y,. By contrast, the intercept of the

limiting forecast for a unit root process is continually changing with each new

observation on y.

Comparison of Forecast Errors
The trend-stationary and unit root specifications are also very different in

their implications for the variance of the forecast error. For the trend-stationary

process [15.1.2], the s-period-ahead forecasterror is

y,+s
~

9i+s\\i
=

{<* + 5(f + *) + b,+s + iM,+i_, + \321\2042\320\265,+\320\263-2+ \342\200\242\342\200\242\342\200\242

+ ifc_1e,+ 1 + i/^e, + ifc + ie,_, + \342\226\240\342\200\242
\342\226\240}

- {a + S(t + s) + \321\2045\320\265,+ ^ + ,e,_, + <l>s+2e,_2 + \342\200\242\342\200\242
\342\200\242}
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The mean squared error (MSE) of this forecast is

E[y,+, ~
y,+s\\,]2

= {1 + \320\2442+ \320\244\\+ \342\226\240\342\226\240\342\226\240+ \320\2442-^2-

The MSE increases with the forecasting horizon s, though as s becomes large, the

added uncertainty from forecasting farther into the future becomes negligible:

lira E[y,+S
-

P,+sUY
= {1 + \321\204]+ \321\20422+ \342\226\240\342\226\240

W.
S\342\200\224t-zc

Note that the limiting MSE is just the unconditional variance of the stationary
component \321\204(\320\246\320\265,.

By contrast, for the unit root process [15.1.3], the s-period-aheadforecast
error is

forecast

1 95% confidence interval

Time

(a) Trend-stationary process

95% confidence interval

Time
(b) Unit root process

FIGURE 15.2 Forecastsand 95% confidence intervals.
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\321\203,}

= s,+s + {1 + iMe,+*-i+ {1+ \302\253A,+ ifc}e(+I-2 + ' ' '

+ {I + \320\2441+ \321\2042+ \342\226\240\342\226\240\342\226\240+ iK_,}s,+ 1,

with MS\302\243

\302\243[*+,
~

\320\243.+suV
= {1 + A + \321\204{?+ A + *i + <A2J + \342\226\240\342\226\240\342\226\240

+ (i + \321\2041+ \321\2042+ \342\226\240\342\226\240\342\226\240+ ik_,)V2-

The MSE again increases with the length of the forecasting horizon s, though in

contrast to the trend-stationary case, the MSE does not converge to any fixed value
as s goesto infinity. Instead, it asymptotically approaches a linear function of s
with slope A + i/f, + \321\2042+ \342\226\240\342\226\240

-Jo-2. For example, for an ARIMA@,1,1) process,

-
yl+sUf

= {1 + (* -
1)A + 0)V2- [15.3.9]

To summarize, for a trend-stationary process the MSE reaches a finite bound
as the forecast horizon becomes large, whereas for a unit root process the MSE

eventually grows linearly with the forecast horizon. This result is again illustrated
in Figure 15.2.

Note that since the MSE grows linearly with the forecast horizon s, the

standard deviation of the forecast error grows with the square root of s. On the

other hand, if 5 > 0, then the forecast itself grows linearly in s. Thus, a 95%
confidence interval for yl+s expands more slowly than the level of the series,

meaning that data from a unit root process with positive drift are certain to exhibit

an upward trend if observed for a sufficiently long period. In this sense the trend
introduced by a nonzero drift 5 asymptotically dominates the increasing variability

arising over time due to the unit root component. This result is very important for
understanding the asymptotic statistical results to be presented in Chapters 17and

18.

Figure 15.3 plots realizations of a Gaussian random walk without drift and
with drift. The random walk without drift, shown in panel (a), shows no tendency

to return to its starting value or any unconditional mean. The random walk with

drift, shown in panel (b), shows no tendency to return to a fixed deterministic
trend line, though the series is asymptotically dominated by the positive drift term.

Comparison of Dynamic Multipliers
Another difference between trend-stationary and unit root processes is the

persistence of innovations. Consider the consequences fory,+, if e, were to increase
by one unit with e's for all other dates unaffected. For the trend-stationary process
[15.1.2], this dynamic multiplier is given by

dy,+s .\342\200\224\342\200\224=
\320\244,-

ds,

For a trend-stationary process, then, the effect of any stochastic disturbance even-

eventually wears off:

lim ^ = 0.
s-~\302\25306,
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-14
1 10 19 28 37 4.6 55 64 73 82 91 100

(a) Random walk without drift

10 19 28 37 46 55 64 73 82 91 100

(b)Random walk with drift

FIGURE 15.3 Samplerealizations from Gaussian unit root processes.

By contrast, for a unit root process, the effect of e, on yl+s is seen from [15.3.4]
to be3

\320\264\321\203,+,\320\264\321\203, _

Ss, Ss,
An innovation s, has a permanent effect on the level of \321\203that is captured by

lira %^ = 1 + \321\204{+ \321\2042+ \342\226\240\342\200\242\342\200\242=
\321\204{\\). [15.3.10]

j-\302\273*06,

This, of course, contrasts with the multiplier that describes the effect of t, on the change between
y,+, and \320\243\321\206.,-1,which is given by

\320\264\320\265,

~ **\"
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As an illustration of calculating such a multiplier, the following AR1MAD,
1, 0) model was estimated for y, equal to 100 times the log of quarterly U.S. real

GNP {t = 1952:11to 1984: IV):

b.y,
= 0.555 + 0.312 Ay,-! + 0.122\320\224\321\203,_2

- 0.116 \320\254\321\203,^3
- 0.081 \320\224\321\203,_4+ s,.

For this specification, the permanent effect of a one-unit change in e, on the level
of real GNP is estimated to be

\321\204A)
=

1/\321\204(\\)
= 1/A

- 0.312 - 0.122+ 0.116 + 0.081) = 1.31.

Transformations to Achieve Stationarity

A final difference between trend-stationary and unit root processes that de-
deserves comment is the transformation of the data needed to generate a stationary

time series. If the process is really trend stationary as in [15.1.2], the appropriate
treatment is to subtract St from y, to produce a stationary representation of the

form of [15.1.1]. By contrast, if the data were really generated by the unit root

process [15.1.3], subtracting St from y, would succeed in removing the time-de-

time-dependence of the mean but not the variance. For example, if the data were generated
by [15.1.4], the random walk with drift, then

y, - St = y0 + (S( + e2 + \342\200\242\342\200\242\342\200\242+ e,) =
y0 + u,.

The variance of the residual u, is to-2; it grows with the date of the observation.

Thus, subtracting a time trend from a unit root process is not sufficient to produce
a stationary time series.

The correcttreatment for a unit root processis to difference the series, and
for this reason a process described by [15.1.3] is sometimes called a difference-
stationary process. Note, however, that if one were to try to difference a trend-

stationary process [15.1.2],the result would be

by, = 5 + A
-

This is a stationary time series, but a unit root has been introduced into the moving

average representation. Thus, the result would be a noninvertible process subject
to the potential difficulties discussed in Chapters 3 through 5.

15.4. The Meaning of Tests for Unit Roots
Knowing whether nonstationarity in the data is due to a deterministic time trend

or a unit root would seem to be a very important question. For example, mac-
roeconomists are very interested in knowing whether economic recessions have

permanent consequences for the level of future GNP, or instead represent tem-
temporary downturns with the lost output eventually made up during the recovery.
Nelson and Plosser A982) argued that many economic series are better character-

characterizedby unit roots than by deterministic time trends. A number of economists have
tried to measure the size of the permanent consequences by estimating ty{\\) for

various time series representations of GNP growth.4
Although it might be very interesting to know whether a time series has a

unit root, several recent papers have argued that the question is inherently un-

4See, for example, Watson A986), Clark A987), Campbell and Mankiw A987a, b), Cochrane A988),

Gagnon A988), Stock and Watson A988), Durlauf A989), and Hamilton A989).
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answerable on the basis of a finite sample of observations.5 The argument takes

the form of two observations.

The first observation is that for any unit root processthere exists a stationary
process that will be impossible to distinguish from the unit root representation for

any given sample size \320\223.Such a stationary process is found easily enough by setting
one of the eigenvalues close to but not quite equal to unity. For example,suppose
the sample consists of \320\223= 10,000 observations that were really generated by a

driftless random walk:

\320\243,
=

\320\243,-\\+ ei true model (unit root). [15.4.1]

Consider trying to distinguish this from the following stationary process:

\321\203,
=

\321\204\321\203,-i+ s, \\\321\204\\< 1 fate model (stationary). [15.4.2]
Thes-period-aheadforecast of [15.4.1] is

9,*.\\, =
\320\243, [15-4.3]

with MSE

E(y,+S ~
\320\243,+*\320\270J

= s<r2. [15.4.4]

The corresponding forecastof [15.4.2]is

9,+,\\,
=

\320\244*\320\243, [15-4.5]

with MSE

E(y,+s ~
y,+suJ

= A + \320\2442+ \320\244*+ \342\226\240\342\226\240\342\226\240+ \320\2442{1-1))-*2- [15.4.6]

Clearly there exists a value of \321\204sufficiently close to unity such that the observable
implications of the stationary representation ([15.4.5]and [15.4.6]) are arbitrarily
close to those of the unit root process ([15.4.3] and [15.4.4])in a sample of size

10,000.
More formally, the conditional likelihood function for a Gaussian process

characterized by [15.1.7] is continuous in the parameter A|. Hence,given any fixed

sample size \320\223,any small numbers tj and 6, and any unit root specification with

A,
= 1, there exists a stationary specification with A, < 1 with the property that

the probability is less than e that one would observea sample of size T for which

the value of the likelihood implied by the unit root representation differs by more
than t) from the value of the likelihood implied by the stationary representation.

The converseproposition is also true\342\200\224forany stationary process and a given
sample size \320\223,there exists a unit root processthat will be impossible to distinguish

from the unit root representation. Again, consider a simple example. Supposethe

true process is white noise:

\321\203,
=

\320\262, true model (stationary). [15.4.7]
Consider trying to distinguish this from

A
- L)y, =

A + 0L)e, |0| < 1 false model (unit root) [15.4.8]

yn
=

e\302\253
= 0.

The s-period-ahead forecastof [15.4.7]is
i 9,*,\\,

= 0

with MSE

E(yl+S
-

y,+s\\,J
= a2-

'See Blough A992a, b), Cochrane A991), Christiano and Eichenbaum A990), Stock A990), and

Sims A989). The sharpest statement of this view, and the perspective on which the remarks in the text
are based, is that of Blough.
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The forecast of [15.4.8]is obtained from [15.3.5]:

9,+.\\<
=

\320\243/+ \320\262\320\265,

=
{\320\224\321\203,+ \320\224\321\203,_!+ \342\200\242\342\200\242\342\200\242+ \320\224\321\2032+ \321\203,}+ 0s,

=
{(\320\261,+ 06,_j) + (\320\265,_,+ 0s,_2) + \342\200\242\342\200\242\342\200\242+ (\320\2652+ 0et)

= A + 0){\320\265,+ \320\261,_,+ - \342\200\242\342\200\242+ \320\265,}.

From [15.3.9], the MSE of the s-period-ahead forecast is

\320\225{\320\243,+.
~

9,+suJ
= {1 + E -

1)A + 0)V2.

Again, clearly, given any fixed sample size \320\223,there exists a value of 0 sufficiently

close to -1 that the unit root process [15.4.8]will have virtually the identical
observable implications to those of the stationary process [15.4.7].

Unit root and stationary processes differ in their implications at infinite time

horizons, but for any given finite number of observations on the time series, there

is a representative from either class of models that could account for all the observed

features of the data. We therefore need to be careful with our choiceof wording\342\200\224

testing whether a particular time series \"contains a unit root,\" or testing whether

innovations \"have a permanent effect on the level of the series,\" however inter-

interesting, is simply impossible to do.
Another way to express this is as follows. For a unit root process given by

[15.1.3], the autocovariance-generating function of A
- L)y, is

gAY(z)
= ^(z)o-V(z-1).

The autocovariance-generating function evaluated at z = 1 is then

g*v(l)
= [<K1)]V2. [15-4.9]

Recalling that the population spectrum of \320\224\321\203at frequency o> is defined by

expression [15.4.9] can alternatively be described as lit times the spectrum at

frequency zero:

By contrast, if the true processis the trend-stationary specification [15.1.2],
the autocovariance-generating function of \320\224\321\203can be calculated from [3.6.15]as

gbY(z)
= A

-
2)\302\253A(z)crV(z-l)(l

-
\320\263-'),

which evaluated at z = 1 is zero. Thus, if the true process is trend-stationary, the

population spectrum of \320\224\321\203at frequency zero is zero, whereas if the true process
is characterized by a unit root, the population spectrum of \320\224\321\203at frequency zero
is positive.

The question of whether y, follows a unit root process can thus equivalently

be expressed as a question of whether the population spectrum of \320\224\321\203at frequency
zero is zero. However, there is no information in a sample of size T about cycles

with period greater than \320\223,just as there is no information in a sample of size T
about the dynamic multiplier for a horizon s > T.

These observations notwithstanding, there are several closely related and very

interesting questions that are answerable. Given enough data, we certainly can ask
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whether innovations have a significant effect on the level of the series over a
specified finite horizon. For a fixed time horizon (say, s = 3 years), there exists
a sample size(say, the half century of observations since World War II) such that
we can meaningfully inquire whether \320\264\321\203,+,/\320\264\320\265,is close to zero. We cannot tell

whether the data were really generated by [15.4.1] or a close relative of the form
of [15.4.2], but we can measure whether innovations have much persistence over
a fixed interval (as in [15.4.1] or [15.4.2])or very little persistence over that interval

(as in [15.4.7] or [15.4.8]).
We can also arrive at a testable hypothesis if we are willing to restrict further

the class of processesconsidered.Suppose the dynamics of a given sample {y,,
. . . , yT} are to be modeled using an autoregression of fixed, known order p. For
example, suppose we are committed to using an AR(l) process:

y,
= <t>y,-t + s,. [15.4.10]

Within this class of models, the restriction

\320\257\320\276:\321\204
= 1

is certainly testable. While it is true that there exist local alternatives (such as
\321\204

= 0.99999) against which a test would have essentially no power, this is true of
most hypothesis tests. There are also alternatives (such as \321\204

= 0.3) that would
lead to certain rejection of Ha given enough observations. The hypothesis \"{y,} is
an AR(l) process with a unit root\" is potentially refutable; the hypothesis \"{y,} is

a general unit root process of the form [15.1.3]\"is not.

There may be good reasons to restrict ourselves to consider only low-order

autoregressive representations. Parsimonious modelsoften perform best, and au-
toregressions are much easier to estimate and forecast than moving average proc-
processes, particularly moving average processes with a root near unity.

If we are indeed committed to describing the data with a low-order auto-

autoregression, knowing whether the further restriction of a unit root should be imposed
can clearly be important for two reasons. The first involves a familiar trade-off

between efficiency and consistency. If a restriction (in this case, a unit root) is

true, more efficient estimates result from imposing it. Estimates of the other coef-
coefficients and dynamic multipliers will be more accurate, and forecasts will be better.
If the restriction is false, the estimates are unreliable no matter how large the

sample. Researchersdiffer in their advice on how to deal with this trade-off. One
practical guide is to estimate the model both with and without the unit root imposed.
If the key inferences are similar, so much the better. If the inferences differ, some
attempt at explaining the conflicting findings (as in Christiano and Ljungqvist,

1988, or Stock and Watson, 1989) may be desirable.
In addition to the familiar trade-off between efficiency and consistency, the

decision whether or not to impose unit roots on an autoregression also raises issues
involving the asymptotic distribution theory one uses to test hypotheses about the
process.This issue is explored in detail in later chapters.

15.5. Other Approaches to TrendedTime Series

Although most of the analysis of nonstationarity in this book will be devoted to

unit roots and time trends, this section briefly discusses two alternative approaches
to modeling nonstationarity: fractionally integrated processesand processes with

occasional, discrete shifts in the time trend.
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Fractional Integration

Recall that an integrated processof order rf can be represented in the form

A -
L)\302\253y,

=
\321\204(\320\246\320\262\342\200\236 [15.5.1]

with 2JL0 \\il/j\\
< \302\260\302\260.The normal assumption is that d = 1, or that the first difference

of the series is stationary. Occasionally one finds a series for which d = 2 might

be a better choice.
Granger and Joyeux A980) and Hosking A981) suggested that noninteger

values of rf in [15.5.1] might also be useful. To understand the meaning of [15.5.1]
for noninteger rf, consider the MA(<*>) representation implied by [15.5.1]. It will

be shown shortly that the inverse of the operator A
- L)d exists provided that

rf < 4. Multiplying both sidesof [15.5.1]by A
- L)-d results in

y, = A -
L)-'\302\253L)e,. [15.5.2]

For z a scalar, define the function

/(z) -
A

-
z)\"rf.

This function has derivatives given by

0= (rf+ l)-rf-(l -

0 =
(rf + /

- l)-(d + j -
2)

\342\200\242\342\200\242\342\200\242
(rf + l)-rf-(l

\"
z)--->.

A power series expansion for /(z) around z = 0 is thus given by

\342\200\242z3+ \342\200\242\342\226\240

dz i-0 3!, 2-0
= 1 + rfz + (l/2!)(rf + l)rfz2 + (l/3!)(rf + 2)(rf + l)rfz3 + \342\226\240\342\200\242\342\226\240.

This suggests that the operator A
- L)~d might be represented by the filter

A
- L)-d = 1 + dL + (l/2!)(rf + l)rfL2

+ (l/3!)(rf + 2)(rf + l)rfL3 + \342\200\242\342\200\242\342\200\242
[15.5.3]

= 2 h,V,i-a

where h0
= 1 and

h, - (l//!)(rf+ j -
l)(rf + j

- 2)(rf + j -
3)

\342\200\242\342\226\240\342\200\242
(rf + l)(rf). [15.5.4]

Appendix 15.A to this chapter establishes that if rf < 1, Ay
can be approximated

for large / by

*>-(/+ I)'\021- . [15-5.5]
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Thus, the time series model

y,
= A

- L)-\"e, =
hoe, + A,e,_, + h2e,_2 + \342\200\242\342\200\242\342\226\240

[15.5.6]

describes an MA{^) representation in which the impulse-response coefficient ht

behaves for large/ like (/ + l)rf~'. For comparison, recall that the impulse-response
coefficient associated with the AR(\\) process y, =

A
-

\321\2041_,)~*\320\265,is given by \321\2041.

The impulse-response coefficients for a stationary ARM A process decay geomet-
geometrically,in contrast to the slower decay implied by [15.5.5]. Because of this slower

rate of decay, Granger and Joyeux proposedthe fractionally integrated process as
an approach to modeling long memoriesin a time series.

In a finite sample, this long memory could be approximated arbitrarily well

with a suitably large-order ARMA representation. The goal of the fractional-dif-

fractional-differencespecification is to capture parsimoniously long-run multipliers that decay
very slowly.

The sequence of limiting moving average coefficients
\320\251}~\342\200\2360given in [15.5.4]

can be shown to be square-summable provided that d < i:6

\342\226\240x

2 hi < \302\260\302\260for d < 4.

Thus, [15.5.6] defines a covariance-stationary processprovided that d < J. If d >

i, the proposal is to difference the process before describing it by [15.5.2]. For
example, if d = 0.7, the process of [15.5.1]implies

A
-

L)-\302\273X1
-

L)y, =
\321\204(\320\246\320\265,;

that is, \320\224\321\203,is fractionally integrated with parameter d = -0.3 < f
Conditions under which fractional integration could arise from aggregation

of other processes were described by Granger A980). Geweke and Porter-Hudak

A983) and Sowell A992) proposed techniques for estimating d. Diebold and Ru-

debusch A989) analyzed GNP data and the persistence of business cycle fluctuations

using this approach, while Lo A991) provided an interesting investigation of the

persistence of movementsin stock prices.

Occasional Breaks in Trend

According to the unit root specification [15.1.3], events are occurring all the

time that permanently affect the course of y. Perron A989) and Rappoport and
Reichlin A989) have argued that economic events that have large permanent effects

'Reasoning as in Appendix 3.A to Chapter 3.

< 1 + I x\342\204\242~\302\273dx
\320\263

1)][NM-'
- 1],

which converges to 1 - [l/Bd -
1)] as N\342\200\224*\302\260\302\260,provided that d < i.
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are relatively rare. The idea can be illustrated with the following model, in which

y, is stationary around a trend with a single break:

a, + St + 6, forf< \320\223\342\200\236

U
[1557]

The finding is that such series would appear to exhibit unit root nonstationarity
on the basis of the tests to be discussed in Chapter 17.

Another way of thinking about the processin [15.5.7] is as follows:

b.y,
= l + 8+e,- e,_,, [15.5.8]

where \302\243
= (a2

- a,) when t =
Tn and is zero otherwise. Suppose\302\243is viewed as

a random variable with some probability distribution\342\200\224say,

{0C2

- a, with probability p

0 with probability 1 - p.

Evidently, p must be quite small to represent the idea that this is a relatively rare

event. Equation [15.5.8] could then be rewritten as

&y,
= /1 + ij,, [15.5.9]

where

/x
= p(a2 - a,) + S

V,
= &

~
/>(<*2

-
<*i) + e, - 6,_|.

But t), is the sum of a zero-meanwhite noise process [\302\247
- p(a2 - a,)] and an

independent MA[Y) process [e, - e,_,].Therefore, an MA(Y) representation for
t), exists-. From this perspective, [15.5.9]could be viewed as an ARlMA(fl, 1, 1)
process,

by,
=

\321\206+ v, + 0v,_,,

with a non-Gaussian distribution for the innovations v,\\

v,
=

\320\243,
~

\320\254{\320\243,\\\321\203,-\\,\320\243,-\321\212\342\200\242\342\226\240\342\200\242)\342\200\242

The optimal linear forecasting rule,

\302\243(.\320\243,+,\\\321\203\302\273\320\243,-\320\276\342\226\240\342\226\240\342\226\240)
= Its + \320\243,+Bvn

puts a nonvanishing weight on each date's innovation. This weight does not dis-
disappear as s -* oo,becauseeachperiod essentially provides a new observation on

the variable \302\243and the realization of f, has permanent consequences for the level
of the series. From this perspective, a time series satisfying [15.5.7] could be
describedas a unit root process with non-Gaussian innovations.

Lam A990) estimated a modelcloselyrelated to [15.5.7] where shifts in the

slope of the trend line were assumed to follow a Markov chain and where U.S.
real GNP was allowed to follow a stationary third-order autoregression around this
trend. Results of his maximum likelihood estimation are reported in Figure 15.4.
Thesefindings are very interesting for the question of the long-run consequences
of economic recessions. According to this specification, events that permanently
changed the level of GNP coincided with the recessions of 1957, 1973, and 1980.
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FIGURE 15.4 Discrete trend shifts estimated for U.S. real GNP, 1952-84(Lam,
1990).

APPENDIX 15. A. Derivation of Selected Equationsfor Chapter 15

\342\226\240Derivation of Equation [15.5.5]. Write [15.5.4] as

hj
\321\210(i//|)(rf + / -

i)(rf + / - 2)(rf + / - 3) \342\226\240\342\226\240\342\226\240
(d +

\320\223/
- (/ -

2) + rf -
1] \320\223/

- (/ - 1) + d - l] \320\2465.\320\220.\320\246

For large /, we have the approximation

[15.A.2]

To justify this formally, consider the function g(x)
= A + x)''~'. Taylor's theorem states

that

[15.A.3]
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= 1 + (rf
- 1)* + - (d - l)(d-

2)A + sy-yx-



for some 5 between zero and *. For x > \342\200\2241 and d < 1,equation [15.A.3] implies that

A + \321\217)*\021a 1 + (d - l)x.

Letting x = V) gives

for all / > 0 and d < 1,with the approximation [15,A,2] improving as j \342\200\224\302\273\302\260\302\260,Substituting
[15.A.4] into [15,A,1]implies that

^] L+i \320\253 \342\226\240\342\226\240[!]ffl
=\"->-\342\226\240 \"-'i
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16

Processes

with Deterministic

Time Trends

The coefficients of regression models involving unit roots or deterministic time

trends are typically estimated by ordinary least squares. However, the asymptotic
distributions of the coefficient estimates cannot be calculated in the same way as

are those for regression models involving stationary variables. Among other dif-

difficulties, the estimates of different parameters will in general have different asymp-
asymptoticrates of convergence. This chapter introduces the idea of different rates of
convergence and develops a general approach to obtaining asymptotic distributions

suggested by Sims, Stock, and Watson A990).' This chapter deals exclusively with

processes involving deterministic time trends but no unit roots. One of the results

for such processes will be that the usual OLS t and F statistics, calculated in the

usual way, have the same asymptotic distributions as they do for stationary regres-
regressions.Although the limiting distributions are standard, the techniques used to verify

these limiting distributions are different from those used in Chapter 8. These

techniques will also be used to develop the asymptotic distributions for processes
including unit roots in Chapters 17 and 18.

This chapter begins with the simplest example of i.i.d. innovations around a

deterministic time trend. Section 16.1derives the asymptotic distributions of the

coefficient estimates for this model and illustrates a rescaling of variables that is

necessary to accommodatedifferent asymptotic rates of convergence. Section 16.2
shows that despite the different asymptotic rates of convergence,the standard OLS
t and F statistics have the usual limiting distributions for this model. Section 16.3
develops analogous results for a covariance-stationary autoregression around a

deterministic time trend. That section also introduces the Sims,Stock,and Watson

technique of transforming the regression model into a canonical form for which

the asymptotic distribution is simpler to describe.

16.1. Asymptotic Distribution of OLS Estimates
of the SimpleTime Trend Model

This section considers OLS estimation of the parameters of a simple time trend,

y,
= a + St + e,, [16.1.1]

for e, a white noise process. If e, ~
N@, a2), then the model [16.1.1]satisfies the

classical regression assumptions2 and the standard OLS t or F statistics in equations

'A simpler version of this theme appeared in the analysis of a univariate process with unit roots by
Fuller A976).

-See Assumption 8.1 in Chapter 8.
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[8.1.26] and [8.1.32] would have exact small-sample t or F distributions. On the

other hand, if e, is non-Gaussian, then a slightly different technique for finding the
asymptotic distributions of the OLS estimates of a and 5 would have to be used
from that employed for stationary regressions in Chapter 8. This chapter introduces

this technique, which will prove useful not only for studying time trends but also

for analyzing estimators for a variety of nonstationary processes in Chapters 17

and 18.3
Recall the approach used to find asymptotic distributions for regressions with

stationary explanatory variables in Chapter 8. Write [16.1.1] in the form of the
standard regression model,

y, = x,'P + e,, [16.1.2]

where

x; -[i t] [16.1.3]

\320\255-[\"IBx1) |_5J
[16.1.4]

Let bT denote the OLS estimate of 3 basedon a sample of size T:

Recall from equation [8.2.3] that the deviation of the OLS estimate from the true

value can be expressedas

-
\320\255)

To find the limiting distribution for a regression with stationary explanatory var-

variables, the approach in Chapter 8 was to multiply [16.1.6] by VT, resulting in

Vr(br - p) =
\320\223A/\320\263)\302\243\320\274;1

[(i/VT)
2

*\302\253,]\342\200\242
[ie.i.7]

The usual assumption was that A/7\") 2/L, x,x,' convergedin probability to a non-

singular matrix Q while A/VT) 2,1, x,e,converged in distribution to a N@, cr2Q)
random variable, implying that VT(br - 3) -^

N@, o^Q\021)-

To see why this same argument cannot be used for a deterministic time trend,
note that for x, and p given in equations [16.1.3] and [16.1.4], expression [16.1.6]
would be

\320\260\320\263-\320\2601_ [El

\"The general approach in these chapters follows Sims, Stock, and Watson A990).
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where 2 denotes summation for t = 1 through T. It is straightforward to show by

induction that4

2 t = T(T + l)/2 [16.1.9]

2 t2 = T(T + 1)BT + l)/6. [16.1.10]

Thus, the leading term in 2/111 is \320\2232/2;that is,

A/\320\2232)2 t =
A/\320\2232)[(\320\2232/2)+ (\320\223/2)]

= 1/2 + 1/B\320\223)
- 1/2. [16.1.11]

Similarly, the leading term in 2,1, t2 is \320\223-73:

A/\320\2233)2 f2 =
A/\320\223)[B\320\240/6) + (\320\227\320\223\320\2436)+ \320\223/6]

= 1/3 + 1/B\320\223) + 1/F\320\2232)
[16.1.12]

-\320\275>1/3.

For future reference, we note here the general pattern\342\200\224the leading term in

2,1, \320\223is r+l/(v + 1):

A/\320\223'
+

1) 2 f-\302\273l/(v + 1). [16.1.13]

To verify [16.1.13], note that

\320\263 \321\202

A/T'+1) 2 \320\223=
A/\320\223)2 (t/T)'\\ [16.1.14](=1 (-1

The right side of [16.1.14] can be viewed as an approximation to the area under

the curve

f(r) = r>

for r between zero and unity. To see this, notice that (l/T)-(t/T)'' represents
the area of a rectangle with width A/\320\223)and height r* evaluated at r = tIT (see
Figure 16.1). Thus, [16.1.14] is the sum of the area of these rectanglesevaluated

\342\226\240\342\200\242Clearly,[16.1.9] and [16.1.10] hold for T = I, Given that [16.1.9] holds for T,

S ' = S ' + (r + 1) = \320\246\320\242+ l)/2 + G- + I) = (T + l)[G72)+ I] =
(\320\223+ l)G- + 2)/2,

establishing that [16.1.9] holds for T + 1.Similarly, given that [16.1.10] holds for T,

\302\243(^ = 1\\T + 1)B\320\223+ l)/6 + (\320\223+ \\Y

= (T + 1){[\320\22427-+ l)/6] + (\320\223+ 1)}
= (T + l)BT- + IT + 6)/6

= G4- \\)(T + 2)[2(T + 1) + l]/6,

establishing that [16.1.10] holds for T + 1.
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FIGURE 16.1 Demonstration that A/\320\223)2/1, {tlT)y -* /,', r* dr = l/(v + 1).

at r = 1/\320\223,2/\320\223,. . . , 1. As T-* <*>, this sum converges to the area under the

curve /(/\342\226\240):

\321\202 r\\

A/T) 2 (t/TI-*
j(i

r'dr = rl +
1/(v + l)|'_0 = l/(v + 1). [16.1.15]

For x, given in [16.1.3], results [16.1.9] and [16.1.10] imply that

\"El Sfl \320\223 \320\223 T(T+l)/2 ] \342\200\236,,,,,=

Ur+l)/2 \320\223(\320\223+1)B\320\223+1)/\320\261]-
[161161

In contrast to the usual result for stationary regressions, for the matrix in [16.1.16],
(l/T)E,r_|X,x,'diverges.To obtain a convergent matrix, [16.1.16] would have to

be divided by \320\2233rather than T:

Unfortunately, this limiting matrix cannot be inverted, as A/\320\223)E/L i x,x,' can be
in the usual case. Hence, a different approach from that in the stationary case will

be needed to calculate the asymptotic distribution of br.
It turns out that the OLS estimates aT and \320\254\321\202have different asymptotic rates

of convergence.To arrive at nondegenerate limiting distributions, dris multiplied

by VT, whereas Sr must be multiplied by \320\242\320\251We can think of this adjustment

as premultiplying [16.1.6] or [16.1.8]by the matrix
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resulting in

rvr(fir-\302\253)

L

[16-1.18]

Consider the first term in the last expression of [16.1.18].Substituting from

[16.1.17] and [16.1.16],

\320\242->\320\277

0

Thus, it follows from [16.1.11] and [16.1.12] that

\320\236\"I [21 \320\225\320\233\320\223\320\223-\0220 11

where

[j Jl [16-1.20]-[j Jl.

Turning next to the second term in [16.1.18],

-m 0

Under standard assumptions about e,, this vector will be asymptotically Gaussian.
For example,supposethat e, is i.i.d. with mean zero, variance a2, and finite fourth

moment. Then the first element of the vector in [16.1.21] satisfies

A/VT) 2 e,-4 N@, a2),
el

by the central limit theorem.
For the second element of the vector in [16.1.21], observe that {{tlT)e,} is a

martingale difference sequence that satisfies the conditions of Proposition 7.8.

Specifically, its variance is

a2 = E[(t/T)e,]2 = a2-{t2IT2),

where

2 \320\276-2=
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Furthermore, A/7\") E,1, [(t/T)e,]2 -4 cr2/3. To verify this last claim, notice that

EUlIT) 2 [(t/T)e,f -
A/\320\223)2 tf

/=i

2 (t/TYE(e2
- o-2J.

But from [16.1.13], T times the magnitude in [16.1.22] converges to

A/\320\223)2 (tlTTE(ef
- o-2J- (l/5)-\302\243(e2

-
o-2J,

meaning that [16.1.22] itself converges to zero:

HIT) 2 [(</t>j2
-

(i/\320\263)2 *? - o.

But this implies that

2

as claimed. Hence, from Proposition 7.8, (l/V?)E,r_i {tlT)e,satisfies the central

limit theorem:

A/VT) 2 (t'T)eA N@, o-2/3).
i

Finally, consider the joint distribution of the two elements in the Bx1)
vector describedby [16.1.21]. Any linear combination of these elementstakes the

form

A/VT) 2 [A, + A2(t/r)]e,.

Then [Ai + A2(f/7\]e,") is also a martingale difference sequence with positivevariance'
given by o-2[Af + 2A,A2(f/T) + A2(f/TJ] satisfying

\321\202

A/\320\223)2 o-2[A? + 2A,A2(f/T) + A^f/\320\223J]
-\302\273o-2[A2 + 2A,A2(i) + X22(i)]

i-i

= a2k'Q\\

for A. = (A], A2)' and Q the matrix in [16.1.20]. Furthermore,

A/\320\223)2 [A, + A2(f/T)]2e2 \320\233a2k'Q\\, [16.1.23]
/SB1

see Exercise 16.1. Thus any linear combination of the two elementsin the vector

in [16.1.21] is asymptotically Gaussian, implying a limiting bivariate Gaussian dis-

\342\226\240'Moreaccurately, a given nonzero A, and A, will produce a zero variance for [A, + A,(i/7\]e,") for

at most a single value of I, which does not affect the validity of the asymptotic claim.
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tribution:

\320\223(WDs., U

L(l/VT)Z(f/7>,J
v ' W J

From [16.1.19] and [16.1.24], the asymptotic distribution of [16.1.18] can be
calculated as in Example 7.5 of Chapter 7:

:q.q-|]) =
w@, o-2Q\"'). [16.1.25]

These results can be summarized as follows.

Proposition 16.1: Let y, be generated according to the simple deterministic time
trend [16.1.1]where e, is i.i.d. with E(e2)

= a2 and E(e*) < \302\260o.Then

[16.1.26]

Note that the resulting estimate of the coefficient on the time trend (ST) is

supercotisistent\342\200\224not only does ST -A 5, but even when multiplied by 7\", we still

have

T{hT- 5L.0; [16.1.27]
see Exercise 16.2.

Different rates of convergenceare sometimes described in terms of order in

probability. A\" sequence of random variables {\320\245\321\202}\321\202=i is said to be
\320\236\320\224\320\223\"|/2) if for

every e > 0, there exists an M > 0 such that

P{\\XT\\ > M/Vf} < e [16.1.28]
for all T; in other words, the random variable Vf-XT is almost certain to fall within

\302\261Mfor any T. Most of the estimators encountered for stationary time series are

OP{T'ltl).For example, suppose that XT represents the mean of a sample of size 7\\

xT =
(i/\320\263)2 yn

where {y,} is i.i.d. with mean zero and variance a2. Then the variance of XT is

cr2IT. But Chebyshev's inequality implies that

p{\\xr\\ > M/VT} ^j~
= {viMf

for any M. By choosing M so that (cr/MJ < e, condition [16.1.28]is guaranteed.

Since the standard deviation of the estimator is cr/VT, by choosing M to be a
suitable multiple of a, the band Xr \302\261M/VT can include as much of the density
as desired.

As another example, the estimator ar in [16.1.26] would also be said to be

OP{T'xa). SinceVf times (ar
-

a) is asymptotically Gaussian, there exists a band
\302\261M/Vr around aT that contains as much of the probability distribution as desired.

In general, a sequence of random variables {X-^r-i is said t0 be 0^G\"\"*) if

for every e > 0 there exists an M > 0 such that

P{\\Xr\\ > M/(T\}")< e. [16.1.29]

Thus, for example,the estimator 5rin [16.1.26]is \320\236\321\200{\320\242-\321\210),
since there exists a band

\302\261Maround T^Sf
- 5) that contains as much of the probability distribution as

desired.
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16.2. Hypothesis Testing for the Simple Time
Trend Model
If the innovations e, for the simple time trend [16.1.1] are Gaussian, then the OLS
estimates aT and ST are Gaussian and the usual OLS t and F tests have exact small-

sample t and F distributions for all sample sizes T. Thus, despite the fact that aT
and \320\254\321\202have different asymptotic rates of convergence,the standard errors &&r and

agr evidently have offsetting asymptotic behavior so that the statistics such as

(ST
-

5,,)/o\0257. are asymptotically N@, 1) when the innovations are Gaussian. We
might thus conjecture that the usual t and F tests are asymptotically valid for non-
Gaussian innovations as well. This conjecture is indeed correct, as we now verify.

First consider the OLS t test of the null hypothesis a = a(>, which can be

written as

Heres\\ denotes the OLS estimate of a2:

s\\
=

[1/(\320\223
-

2)] 2 (\321\203,-&\321\202- hTtJ- [16.2.2]

and (X'TXT)= 2/1, x,x,' denotes the matrix in equation [16.1.16]. The numerator
and denominator of [16.2.1] can further be multiplied by Vf, resulting in

0](X^Xr)

Note further from [16.1.17]that

[VT 0] = [1 0]Yr. [16.2.4]
Substituting [16.2.4] into [16.2.3],

But recall from [16.1.19]that

Yr(X^Xr)-'Yr
= [Yrl(X'TXT)Yrl]-l^Q-'- [16-2.6]

It is straightforward to show that s\\-^* a2. Recall further that y/T(aT -a0) -^

W@, \321\201\321\2022^11)for q11 the A, 1) element of Q\021. Hence, from [16.2.5],

\342\200\236VT(&t
~

a\302\273) Vf(ar
~

a\302\273)

0]Q
I;]}1

[16.2.7]

But this is an asymptotically Gaussian variable divided by the square root of its

variance, and so asymptotically it has a N@, 1) distribution. Thus, the usual OLS
t test of a = a,, will give an asymptotically valid inference.

Similarly, consider the usual OLS t test of 5 =
5\321\206:
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Multiplying numerator and denominator by T}12,

-
5\342\200\236)

-
g,,)

which again is asymptotically a N@, 1)variable. Thus, although dy-and 5rconverge
at different rates, the corresponding standard errors &&r and

&$\321\202
also incorporate

different orders of 7\", with the result that the usual OLS t tests are asymptotically

valid.

It is interesting also to considera test of a single hypothesis involving both

a and 5,

Hu: rta + r2S = r,

where /\342\226\240,,r2, and r are parameters that describe the hypothesis. A t test of Ho can
be obtained from the square root of the OLS Ftest (expression [8.1.32]):'

\320\2232&\320\242
~

\320\223)

In this case we multiply numerator and denominator by VT, the slower rate of
convergence among the two estimators aT and ST:

aT + r2bT-
r)

+ r2lr
- r)

= *\321\202+ r2ST
- r)

where

[16.2.8]

Similarly, recall from [16.1.27]that ST is superconsistent, implying that

VT(r,dr + r2bT -
\320\263)

\320\233Vf(r,aT + r2S
- r), [16.2.9]

\"With a single linear restriction as here, m = I and expression [8.1.32] describes an F(l, T -
k)

variable when the innovations are Gaussian. But an F(l, T - k) variable is the square of a 1G\"
-

k)
variable. The test is described here in terms of a I test rather than an F test in order to facilitate

comparison with the earlier results in this section.
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where S is the true population value for the time trend parameter.Again applying

[16.2.6], it follows that

^^.vi^Mo
[]62l0]

{ ]}olQ
lo]}

But notice that

Vf(r,aT + r2S
- r) =

Vf[r,(aT
-

a) + r,a + r2S
-

r]
= V?[ri(<*r - a)]

under the null hypothesis. Hence, under the null,

\" V^[^(\"r
~

a)] _ VT(ar ~ a)h~*
{rlo-tq11}\022

~

{a-2quYa
'

which asymptotically has a N@, 1) distribution. Thus, again, the usual OLS t test

of \320\235\342\200\236is valid asymptotically.
This last example illustrates the following general principle: A test involving

a single restriction across parameters with different rates of convergenceis dom-
dominated asymptotically by the parameters with the slowest rates of convergence.
This means that a test involving both a and 5 that employs the estimated value of
5 would have the same asymptotic properties under the null as a test that employs
the true value of 5.

Finally, consider a joint test of separate hypotheses about a and 5,

or, in vector form,

\320\255
=

\320\255\320\276-

The Wald form of the OLS \\\320\263test of Hn is found from [8.2,23] by taking R = 12:

X\\
= (br - p())'[5HXi-Xr)-I]-'(br -

\320\255\320\276)

= (br
- p())'Yr[Yr527-(X'rXr)-'Yr]-|Yr(br -

\320\255\320\276)

\320\233[Yr(br
-

P\302\253)]V<r \320\223'\320\223\320\234\320\254\320\263
-

\320\255\302\253I-

Recalling [16.1.25], this is a quadratic form in a two-dimensional Gaussian vector
of the sort considered in Proposition 8.1, from which

\320\2452\321\202\302\261\320\2452B).

Thus, again, the usual OLS test is asymptotically valid.

16.3. Asymptotic Inference for an AutoregressiveProcess
Around a Deterministic Time Trend

The sameprinciples can be used to study a general autoregressive process around

a deterministic time trend:

y,
= a + St + \320\2441\320\243,.1 + \321\204\320\263\321\203.-\320\263+ \342\226\240\342\226\240\342\226\240+

\321\204\321\200\321\203,.\321\200
+ \320\265,. [16.3.1]
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It is assumed throughout this section that e, is i.i.d. with mean zero, variance cr2,

and finite fourth moment, and that roots of

1 -
\302\253\302\243,z

-
<f>2z2

- \342\226\240\342\226\240\342\200\242-
\321\204\342\200\236\320\263<'

= \320\236

lie outside the unit circle. Consider a sample of T + p observations on y, {y-/l+l,
\320\243-\320\263+2<\342\226\240\342\226\240\342\226\240' \320\243\321\202}'and tetdr, \302\2437-,<\302\243i.7-,. . . , \321\204\321\200.\321\202denote coefficient estimates based
on ordinary least squares estimation of [16.3.1]for t = 1,2 T.

A Useful Transformation of the Regressors

By adding and subtracting \321\204^\320\260
+ S(t

- /)] for/ = 1,2, ... ,pon the right
side, the regression model [16.3.1] can equivalently be written as

y, = a(l + \321\204,+ \321\2042+ \342\226\240\342\226\240\342\226\240+ \321\204\342\200\236)+ 5A + \321\204\321\205+ \321\2042+ \342\226\240\342\226\240\342\226\240+ \321\204,,I

-
8(\321\204>+2\321\2042 + \342\226\240\342\226\240\342\226\240+

\321\200\321\204\321\200)+ \321\204,[\321\203,_,
- \320\260- S(t - 1)] [16.3.2]

+ \320\244\320\263\320\254,-\320\263
~ \320\260- S(t - 2)] + \342\226\240\342\200\242\342\226\240

+ \320\244\320\240[\320\243'-\320\240
~ \320\260~

S(t
-

\321\200)]+ \320\265,

or

\321\203,
= \320\260*+ 5*f + \320\244\320\223\321\203\320\223.,+ \321\204$\321\203\320\223-2+ \342\226\240\342\226\240\342\226\240+

\320\244*\321\200\321\2037-\342\200\236+ \320\265\342\200\236[16.3.3]

where

\320\260*=
[\320\260A+ \321\204,+ \321\2042+ \342\226\240\342\226\240\342\226\240+ \321\204,,)

-
5(<\302\243,+2\321\2042+

\342\226\240\342\226\240\342\226\240+ \321\200\321\204\321\200)\\

8* ^ 5A + \321\204,+ \321\2042+ \342\226\240\342\226\240\342\226\240+ \321\204\342\200\236)

\321\204*s0. for/ =1,2 \321\200

and

\321\203\320\223-,
-

\321\203,-,
- a- S(t- j) for/ =1,2 p. [16.3.4]

The idea of transforming the regression into a form such as [16.3.3]is due

to Sims, Stock, and Watson A990).7 The objective is to rewrite the regressors of
[16.3.1]in terms of zero-mean covariance-stationary random variables (the terms

y*-i for j = 1,2 p), a constant term, and a time trend. Transforming the

regressors in this way isolates components of the OLS coefficient vector with

different rates of convergenceand provides a general technique for finding the

asymptotic distribution of regressions involving nonstationary variables. A general
result is that, if such a transformed equation were estimated by OLS, the coefficients
on zero-mean covariance-stationary random variables (in this case, \321\204*,\321\202,\320\244*.\321\202->

\342\226\240... \320\244\321\200.\321\202)would converge at rate VT to a Gaussian distribution. The coefficients

&r and 5f from OLS estimation of [16.3.3] turn out to behave asymptotically

exactly like aT and 5r for the simple time trend model analyzed in Section 16.1
and are asymptotically independent of the <\302\243*'s.

It is helpful to describethis transformation in more general notation that will

also apply to more complicated models in the chapters that follow. The original

regression model [16.3.1] can be written

y,
= x;p + e,, [16.3.5]

7A simpler version of this theme appeared in the analysis of a univariate process with unit roots by

Fuller A976).
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where

X,
=

(p+2)xl

\320\243,-\\

\320\243,-2

;

\320\243,-\321\200

1

t _

h\302\243xi\"

<?>2

1

\320\260

_5_

[16.3.6]

The algebraic transformation in arriving at [16.3.3] could then be described as
rewriting [16.3.5] in the form

y,
= x;G'[G']-'P + e, = [x,*]'p*+ e,.

where

G'

1

0

6
-\320\260+ 5

1

0

6
\320\260- 5 \320\260

5

-<

0
1

6

5

0
1

6
1 + 25

-5

* \342\200\242*

25 \342\200\242\342\200\242\342\200\242

...

...

0
0

i
\320\260-

5

0
0

i
-\320\260+

-5

0
0

6
\321\20081

0

\320\2408

0~

0

6
0
1

0
0

6
1
0

0
0

6
0
1

[16.3.7]

[16.3.8]

\321\205?
= Gx, =

yU

yiP
1
t

[16.3.9]

\321\204.*

\320\272

a\"

5*

[16.3.10]

The system of [16.3.7] is just an algebraically equivalent representation of
the regression model [16.3.5]. Notice that the estimate of p* based on an OLS

regression of y, on x,* is given by

[16.3.11]
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where b denotes the estimated coefficient vector from an OLS regression of y, on

x,. Thus, the coefficient estimate for the transformed regression (b*) is a simple
linear transformation of the coefficient estimate for the original system (b). The

fitted value for date t associated with the transformed regression is

[x,-]'b* = [Gx,]'[G']-'b= x,'b.

Thus, the fitted values for the transformed regression are numerically identical to

the fitted values from the original regression.
Ofcourse, given data only on {y,},we could not actually estimate the trans-

transformed regression by OLS, because construction of x,* from x, requires knowledge
of the true values of the parameters a and 5. It is nevertheless helpful to summarize

the properties of hypothetical OLS estimation of [16.3.7], because [16.3.7]is easier

to analyze than [16.3.5]. Moreover, once we find the asymptotic distribution of b*,
the asymptotic distribution of b can be inferred by inverting [16.3.11]:

b = GV [16.3.12]

The Asymptotic Distribution of OLS Estimates
for the Transformed Regression

Appendix 16.A to this chapter demonstrates that

where

Q*

VT
0

0
Vf

0 \342\200\242\342\200\242

0 \342\200\242\342\200\242

\342\200\2420
\342\200\2420

0

0
0
0

\320\276 \320\276\320\276\342\200\242\342\200\242\342\200\242Vf \320\276 \320\276

\320\276 \320\276\320\276\342\200\242\342\200\242\342\200\242\320\276vr \320\276

\320\276 \320\276\320\276\342\200\242\342\200\242\342\200\242\320\276 \320\276 \321\202\321\202

To

7/

7i
7<t

yi-2
0

0

72
7f

7,*-, 0 0\"

To* 0 6

0 1 i
0 i *

[16.3.13]

[16.3.14]

[16.3.15]

for y* =
E(y?yf_j). In other words, the OLS estimate b* is asymptotically Gauss-

Gaussian,with the coefficient on the time trend E*) converging at rate Tm and all other

coefficients converging at rate VT. Theearlier result [16.1.26] is a special caseof
[16.3.13]with p = 0.

The Asymptotic Distribution of OLS Estimates

for the Original Regression

What does this result imply about the asymptotic- distribution of b, the esti-

estimated coefficient vector for the OLS regression that is actually estimated? Writing
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out [16.3.12] explicitly using [16.3.8], we have

1

\320\276

\320\276

-\320\260+ 8

-8

\320\236

1

\320\236

-\320\260+ 25

-5

\320\236

\320\236

1

-\320\260+ \321\2008

-5

0

0

0
1
0

0
0

0
0
1_

~\321\204{

\321\204;

a*

[16.3.16]

The OLS estimates \321\204{
of the untransformed regression are identical to the corre-

corresponding coefficients of the transformed regression <\302\243*,so the asymptotic distri-
distribution of 4>j is given immediately by [16.3.13]. The estimate aT is a linear com-

combination of variables that converge to a Gaussian distribution at rate V7\\ and so

aT behaves the same way. Specifically, aT = g^bf, where

g; = [-a + 5 -a + 28 \342\226\240\342\226\240\342\226\240-a + p8 1 0],

and so, from [16.3.13],

Vf(aT -
\320\260)

\320\233N@, o-2g;t[Q*]-'ga). [16.3.17]

Finally, the estimate 5r is a linear combination of variables converging at different
rates:

Sr = gsbr + S*,
where

g's^[-8 -8 \342\200\242\342\200\242\342\200\242-5 0 0].

Its asymptotic distribution is governed by the variables with the slowest rate of
convergence:

VT(8T -
5)

= VT(e*T + g'M - 5* - g;p*)
\320\233VTE* + g'sb*T

- 5* - gj;p*)

Thus, each of the elements of bT individually is asymptotically Gaussian and

Op{T-[tl). The asymptotic distribution of the full vector VT(br
- p) is multi-

variate Gaussian, though with a singular variance-covariance matrix. Specifically,

the particular linear combination of the elements of brthat recovers 5\"*, the time

trend coefficient of the hypothetical regression,

$r = -g'M + ST
=

8\321\204\320\272\321\202+ &\321\204\\\321\202+ \342\226\240\342\226\240\342\226\240+ &\321\204\321\200-\321\202
+ 5r,

converges to a point mass around 5* even when scaled by V77

VT(8*T
- 5*)-^0.

However, [16.3.13] establishes that

\320\242\321\210\321\204'\321\202
-

8*) \320\233N@, a2(q*)\302\273+2-r+2)

for (q*y+2p+2 the bottom right element of [Q*]-'.

Hypothesis Tests

The preceding analysis described the asymptotic distribution of b in terms of
the properties of the transformed regression estimatesb*. This might seem to imply
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that knowledge of the transformation matrix G in [16.3.8] is necessaryin order to

conduct hypothesis tests. Fortunately, this is not the case. The results of Section

16.2 turn out to apply equally well to the general model [16.3.1]\342\200\224the usual t and
F tests about p calculated in the usual way on the untransformed system are all

asymptotically valid.
Consider the following null hypothesis about the parameters of the untrans-

untransformedsystem:

\320\235\342\200\236:Rp
= r. [16.3.18]

Here R is a known [m x (p + 2)] matrix, \320\263is a known (m x 1) vector, and m

is the number of restrictions. The Wald form of the OLS x2 test of \320\257\342\200\236(expression

[8.2.23]) is

X2r
= (RbT

-
ry\\s2TR^tx,x^ R'j

(Rbr-r). [16.3.19]R'j
Here bT is the OLS estimate of p based on observation of {y-p+1, y~p+2< \342\226\240\342\226\240\342\226\240

\320\233.\320\243,..... \320\243\321\202-}and s\\ = [1/(T - p -
2)] 2\320\223-,(\321\203,

-
x,'brJ.

Under the null hypothesis [16.3.18], expression [16.3.19]can be rewritten

X\\
= [R(br -

P)]'Ur(J; \320\260\320\264')R'j
[R(br

- P)]

x\\s2TRG'(GT'Bx,x'] (G)-'GR'l [RG'(G')\" '(br
- P)].

[16.3.20]
Notice that

(G)-1
=

forx* given by [16.3.9]. Similarly, from [16.3.10]and [16.3.11],

(bj-
- P*) = (G')-'(br -

P).

Defining

R* = RG',

expression [16.3.20] can be written

X\\
=

[R*(b*r
-

P*)]' \\sTR(i f[r]) []l
L V / J [16.3.21]

x [R*(b*- p*)].

Expression [16.3.21] will be recognized as the x2 test that would be calculated

if we had estimated the transformed system and wanted to test the hypothesis that

R*p* = \320\263(recall that the fitted values for the transformed and untransformed
regressions are identical, so that s\\ will be the same value for either representation).
Observe that the transformed regression does not actually have to be estimated in

order to calculate this statistic, since [16.3.21]is numerically identical to the x2
statistic [16.3.20] that is calculated from the untransformed system in the usual

way. Nevertheless, expression [16.3.21] gives us another way of thinking about the

distribution of the statistic as actually calculated in [16.3.20].
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Expression [16.3.21] can be further rewritten as

X\\ = [R*Yf'Yr(b*r - p*)]'

x
[s?-R*Yf'Y^J]**M') VrYF'[R*]'j

[16.3.22]

x [R*Y?'Yr(b*r- \320\255*)]

for Yr the matrix in [16.3.14]. Recall the insight from Section 16.2 that hypothesis
tests involving coefficients with different rates of convergence will be dominated

by the variables with the slowest rate of convergence. This means that some of the
elements of R* may be irrelevant asymptotically, so that [16.3.22] has the same
asymptotic distribution as a simpler expression. To describethis expression, con-

consider two possibilities.

Case 1. Each of the m Hypotheses Represented
by R*P* = \320\263Involves a Parameter that Converges
at Rate VT

Of course, we could trivially rewrite any system of restrictions so as to involve

Op(T~>n)parameters in every equation. For example, the null hypothesis

Ho: \320\2441
= 0, 5* = 0 [16.3.23]

could be rewritten as

Hu: \321\204$
= 0, 5* =

\321\2041, [16.3.24]

which seems to include \321\204*in each restriction. For purposes of implementing a

test of Hu, it does not matter which representation of #\342\200\236is used, since either
will produce the identical value for the test statistic* For purposes of analyzing

the properties of the test, we distinguish a hypothesis such as [16.3.23]from a

hypothesis involving only \321\204\\and \321\204%.For this distinction to be meaningful, we

will assume that Ho would be written in the form of [16.3.23] rather than [16.3.24].

\"More generally, let H be any nonsingular (m x m) matrix. Then the null hypothesis Rp = r can
equivalently be written as Rfl = f. where R - HR and r = Hr, The x1 statistic constructed from the
second parameterization is

X- = (Rb
- r)'U?Rf 2 xa'J R'I (Rb

- r)

= (Rb
- r)'H'[H']-'Lt-r( 2

X,X,'J
R' H\"'H(Rb - r)

-
r)'LmB VC'J

R'l (= (Rb
-

r)'LmB VC'J
R'l (Rb-r),

which is identical to the xz statistic constructed from the first parameterization. The representation

[16.3.24] is an example of such a transformation of [16.3.23J. with

\342\226\240-I-1.:]-
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In general terms, this means that R* is \"upper triangular.\"9 \"Case1\" describes

the situation in which the first p + 1 elementsof the last row of R* are not all

zero.

For case 1, even though some of the hypotheses may involve $f, a test of the

null hypothesis will be asymptotically equivalent to a test that treated 5* as if known
with certainty. This is a consequence of &$being superconsistent. To develop this
result rigorously, notice that

R*Yf' =

7f,/V7 rtp+2/T\342\204\242

r?ll2/VT

and define

r2\\

\320\263* \320\263* IT'
\320\2631.\321\200+ 1 rl.p + Z/I

r* \302\273\342\200\242*/T
'/ii.p+1 'm.p + 21 1 J

[16.3.25]

These matrices were chosen so that

R*v
- & \342\200\224V- id*

The matrix R\302\243has the further property that

Rf-\302\273R*. [16.3.26]

where R* involves only those restrictions that affect the asymptotic distribution:

R* =
# _#

?2\\ r22

\320\263.*\302\273\342\226\240*
'ml '\321\2102

\320\263* \320\237

*\"Upper triangular\" means that if the set of restrictions in \320\235\342\200\236involves parameters p*, /3f:, . . . ,

0* with /, </,<\342\200\242\342\200\242\342\200\242</'\342\200\236,then elements of R* in rows 2 through m and columns 1 through i'y are all

zero. This is simply a normalization\342\200\224any hypothesis R*P* = r can be written in such a form by
selecting a restriction involving /3? to be the first row of R* and then multiplying the first row of this
system of equations by a suitable constant and subtracting it from each of the following rows. If the
system of restrictions represented by rows 2 through m of the resulting matrix involves parameters

fift.fit, Pi with j\\<h< \342\200\242\342\200\242\342\200\242< ji, then it is assumed that the elements in rows 3 through m and

columns 1 through /, are all zero. An example of an upper triangular system is

u
'\320\270,'i.ij v

ooo ri

\320\276\320\276\320\276 ( \342\226\240\342\200\242\342\200\242
C\302\273t_,
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Substituting [16.3.25] into [16.3.22],

Yr[Y
f'R\302\243]'j

[Yf'RfYr(bf
- P*)]

YrY f
- P*)]

= [R?,Y,(b?- P*)]'

x
Ur^Y^J] s;[i(*]'jYr[RH'J

[RfVVO\302\273?-
- P*)]

\320\233[R*Yr(b|-
-

p*)]'[^R*[Q*]-'[R*]']-'[R*Yr(b?-
-

P*)] [16.3.27]

by virtue of [16.3.26]and [16.A.4].
Now [16.3.13] implies that

R*Y7(b?-
- p*) /V@, RV2[Q*]-'[R*]'),

and so [16.3.27] is a quadratic form in an asymptotically Gaussian variable of the

kind covered in Proposition 8.1. It is therefore asymptotically X2(m)- Since [16.3.27]
is numerically identical to [16.3.19], the Wald form of the OLS x2 test, calculated
in the usual way from the untransformed regression [16.3.1], has the usual x\\m)
distribution.

Case 2. One of the Hypotheses Involves Only
the Time Trend Parameter 8*

Again assuming for purposes of discussion that R* is upper triangular, for

case 2 the hypothesis about 5* will be the sole entry in the mth row of R*:

R- =

For this case, define

rV
'2*2

V

Vf
0

0
0

.2

0

Vf

0
0

\320\223*
'l.p+1

r2.p+t

'\"

o'P+1

\342\200\242\342\200\242\320\276

\320\276

\342\200\242\342\200\242\342\200\242Vf
... \320\276

rt.

\320\223*2.

,+2

rm-l.p + 2
*

0

~

0

0

and

r22
' ' '

r2.p + I

rm-\\.2 \"m-l.p + 1

0 \342\200\242\342\200\242\342\200\2420 Ftn.p + 2 _
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Notice that these matrices again satisfy [16.3.25] and [16.3.26] with

R* =

rm-\\.\\ rm-\\.l
\320\236 \320\236

rl-i.P+i \320\236

\320\236 \320\263*\342\200\236\342\200\236\321\200+2

The analysis of [16.3.27] thus goesthrough for this case as well with no change.

Summary

Any standard OLS \\\320\263test of the null hypothesis Rp = r for the regression

model [16.3.1] can be calculated and interpreted in the usual way. The test is

asymptotically valid for any hypothesis about any subset of the parameters in p.

The elements of R do not have to be orderedor expressed in any particular form

for this to be true.

APPENDIX 16.A. Derivation of Selected Equationsfor Chapter 16

m Derivation of [16.3.13]. As in [16.1.6],

\320\272
- p* -

[2 x,*[x,*]'] [2\302\253:\302\253,].
[16-a.i]

since the population residuals s, are identical for the transformed and untransformed rep-
representations. As in [16.1.18], premultiply by YT to write

\302\243
-

p*) [16.A.2]

From [16.3.9],

2 \302\253,\342\200\242[\302\253?]'-
t = 1

2/

so.;., \302\273>;.,

and

Yf 2 irWl'Vf

2>-;., 21

2/\321\203;_, \320\260

\320\223-,7-2>;_,

*., \320\242-\320\252\321\203\320\223-\320\263T-*2ty*_

,? \320\242-\320\247\321\203*.\342\200\236T-Ity?.

,, \320\263-'-\320\263 7-2-\320\260

[16.A.3]
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For the first p rows and columns, the row /, column j element of this matrix is

But y* follows a zero-mean stationary AR(p) processsatisfying the conditions of Exercise
7.7. Thus, these terms converge in probability to yj5_,|. The first p elements of row p + 1
(or the first p elements of column p + 1) are of the form

7-i >-;-,.

which converge in probability to zero. The first p elements of row p + 2 (or the first p
elements of column p + 2) are of the form

T-1 t ('/7>,*-,,

which can be shown to converge in probability to zero with a ready adaptation of the

techniques in Chapter 7 (see Exercise 16.3). Finally, the B x 2)matrix in the bottom right
corner of [16.A.3] convergesto

Thus

\302\253;[\302\253;]\342\226\240Vf'

forQ* the matrix in [16.3.15].
Turning next to the second term in [16.A.2],

\320\242-1\320\223-2\321\203,*_,\302\243,

Y- 1 \320\243v*e _
1-1

\320\242-\320\270\320\2511/\320\242)\320\265,

= \321\202-1\320\277-

where

(\320\247\320\242)\320\265,_

But |, is a martingale difference sequence with variance

[16.A.4]

[16.A.5]

where

Q,* =

y.T

yf

y;-.
0

0

yf

y.:

y;'-2
0
0

y?
\342\200\242\342\200\242\342\200\242

yf
\342\200\242\342\226\240\342\200\242

y;-,
\342\200\242\342\200\242\342\200\242

0 \342\200\242\342\200\242\342\200\242

0 \342\200\242\342\200\242\342\226\240

y;-,

y;;I

y,:

0

0

0

0

0

1

tIT

0
0

0
t/T

,2/7-2
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and

(\320\246\320\242)2 Q* -\302\273Q*

Applying the arguments used in Exercise 8.3 and in [16.1.24], it can be shown that

Yf' 2 *,4 -^ N@. <*2Q*)- [16.A.6]

It follows from [16.A.4], [16.A.6], and [16.A.2] that

Yr(bJ
-

p*) \320\233N@, [Q*]\"'o--Q*[Q*]\"') = N@, tr-[Q*]\"'),
as claimed in [16.3.13]. \342\226\240

Chapter 16 Exercises

16.1. Verify result [16.1.23].

16.2. Verify expression [16.1.27].
16.3. Let y, be covariance-stationary with mean zero and absolutely summable autoco-
variances:

for y, = E(y,y,.j). Adapting the argument in expression [7.2.6],show that

t-'I, (t/T)y, m-i o.
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17

Univariate Processes

with Unit Roots

This chapter discusses statistical inference for univariate processes containing a

unit root. Section 17.1gives a brief explanation of why the asymptotic distributions
and rates of convergencefor the estimated coefficients of unit root processes differ
from those for stationary processes. The asymptotic distributions for unit root

processes can be described in terms of functionals on Brownian motion. The basic
idea behind Brownian motion is introduced in Section 17.2. The technical tools
used to establish that the asymptotic distributions of certain statistics involving unit

root processes can be representedin terms of such functionals are developedin

Section 17.3, though it is not necessary to master these tools in order to read
Sections 17.4through 17.9. Section 17.4 derives the asymptotic distribution of the
estimated coefficient for a first-order autoregression when the true process is a
random walk. This distribution turns out to depend on whether a constant or time

trend is included in the estimated regression and whether the true random walk is

characterized by nonzero drift.
Section 17.5extends the results of Section 17.3 to cover unit root processes

whose differences exhibit general serial correlation. These results can be used to
develop two different classes of tests for unit roots. One approach, due to Phillips

and Perron A988), adjusts the statistics calculated from a simple first-order au-

autoregression to account for serial correlation of the differenced data. The second
approach, due to Dickey and Fuller A979), adds lags to the autoregression. These

approaches are reviewed in Sections 17.6 and 17.7, respectively. Section 17.7further

derives the properties of all of the estimated coefficients for a pth-order auto-

autoregression when one of the roots is unity.

Readers interested solely in how these results are applied in practice may
want to begin with the summaries in Table 17.2 or Table 17.3and with the empirical
applications describedin Examples 17.6 through 17.9.

17.1. Introduction

Consider OLS estimation of a Gaussian ARA) process,

y,
= py.-t + un [17.1.1]

where u,
~ i.i.d. N@, cr2), and y0

= 0. The OLS estimate of p is given by

\321\202

2 y,-\\y,
\"\321\202

- \342\200\224
[\320\237.1.2]
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We saw in Chapter 8 that if the true value of p is less than 1 in absolute value,
then

VT(pT
- p) \320\233N@, A

- p2)). [17.1.3]
If [17.1.3] were also valid for the case when p = 1, it would seem to claim that

VT(pt-
\342\200\224

p) has zero variance, or that the distribution collapses to a point mass

at zero:

VT(pT - 1)\320\2330. [17.1.4]

As we shall see shortly, [17.1.4] is indeed a valid statement for unit root processes,
but it obviously is not very helpful for hypothesis tests. To obtain a nondegenerate

asymptotic distribution for pT in the unit root case, it turns out that we have to
multiply pY by T rather than by VT. Thus, the unit root coefficient converges at
a faster rate (\320\223)than a coefficient for a stationary regression (which converges at

VT), but at a slower rate than the coefficient on a time trend in the regressions

analyzed in the previous chapter (which converged at T\022).
To get a better senseof why scaling by T is necessary when the true value

of p is unity, recall that the difference between the estimate pT and the true value
can be expressedas in equation [8.2.3]:'

7\"

2 >/-.\"/

(pr - 1) =
\320\251 , [17.1.5]

so that

T(pT
- 1) = ^ . [17.1.6]

Consider first the numerator in [17.1.6]. When the true value of p is unity, equation

[17.1.1] describes a random walk with

\321\203,
= \320\270,+ \320\270,_,+

\342\200\242\342\200\242\342\200\242+ \320\270,, [17.1.7]

since y0 = 0. It follows from [17.1.7] that

\321\203,
~

//@, <r2t). [17.1.8]

Note further that for a random walk,

\321\203}
=

(\320\243,->+ u,f = yl-{ + 2y,_xu, + uf,

implying that

>,_,\302\253,
= (l/2){>2

-
yj_t

-
\320\270?}. [17.1.9]

If [17.1.9] is summed over I = 1,2, . . . , T, the result is

2 y,-iu. =
(\342\204\226){yl

- yl) -
A/2) 2 \320\270?. [17.1.10]

Recalling that yn
= 0, equation [17.1.10] establishes that

(VT) 2 >,-,\302\253,
= A/2) -0.lT)y\\

-
A/2)-A/\320\223) 2 \302\253?. [17.1.11]

'This discussion is based on Fuller A976. p. 369).
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and if each side of [17.1.11] is divided by <r2, the result is

But [17.1.8] implies that yTl(vVf) is a //@,1) variable, so that its square is *2A):

[yTl{<rs/T)Y
~

*2A). [17.1.13]

Also, 2/_, U7 is the sum of Ti.i.d. random variables, each with mean a2, and so,

by the law of large numbers,
7\"

A/7>Y \302\2532\320\233\321\201\320\2632. [17.1.14]

Using [17.1.13] and [17.1.14], it follows from [17.1.12] that

[1/(\320\276-2\320\223)]| y,-]UA A/2)-(Jf
- 1), [17.1.15]

where X ~ *2A).
Turning next to the denominator of [17.1.6],consider

2>?-.- [17\320\233.16]

Recall from [17.1.8] that y,_t~ N@,cr2(t
~ 1)), so \302\243(>?_,)

= o-2(<
- 1).Consider

the mean of [17.1.16],

1 \321\202

'- \302\260\022E \320\241
- 1) =

\302\260\022(\320\223
-

1O72.

In order to construct a random variable that could have a convergent distribution,

the quantity in [17.1.16] will have to be divided by \320\2232,as was done in the denom-

denominatorof [17.1.6].
To summarize, if the true process is a random walk, then the deviation of

the OLS estimate from the true value (pT
- 1) must be multiplied by T rather

than VTto obtain a variable with a useful asymptotic distribution. Moreover,this

asymptotic distribution is not the usual Gaussian distribution but instead is a ratio

involving a *2A) variable in the numerator and a separate, nonstandard distribution

in the denominator.
The asymptotic distribution of T(pT

- 1)will be fully characterized in Sec-

Section 17.4. In preparation for this, the idea of Brownian motion is introduced in

Section 17.2, followed by a discussion of the functional central limit theorem in

Section 17.3.

17.2. Brownian Motion

Consider a random walk,

>, = >,-. + e\302\273 [17-2.1]

in which the innovations are standard Normal variables:

e, ~ i.i.d //@, 1).
If the process is started with yn

= 0, then it follows as in [17.1.7] and [17.1.8] that

y, = e, + e2 + \342\200\242\342\200\242\342\200\242+ e,

\321\203,
~

N@, 0.

17.2. Brownian Motion



Moreover, the change in the value of \321\203between dates t and s,

\320\233
-

\320\243,
= e,+ , + e,+2 + \342\200\242\342\200\242\342\200\242+ e,,

is itself /V@, (s - tj) and is independent of the change between dates r and q for

any dates t < s < r < q.
Consider the change between y,_, and y,. This innovation e, was taken to be

/V@, 1). Suppose we view e, as the sum of two independent Gaussian variables:

e, = eu + e2n

with e,,
~ i.i.d. /V@, i). We might then associate \320\265\342\200\236with the change between y,_,

and the value of \321\203at some interim point (say,y,_(i/2)),

>,-A/2) ->,_,= \302\253,\342\200\236 [17.2.2]

and e2, with the change between y,-^^ and y,:

>. - >.-(i/2)= \302\2532/- [17.2.3]

Sampled at integer dates f = 1,2 the process of [17.2.2]and [17.2.3] will

have exactly the same properties as [17.2.1],since

y,
- y,.t = eu + e2,

~ i.i.d. N@, 1).

In addition, the process of [17.2.2]and [17.2.3] is defined also at the noninteger
dates {t + \320\267}\320\223-\320\276and retains the property for both integer and noninteger dates that

ys
\342\200\224

y,
~ /V@, s -

t) with ys
-

y, independent of the change over any other

nonoverlapping interval.

By the same reasoning, we could imagine partitioning the change between
t - 1 and t into N separate subperiods:

\320\243,
~

y,-i = eu + e2l + \342\226\240\342\226\240\342\226\240+ eNl,

with e,, \342\200\224i.i.d. /V@, UN). The result would be a process with all the same properties
as [17.2.1],defined at a finer and finer grid of dates as we increase N. The limit

as N \342\200\224\302\273oo is a continuous-time process known as standard Brownian motion. The
value of this process at date t is denoted W(t).2 A continuous-time process is a

random variable that takes on a value for any nonnegative real number t, as distinct

from a discrete-time process, which is only defined at integer values of t. To

emphasize the distinction, we will put the date in parentheses when describing the
value of a continuous-time variable at date t (as in W(t)) and use subscripts for a

discrete-time variable (as in y,). A discrete-time process was represented as a

countable sequence of random variables, denoted {y}T-i- A realization of a con-
continuous-time process can be viewed as a stochastic function, denoted W( \342\226\240),where

W: t\302\243[0, <*>)-* W.

A particular realization of Brownian motion turns out to be a continuous
function of t. To see why it would be continuous, recall that the change between
/ and t + \320\224is distributed N@, \320\224).Such a change is essentially certain to be

arbitrarily small as the interval \320\224goes to zero.

Definition: Standard Brownian motion W( \342\200\242)is a continuous-time stochastic proc-
process,associating each date t E [0, 1]with the scalar W(t) such that:

(a) W@) = 0;

:Brownian motion is sometimes also referred to as a Wiener process.
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(b) For any dates 0 s r, < t2 < \342\226\240\342\226\240\342\226\240< tk s 1, the changes [W(t2) -
W(f,)],

[W(t3)
- W(t2)] [W(tk) -

W(^_,)]areindependentmultivariateGauss-

W(^_,)]areindependentmultivariateGaussianwith [W(s)
- W(t)] ~

N@, s - t);
(c) For any given realization, W(t) is continuous in t with probability 1.

There are advantages to restricting the analysis to dates t within a closed
interval. All of the results in this text relate to the behavior of Brownian motion
for dates within the unit interval {t e [0, 1]), and in anticipation of this we have
simply defined W(-) to be a function mapping t e [0, 1] into R1.

Other continuous-time processes can be generated from standard Brownian

motion. For example, the process

Z(t)
= <r-W(t)

has independent increments and is distributed N@, cr2t) across realizations. Such
a processis describedas Brownian motion with variance cr2.Thus, standard Brown-
Brownianmotion could also be describedas Brownian motion with unit variance.

As another example,

Z(t) = [W(t)]2 [17.2.4]
would be distributed as t times a x2(l) variable across realizations.

Although W(t) is continuous in t, it cannot be differentiated using standard

calculus; the direction of change at t is likely to be completely different from that

at t + \320\224,no matter how small we make \320\224.3

17.3. The Functional Central Limit Theorem
One of the uses of Brownian motion is to permit more general statements of the
central limit theorem than those in Chapter 7. Recall the simplest version of the
central limit theorem: if \320\270,

~ i.i.d. with mean zero and variance cr2, then the sample
mean \320\271\320\263

=
A/\320\223)\320\225)'_,\320\270,satisfies

\\/\320\242\320\271\321\202\320\233N@, a-2).

Consider now an estimator based on the following principle: When given a

sample of size T, we calculate the mean of the first half of the sample and throw

out the rest of the observations:

Here [7\320\2432]*denotes the largest integer that is less than or equal to 772; that is,
[772]*= 772 for \320\223even and [772]* =

(\320\223
- l)/2 for \320\223odd. This strange estimator

would also satisfy the central limit theorem:

Moreover, this estimator would be independent of an estimator that uses only the
second half of the sample.

More generally, we can construct a variable XT(r) from the sample mean of

'For an introduction to differentiation and integration of Brownian motion, see Malliaris and Brock
A982, Chapter 2).
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the first rth fraction of observations, r e [0,1],defined by

XT(r) -
A/\320\223)'2 \",\342\200\242

For any given realization, XT{r) is a step function in r, with
'
0 for 0 s r < VT

u,/T forl/Tsr<2/:

for 2IT s r < 3/:

[17.3.2]

[17.3.3]

u2 + Uj-VT forr = 1.
Then

But

|7>\320\223 \\Tr\\-

VT-XT(r)
= A/VT) 2 \",

=
(V[7>r/Vr)(l/V[7>r) 2 \302\253,.[17.3.4]

2 \320\270,
-

/V@, o-2).

by the central limit theorem as in [17.3.1], while (V[7>]*/Vf) -\302\273Vr. Hence, the

asymptotic distribution of VT-XT(r) in [17.3.4] is that of Vr times a /V@, a-2)

random variable, or

and

0, ra2)

VT-[XT(r)/cr] \320\233N@, r). [17.3.5]

If we were similarly to consider the behavior of a sample mean based on
observations [7>,]* through [Tr2]* for r2 > r,, we would conclude that this too is

asymptotically Normal,

Vf-[XT(r2)
-

\320\245\320\224\320\263,)]/\321\201\320\263\320\233/V@,,-,
- r,),

and is independent of the estimator in [17.3.5], provided that r < r,. It thus should

not be surprising that the sequence of stochastic functions {VT- AV( \342\200\242
)/a}v-_,

has an asymptotic probability law that is described by standard Brownian motion

W(-):
t{-)I(t^*W{-). [17.3.6]

Note the difference between the claims in [17.3.5] and [17.3.6]. The expression
XT{-) denotes a random function while XT(r) denotes the value that function
assumes at date r; thus, Xr(-) is a function, while XT(r) is a random variable.

Result [17.3.6] is known as the functional central limit theorem. The derivation
here assumed that M,wasi.i.d. A more general statement will be provided in Section

17.5.

Evaluated at r = 1, the function XT(r) in [17.3.2] is just the sample mean:

Thus, when the functions in [17.3.6] are evaluated at r = 1, the conventional

central limit theorem [7.1.6]obtains as a special case of [17.3.6]:
7\"

VfXr(l)/a
= [l/(o-VT)] 2 \"A ^C1)~ W@, 1). [17.3.7]
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We earlier defined convergencein law for random variables, and now we
need to extend the definition to cover random functions. Let S(-) represent a
continuous-time stochastic process with S(r) representing its value at some date r
for r e [0, 1]. Suppose, further, that for any given realization, 5( \342\200\242)is a continuous
function of r with probability 1. For {5\321\202-(-)}\320\263-1a sequence of such continuous
functions, we say that 5\320\223(-)\320\233S(-) if all of the following hold:4

(a) For any finite collection of \320\272particular dates,

the sequence of fc-dimensional random vectors {\321\203\320\263}\321\202-1converges in distri-
distribution to the vector y, where

\320\243\321\2021

Mr,)

(b) For each e > 0, the probability that 5r(r,) differs from Sr(r2) for any
dates r, and r2 within 5 of each other goes to zero uniformly in \320\223as 5 \342\200\224\302\2730;

(c) P{|Sr@)| > A} -* 0 uniformly in T as A -\302\273\302\253.

This definition applies to sequencesof continuous functions, though the func-
functionin [17.3.2] is a discontinuous step function. Fortunately, the discontinuities
occur at a countable set of points. Formally, ST(-) can be replacedwith a similar

continuous function, interpolating between the steps (as in Hall and Heyde, 1980).
Alternatively, the definition of convergence of random functions can be generalized
to allow for discontinuities of the type in [17.3.2] (as in Chapter 3 of Billingsley,
1968).

It will also be helpful to extend the earlier definition of convergence in prob-
probability to sequences of random functions. Let {St-(\342\200\242)}\302\243_!and {Vt(-)}t-i denote

sequences of random continuous functions with ST: r E [0, 1]\342\200\224*W and VT: r \302\243

[0, 1]-\302\273R1. Let the scalar YT represent the largest amount by which Sr(r) differs
from VT(r) for any r:

YT- sup \\Sr(r)
-

VT(r)\\.
re|o.i|

Thus, {YT}%{ is a sequence of random variables, and we could talk about its

probability limit using the standard definition given in [7.1.2]. If the sequence of

scalars {YT}%1convergesin probability to zero, then we say that the sequence of

functions St-(-) convergesin probability to Vr(-). That is, the expression

is inte\321\204reted to mean that

sup \\ST{r)
-

\320\232\320\263(\320\263)|\320\233\320\276.

With this definition, result (a) of Proposition 7.3 can be generalized to apply

^The sequence of probability measures induced by {5r (\342\200\242)}?-!weakly converges (in the sense of

Billingsley, 1968) to the probability measure induced by S( \342\226\240)if and only if conditions (a) through (c)
hold; see Theorem A.2, p. 275, in Hall and Heyde A980).
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to sequences of functions. Specifically, if {ST( \342\200\242
)}\302\243,i and {Vr(

\342\226\240
)}f _, are sequences

of continuous functions with VT(-) -4 ST(-) and ST(-) -^\302\273S(-) for S(-) a con-
continuous function, then VT(-) -^\302\2735(-); see, for example, Stinchcombe and White

A993).

Example 17.1
Let {*7-}r=ibe a sequenceof random scalars with \321\205\320\263\320\2330, and let {St-(\342\200\242)}\302\243_,

be a sequence of random continuous functions, Sr: r E [0, 1] \342\200\224*W with

5\320\223(-)\320\2335(-)- Then the sequence of functions {VT(-)}r=1 defined by Vr(r) =

ST(r) + xT has the property that VT{-) -4 S(-). To see this, note that

VAr) ~ ST(r) =
xT for all r, so that

sup \\ST(r)
-

VT(r)\\
= \\xr\\,

re|o.i|

which converges in probability to zero. Hence,VT( \342\226\240)-*\302\273ST( \342\226\240),and therefore

Example 17.2
Let \321\202),be a strictly stationary time series with finite fourth moment, and let

ST(r) = {llVf)-T)XTr\\.. Then St-(-) -4 0. To see this, note that

sup |5r(r)|>5
e|\302\273.i| J

-=P{[|A/VT)-t,,|>5] or [|A/VT)-t,2|>5] or

or [|(l/VT)-T,r|>\302\253]}

^\321\202
\320\225{(\320\243\320\243\320\242)-\321\202,,\320\223

8*

TS4
'

where the next-to-last line follows from Chebyshev'sinequality. Since (
is finite, this probability goes to zero as T\342\200\224\302\273\302\260\302\260,establishing that ST(-) -4 0,
as claimed.

Continuous Mapping Theorem

In Chapter 7 we saw that if {xT}r-i is a sequenceof random variables with

xT-^* x and if g: R1 \342\200\224*W is a continuous function, then g(xT) -^* g(x). A similar

result holds for sequences of random functions. Here, the analog to the function

g(') is a continuous functional, which could associate a real random variable \321\203

with the stochastic function 5(-). For example, \321\203
= /,| 5(r) rfr and \321\203

- /,', [S(r)]2 rfr

represent continuous functionals.5 The continuous mapping theorem*1 states that if

SA')-** S(-) andg(-) is a continuous functional, then g(ST(-)) \320\233
g(S(-j).

\342\226\240'Continuityof a functional g(-) in this context means that for any e > 0, there exists a S > 0 such

that if h(r) and k(r) are any continuous bounded functions on [0, lj, ft: [0, 1] -\342\226\272R1 and k: [0, 1] -*

R'. such that |ft(r) -
k(r)\\ < S for all r e [0, 1], then

\"See, for example, Theorem A.3 on p. 276 in Hall and Heyde A980).
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The continuous mapping theorem also applies to a continuous functional g (\342\200\242)

that maps a continuous bounded function on [0,1] into another continuous bounded

function on [0, 1].For example, the function whose value at \320\263is a positive constant
o-times h{f) represents the result of applying the continuous functional g[A(-)] =
o-A(-)to A(-)-7 Thus, it follows from [17.3.6] that

VT-XT{-)\302\261><r-W{-). [17.3.8]

Recalling that W(r) ~
/V@, r), result [17.3.8] implies that Vf- XT(r) \302\253

/V@, a2r).
As another example,consider the function ST(-) whose value at r is given

by

SAr) - [VT-XArW. [17.3.9]
Since Vf-XA-) -^ a- W(-), it follows that

SA)-^^[W(-)f. [17.3.10]

In other words, if the value W(r) from a realization of standard Brownian motion
at every date r is squared and then multiplied by cr2, the resulting continuous-time
processwould follow essentially the same probability law as does the continuous-

time process defined by SAr) in [17.3.9] for T sufficiently large.

Applications to Unit Root Processes

The use of the functional central limit theorem to calculate the asymptotic
distribution of statistics constructed from unit root processeswas pioneered by

Phillips A986, 1987).\"The simplest illustration of Phillips's approach is provided

by a random walk,

>,=>,-\342\226\240+ \320\270\342\200\236 [17-3.11]

where {u,} is an i.i.d. sequence with mean zero and variance a2. If jVu
= 0, then

[17.3.11] implies that

y, = u, + u2 + \342\226\240\342\226\240\342\226\240+ u,. [17.3.12]

Equation [17.3.12]can be used to express the stochastic function XAr) defined in

[17.3.3] as

0 for 0 s r < VT

yx/T for 1/\320\223s r < 2/\320\223

y2/T for 2/\320\223<\320\263<3/\320\242 [17.3.13]

yTIT for r = 1.

Figure 17.1 plots XT{f) as a function of r. Note that the area under this step function

'Herecontinuity of the functional g(-) means that for any e > 0, there exists a S > 0 such thut if

ft(r) and k(r) are any continuous bounded functions on [0, lj, ft: [0, 1] -* R' and k: [0, lj -> R1. such

that \\h(r)
-

k(r)\\ < S for all r e [0, 1], then

-
g[k(r)]\\ < \320\262

forallre[0, I].
\"Result [17.4.7] in the next section for the case with i.i.d. errors was first derived by White A958).

Phillips A986, 1987) developed the general derivation presented here based on the functional central

limit theorem and the continuous mapping theorem. Other important contributions include Dickey and

Fuller A979), Chan and Wei A988). Park and Phillips A988. 1989). Sims, Stock, and Watson A990).
and Phillips and Solo A992).
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XT(r)

\321\202

2 J3_
\321\202

FIGURE 17.1 Plot of \320\245\320\263(\320\263)as a function of \320\263.

is the sum of'T rectangles. The tth rectangle has width 1/\320\223and height y,-JT, and
therefore has area \321\203,_^\320\242\320\263.The integral of XT(r) is thus equivalent to

XT(r) dr =
\320\2431/\320\242*+ \321\203\320\2631\320\242\320\263+ \342\226\240\342\226\240\342\226\240+ yr^/T*. [17.3.14]

Multiplying both sides of [17.3.14] by Vf establishes that

\320\223VT-XT(r) dr = T~M 2 \320\243,->- [17-3.15]Jo ,.[

But we know from [17.3.8] and the continuous mapping theorem that as T\342\200\224*\302\260\302\260,

Vf
\342\200\242

XT{r) dr -^ o-
\302\243

W{r) dr,

implying from [17.3.15]that

T-3'2 i >,_, -^ o- f W(r) rfr. [17.3.16]

It is also instructive to derive [17.3.16] from first principles. From [17.3.12],
we can write

\321\202~\321\2102 >/-i =
r\023/2[\302\253.+ (\302\253.+ \302\2532)+ (\". + \022 + \023) + \342\200\242\342\200\242\342\200\242

r= I

(\320\270

=
\320\223-\320\274[(\320\223

-
1)ii, + (\320\223

-
2)\302\2532+ (\320\223

-
3)\320\2703+

+
[\320\223-(\320\223-1)\320\232_,] [17.3.17]

= \321\202~\321\2102, (\321\202
- t)u,

\320\263 \320\263

= \320\263-\022\320\243\320\270- \321\202~312\320\243
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Recall from [16.1.24] that

.-[! J]).

Thus, [17.3.17]implies that \320\242~\321\210SJ_, y,_{ is asymptotically Gaussian with mean
zero and variance equal to

o-2{l - 2-A/2) + 1/3} = o-2/3.

Evidently, cr-/,', W(r)dr in [17.3.16] describes a random variable that has a

N@, (\321\202-h)distribution.

Thus, if jy, is a driftless random walk, the sample mean r~'2J=,y, diverges
but 7\"~\"V22J1, y, converges to a Gaussian random variable whose distribution can
be described as the integral of the realization of Brownian motion with variance
<r2.

Expression [17.3.17]alsogives us a way to describethe asymptotic distribution

of \320\242~\321\210SJ_, tu, in terms of functionals on Brownian motion:

\321\202 \321\202 \321\202

h
\"'

,-i
\"'

,-1\320\243'~' [17.3.19]

with the last line following from [17.3.7] and [17.3.16]. Recalling [17.3.18], the

random variable on the right side of [17.3.19] evidently has a /V@, o-2/3)distribution.

A similar argument to that in [17.3.15] can be used to describe the asymptotic
distribution of the sum of squares of a random walk. The statistic ST(r) defined in

[17.3.9],

ST(r) \321\210
\321\202-[\320\245\321\202(\320\263)]\\

can be written using [17.3.13]as

[17.3.20]

0

y\\IT

yl'T

for 0 s

for 1/\320\223

forl/T

r< 1/\320\223

sr<2/T

s r < 3/\320\223 [17.3.21]

\321\203\\\320\237for \320\263= 1.

It follows that

\302\243
5r(r) rfr = y\\IT2 + y\\IT2 + \342\226\240\342\226\240\342\226\240+ y^JT2.

Thus, from [17.3.10]and the continuous mapping theorem,

T~2iy2-A<r2-[ [W(r)]2dr.

Two other useful results are

T~5n S ty,-i
= T-312 S (t/T)y,-A o-C ^W *\342\226\240

[17.3.22]

[17.3.23]
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for r = tIT and
\321\202\321\202 \321\202 n

2 ty?-i = T~22 ('/\320\223)>?_, -\342\231\246o-2- r-[W(r)P dr. [17.3.24]l-l l-l JC

As yet another useful application, consider the statistic in [17.1.11]:

T-1 2 y,.iu, = A/2)-(l/T)^ -
A/2)-A/\320\223) 2 ii?.

Recalling [17.3.21],this can be written

T-1 2 >,_,\302\253,
= (l/2Mr(l)

-
A/2)A/\320\223) 2 \320\270?. [17.3.25]

But A/\320\223J\320\223_,\320\2702
A o-J, by the law of large numbers, and 5r(l) \320\233o-2[W(l)]2,

by [17.3.10]. It thus follows from [17.3.25] that

\320\223-'L,-\320\233\320\233 A/2MWA)]2
- (l/2)cr2. [17.3.26]

Recall that W(l), the value of standard Brownian motion at date r = 1, has a

/V@,1) distribution, meaning that [W(l)]2 has a*2(l) distribution. Result [17.3.26]
is therefore just another way to express the earlier result [17.1.15] using a functional
on Brownian motion instead of the x2 distribution.

17.4. Asymptotic Properties of a First-Order
Autoregression when the True CoefficientIs Unity

We are now in a position to calculate the asymptotic distribution of some simple
regressions involving unit roots. For convenience,the results from Section 17.3 are
collectedin the form of a proposition.

Proposition 17.1: Supposethat \302\243,follows a random walk without drift,

where \302\243,,
= 0 and {u} is an Lid. sequence with mean zero and variance <r2. Then

\320\263

(a) T \"'
2j ui \342\200\224*<J' \"A) [17.3.7];

7\"

(b) T-' 2 6-!\",-^ (l/2)o-2{[W(l)]2
- 1} [17.3.26];i-i

\321\202 n

(c) \320\223\"\0222 '\302\253,-\342\231\246o- W(l)
- o- W(r) dr [17.3.19];r-l JO

(d) T-^S \320\271-i-^o-- W(r)dr [17.3.16];/= I Jo

T if1
ie) T-T-2 \302\243,2-,-* o-2- [W(r)]2 dr [17.3.22];

I\342\200\224I JO

(/) \320\223-\320\2742 ^,_, -*
a-jtt rW(r) dr [17.3.23];

(g) \320\223\"'2 #L,-\302\273o-2- r-[W(r)]2dr [17.3.24];
/\342\200\224l Jo

\320\263

(\320\220)\320\223-<''+\"2 tv-* l/(f + 1) /or v = 0, 1 [16.1.15].
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The expressions in brackets indicate where the stated result was earlier de-
derived. Though the earlier derivations assumed that the initial value \302\243\342\200\236was equal
to zero, the same results are obtained when \302\243>is any fixed value or drawn from a

specified distribution as in Phillips A987).
The asymptotic distributions in Proposition 17.1 are all written in terms of

functionals on standard Brownian motion, denoted W{r).Note that this is the same
Brownian motion W(r) in each result'(a) through (g), so that in general the mag-
magnitudes in Proposition 17.1 are all correlated. If we are not interested in capturing
these correlations, then there are simpler ways to describe the asymptotic distri-

distributions. For example, we have seen that (a) is just a /V@, cr2) distribution, (b) is

(l/2)cr2-[*2A)- 1],and (c) and (d) are /V@, <\321\202\320\243\320\227).Exercise 17.1 gives an example
of one approach to calculating the covariances among random variables described

by these functionals on Brownian motion.

Proposition 17.1 can be used to calculate the asymptotic distributions of
statistics from a number of simple regressions involving unit roots. This section
discusses several key cases.

Case 1. No Constant Term or Time Trend in the Regression;
True ProcessIs a Random Walk

Consider first OLS estimation of p based on an AR(i) regression,

\320\243,
=

\320\240\320\243,->+ \302\253/. [17.4.1]

where u, is i.i.d. with mean zero and variance cr2. We are interested in the properties
of the OLS estimate

\320\263

2 \321\203,-\\\321\203,

Pr
=

'\342\226\240=? [17-4.2]

1-1

when the true value of pis unity. From [17.1.6], the deviation of the OLS estimate

from the true value is characterized by

r

T(pT
- 1) = \".;

' '
'\342\226\240 [17.4.3]

r-l

If the true value of p is unity, then

\320\243,
=

Vo + \320\270,+ u2 + \342\200\242\342\200\242\342\200\242+ u,. [17.4.4]

Apart from the initial term ya (which does not affect any of the asymptotic distri-
distributions), the variable y, is the same as the quantity labeled \302\243in Proposition 17.1.
From result (b) of that proposition,

T-1 S \320\243,-,\320\270\320\220(V2)cr2{[W(l)]2
- 1}, [17.4.5]

while from result (e),
~ '

W(r)]2dr. . [17.4.6]

Since [17.4.3] is a continuous function of [17.4.5] and [17.4.6], it follows from

Proposition 7.3(c) that under the null hypothesis that p
= 1, the OLS estimate
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pT is characterized by

/ c\\r>\\lfwc\\w - H
\342\200\224\320\272 [\320\237\320\220\320\233]

Recall that [W(l)]2 is a *2A) variable. The probability that a *2A) variable

is less than unity is 0.68, and since the denominator of [17.4.7] must be positive,

the probability that pT - 1 is negative approaches 0.68 as T becomeslarge. In

other words, in two-thirds of the samples generated by a random walk, the estimate

pT will be less than the true value of unity. Moreover, in those samples for which

[W(l)]2 is large, the denominator of [17.4.7] will be large as well. The result is that

the limiting distribution of T(pT
- 1) is skewed to the left.

Recall that in the stationary case when \\p\\ < 1, the estimate pTis downward-

biased in small samples. Even so, in the stationary case the limiting distribution

of Vf(pT -
p) is symmetric around zero. By contrast, when the true value of p

is unity, even the limiting distribution of T(pT
- 1) is asymmetric, with negative

values twice as likely as positive values.
In practice, critical values for the random variable in [17.4.7] are found by

calculating the exact small-sampledistribution of T(pT
\342\200\224

1) for given T, assuming

that the innovations {\320\270,}are Gaussian. This can be done either by Monte Carlo, as
in the critical values reported in Fuller A976), or by using exact numerical pro-
procedures described in Evans and Savin A981). Sample percentiles for T(pT - 1)
are reported in the section labeledCase1 in Table B.5 of Appendix B. For finite

T, these are exact only under the assumption of Gaussian innovations. As T be-
becomes large, these values also describethe asymptotic distribution for non-Gaussian
innovations.

It follows from [17.4.7] that pT is a superconsistent estimate of the true value

(p
= 1). This is easily seen by dividing [17.4.3] by Vf:

VT(pr
- 1) = ^ . [17.4.8]

From Proposition 17.1(b), the numerator in [17.4.8] converges to T~w(l/2)cr2 times

(X
- 1), where A\" is a *2A) random variable. Since a *2A) variable has finite

variance, the variance of the numerator in [17.4.8] is of order l/T, meaning that

the numerator converges in probability to zero. Hence,

VT(pT- l)A0.
Result [17.4.7] allows the point estimate pT to be used by itself to test the

null hypothesis of a unit root, without needing to calculate its standard error.

Another popular statistic for testing the null hypothesis that p = 1 is basedon the

usual OLS t test of this hypothesis,

where &fiT is the usual OLS standard error for the estimated coefficient,
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and s% denotes the OLS estimate of the residual variance:

4= 2 (y,
- firy,-xLT - l).

Although the t statistic [17.4.9] is calculated in the usual way, it does not have a

limiting Gaussian distribution when the true process is characterized by p
= 1. To

find the appropriate limiting distribution, note that [17.4.9] can equivalently be

expressed as

tT = T{pT-
l)|r-* S >?-,j

+ D\320\223, [17.4.10]

or, substituting from [17.4.3],
7\"

-1
2 \320\243,-\\\320\270,2

h = ~, /\" yn
\342\200\242 [17-4.11]

^*As in Section 8.2, consistency of pTimplies s\\-^* <\321\202\320\263.It follows from [17.4.5] and

[17.4.6] that as T-* \302\253,

l A/2M[WA)P 1} _ A/2){[VVA)P 1}
\"FT1 V\321\217

\"

\320\242\320\263 \320\223'

[

W(r)Y
rfrj

Statistical tables for the distribution of [17.4.11] for various sample sizes T ate
reported in the section labeled Case1 in Table B.6; again, the small-sample results

assume Gaussian innovations.

Example 17.3
The following AR(l) process for the nominal three-month U.S. Treasury bill

rate was fitted by OLS regression to quarterly data, t = 1947:11 to 1989:1:

i,
=

0.99694/,_\342\200\236 [17.4.13]
@.010592)

with the standard error of p in parentheses. Here T = 168and

T(p
- 1) = A68X0.99694- 1)= -0.51.

The distribution of this statistic was calculated in [17.4.7] under the assumption

that the true value of p is unity. The null hypothesis is therefore that p = 1,
and the alternative is that p < 1. From Table B.5, in a sample of this size,

95% of the time when there really is a unit root, the statistic T(p
- 1) will

be above -7.9. The observedvalue (-0.51) is well above this, and so the null

hypothesis is accepted at the 5% level and we should conclude that these data

might well be described by a random walk.
In order to have rejected the null hypothesis for a sample of this size,

the estimated autoregressive coefficient p would have to be less than 0.95:

168@.95
- 1) = -8.4.

The OLS t test of Hn: p
= 1 is

t = @.99694- l)/0.010592= -0.29.
This is well above the 5% critical value from Table B.6 of - 1.95,so the null

17.4. Asymptotic Properties of a First-Order Autoregression 489



hypothesis that the Treasury bill rate follows a random walk is also accepted
by this test.

The test statistics [17.4.7] and [17.4.12] are examplesof the Dickey-Fuller test

for unit roots, named for the general battery of tests proposedby Dickey and Fuller

A979).

Case 2. Constant Term but No Time Trend Included
in the Regression; True Process Is a Random Walk

For case 2, we continue to assume,as in case 1, that the data are generated

by a random walk:

y, = y,-1 + u,,

with u, i.i.d. with mean zero and variance cr2. Although the true model is the same

as in case 1, suppose now that a constant term is included in the AR(l) specification
that is to be estimated by OLS:

y, = a + py,_, + u,. [17.4.14]

The task now is to describe the properties of the OLS estimates,

under the null hypothesis that a = 0 and p
= 1 (here 2 indicates summation over

t = 1, 2 T). Recall the familiar characterization in [8.2.3] of the deviation
of an estimated OLS coefficient vector (\320\254\320\263)from the true value (\320\255),

br
-

\320\255
=

[S **;] [S V,l. [17-4.16]

or, in this case.

As in case 1, y, has the same properties as the variable \302\243,described in Prop-
Proposition 17.1 under the maintained hypothesis. Thus, result (d) of that proposition
establishes that the sum 2y,_i must be divided by T3n before obtaining a random
variable that converges in distribution:

Ja W(r) dr. [17.4.18]

In other words,

2>,_, =
\320\236\320\224\320\242*2).

Similarly, results [17.4.5] and [17.4.6]establish that

2>,_,\320\270,
=

OP{T)

and from Proposition 17.1(a),

2\320\275,
=
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Thus, the order in probability of the individual terms in [17.4.17] is as follows:

^a-i]'[oJm O/-1
1\342\200\2241- [17419]

\321\200(\321\202*)\\

It is clear from [17.4.19]that the estimates &T and pT have different rates
of convergence,and as in the previous chapter, a scaling matrix YT is helpful in

describing their limiting distributions. Recall from [16.1.18] that this rescaling is
achieved by premultiplying [17.4.16] by Yr and writing the result as

[17420]

From [17.4.19], for this application YT should be specifiedto be the following
matrix:

0
[17.4.21]

for which [17.4.20] becomes

\\\321\2021\320\237-\320\276]
\320\223&\321\2021 = [\320\223\320\263-|\320\233\320\263

\320\2761 \320\223\321\202
s>,-,] [\320\263

[\320\236 rj [\321\200\320\223
-

lj \320\246
0

7\342\200\224lJLs>,_, 2>?_,J L

-'\302\253 o

0 r-

or

Considerthe first term on the right side of [17.4.22]. Results [17.4.6]and

[17.4.18] establish that

1 \320\223-\302\2532>,_

1 o-
J W(r) dr

\342\226\240\\w{r)dr <T2-J[W(r)]2dr

[17.4.23]

-t:]
Jw(r)dr \\{W{r)fdr

where the integral sign denotes integration over r from 0 to 1. Similarly, result (a)
of Proposition 17.1 along with [17.4.5] determines the asymptotic distribution of
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the second term in [17.4.22]:

-.,]\342\226\240

Substituting [17.4.23] and [17.4.24] into [17.4.22] establishes

T\"&T

[T-lr

-I r

W(r) dr

J W(r) dr J [W(r)]2 dr

1
J

W(r) dr

\\dr

Ydr

Notice that

\\\\

J

J [W(r)

dr

\\2dr

= \320\224-!

[W(r)]2rfr -jw(r)dr

j W(r) dr 1

where

[17.4.24]

[17.4.25]

, [17.4.26]

J [W(r)f dr -
J W(r) rfr . [17.4.27]

Thus, the secondelement in the vector expression in [17.4.25] states that

- 1}-
W(l)-J

W(r)rfr

i dr

[17.4.28]

rfr -

\320\243
\320\251\320\263)

Neither estimate dr nor pr has a limiting Gaussian distribution. Moreover,
the asymptotic distribution of the estimate of p in [17.4.28] is not the same as the

asymptotic distribution in [17.4.7]\342\200\224when a constant term is included in the dis-
distribution, a different table of critical values must be used.

The secondsection of Table B.5 records percentiles for the distribution of

T(pT
- 1) for case 2. As in case 1, the calculations assume Gaussian innovations,

though as T becomes large, these are valid for non-Gaussian innovations as well.
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Notice that this distribution is even more strongly skewed than that for case 1,so
that when a constant term is included in the regression, the estimated coefficient

ony,_, must be farther from unity in order to reject the null hypothesis of a unit
root. Indeed, for T > 25, 95% of the time the estimated value pT will be less than

unity. For example, if the estimated value pT is 0.999in a sample of size T = 100,
the null hypothesis of p = 1 would be rejectedin favor of the alternative that

p > 1! If the true value of p is unity, we would not expect to obtain an estimate
as large as 0.999.

Dickey and Fuller also proposed an alternative test based on the OLS t test

of the null hypothesis that p = 1:

tT =

where

[17.4.29]

[17.4.30]

s\\
=

(\320\223-2)-2)-1
- &T-

Notice that if both sides of [17.4.30]aremultiplied by T2, the result can be written

as

\"\342\226\240*-\342\200\242\302\253\342\226\240
& \320\223\320\235

for Yr the matrix in [17.4.21]. Recall from [17.4.23] that

[17.4.32]

1
J W(r) rfr

J
W(r) dr

J [W(r)]2rfr

Thus, from [17.4.31],

1

1 \320\236

\320\236o-l
-

0
_, . [17.4.33]

(r) rfr
J [W(r)f dr

It is also easy to show that

s\\ \320\224\320\276-2, [17.4.34]
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from which [17.4.33] becomes

1 I W(r)dr

J W(r) dr J [W(r)]2 dr

1
[17.4.35]

[W(r)f dr - N W(r) dr\\

Thus, the asymptotic distribution of the OLS t test in [17.4.29] is

_. ,. \320\223\320\273 \320\223\320\263 \"I2\"! \022

\320\242\\\320\240\321\202
~

\320\247I'

[17.4.36]

rj J

Samplepercentilesfor the OLS t test of p = 1are reported for case2 in the

second section of TableB.6.As \320\223grows large, these approach the distribution in

the last line of [17.4.36].

Example 17.4
When a constant term is included in the estimated autoregression for the

interest rate data from Example 17.3, the result is

i,
= 0.211 + 0.966911,_,, [17.4.37]

(A.112) A1.1119133)

with standard errors reported in parentheses. The Dickey-Fuller test basedon

the estimated value of p for this specification is

T(p - 1) =
A68)@.96691

- 1) = -5.56.

From TableB.5,the 5% critical value is found by interpolation to be -13.8.
Since -5.56 > - 13.8,the null hypothesis of a unit root (p = 1)is accepted
at the 5% level basedon the Dickey-Fuller p test. The OLS t statistic is

@.96691
- l)/0.019133= -1.73,

which from Table B.6 is to be compared with -2.89. Since - 1.73> -2.89,
the null hypothesis of a unit root is again accepted.

These statistics test the null hypothesis that p = 1. However, a maintained

assumption on which the derivation of [17.4.25] was based is that the true value
of a is zero.Thus, it might seem more natural to test for a unit root in this

specification by testing the joint hypothesis that a = 0 and p = 1. Dickey and

Fuller A981) used Monte Carlo to calculatethe distribution of the Wald form of

the OLS Ftest of this hypothesis (expression [8.1.32] or [8.1.37]).Their values

are reported under the heading Case 2 in Table B.7.

Example 17.5
The OLS Wald F statistic for testing the joint hypothesis that a = 0 and p = 1
for the regression in [17.4.37] is 1.81.Under the classical regression assump-
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tions, this would have an FB, 166) distribution. In this case, however, the
usual statistic is to be comparedwith the values under Case 2 in Table B.7,
for which the 5% critical value is found by interpolation to be 4.67. Since1.81
< 4.67, the joint null hypothesis that a = 0 and p = 1 is acceptedat the 5%

level.

Case 3. Constant Term but No Time Trend Included
in the Regression; True Process Is Random Walk with Drift

In case 3, the same regression [17.4.14] is estimated as in case 2, though now
it is supposed that the true process is a random walk with drift:

y,= a+y,_,+ \320\270\342\200\236 [17.4.38]

where the true value of a is not zero.Although this might seem like a minor change,
it has a radical effect on the asymptotic distribution of & and p. To see why, note

that [17.4.38] implies that

y,
= y0 + at + (\320\270,+ u2 + \342\226\240\342\226\240\342\226\240+ u) =

y0 + at + &, [17.4.39]
where

f, =
\320\270,+ u2 + \342\226\240\342\226\240\342\226\240+ u, for t = 1, 2, . . . , T

with \302\243,,
= 0.

Consider the behavior of the sum

2 \320\243.-1
= 2 [>,. + \302\253('

- 1) + 6-.]. [17.4.40]

The first term in [17.4.40] is just Tya, and if this is divided by T, the result will be

a fixed value. The secondterm, t.a(t
- 1), must be divided by T2 in order to

converge:

\320\263

T2 2 a(t -I)-* a/2,
i-i

by virtue of Proposition 17.1(h). The third term convergeswhen divided by T312:

from Proposition 17. l(d). The orderin probability of the three individual terms in

[17.4.40] is thus

\321\202 \321\202 \321\202 \321\202

2 y,-\\ = 2 y\302\273+ 2 \302\253c
- i) + 2 \320\261-.-

r-1 /=I r-l /-I

O,(T) O,,G-:) O,,G-w)

The time trend a(t \342\200\224
1) asymptotically dominates the other two components:

\321\202 \321\202 \320\241 \321\202
\"]

,?/'-'
= T ly\302\260+ T 2

ft
\342\204\226{t

~
1} + T

[T
3/2

\302\243,f'-'J [17.4.41]
\320\2240 + a/2 + 0.
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Similarly, we have that

1

1- 1

+
\320\263

\320\223)

\320\263

>]2

\320\263

1-1

\320\276,,',

yt)a(t
- 1) 4

7\"

\321\203]:
\320\263=1

\320\223

,-1
'

\320\263

-
2 2\320\260('

-
!)&-\342\226\240\342\200\242

When divided by \320\223\\the only term that does not vanish asymptotically is that due

to the time trend a2(t - IJ:

[17.4.42]

Finally, observe that

7\" 7\"

T T T

2 \302\253,+ 2 \302\253('
- iK + 2 ^.|\320\230\302\273

/-1 r-\\ r=I

from which

\320\242~\321\2102 >,->\302\253,\320\233\320\223\"\0222 \302\253('
-

1)\302\253\320\263- [17.4.43]

Results [17.4.41] through [17.4.43]imply that when the true process is a
random walk with drift, the estimated OLS coefficients in [17.4.15] satisfy

\\&T-a\\ \\O,XT) \320\236\320\240G*)\320\223'\320\223\320\236,G\"*)\"|

Thus, for this case, the Sims, Stock, and Watson scaling matrix would be

Tm 0
0 T3t-

for which [17.4.20] becomes

\\\321\202\321\205\320\277
\320\2761 \320\223\302\253\320\263

- \302\253

Q
T-\023/2I I \" \321\207

L J LPt a

_\320\223\320\223\320\263-'\302\253\320\2761\320\223 \321\202 \321\205^\320\233\320\223\320\263-*\320\276
]\320\223
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or

From [17.4.41] and [17.4.42], the first term in [17.4.44] converges to

From [17.4.43] and [17.3.18], the second term in [17.4.44] satisfies

=
/V@, o-2Q).

Combining [17.4.44] through [17.4.46],it follows that

\320\223'2(\320\260\320\263
-

a)]
L

\320\242^{\321\200\320\263-1)J
/V@, Q-'-o-2Q-Q-') = N@, o-2Q-'). [17.4.47]

Thus, for case 3, both estimated coefficients are asymptotically Gaussian. In

fact, the asymptotic properties of aT and pr are exactly the sameas those for aT
and ST in the deterministic time trend regression analyzed in Chapter 16. The
reason for this correspondence is very simple: the regressor y,_i is asymptotically

dominated by the time trend a \342\226\240
{t

- 1). In large samples, it is as if the explanatory

variable>,_| were replacedby the time trend a-(t - 1).Recalling the analysis of

Section 16.2, it follows that for case 3, the standard OLS t and F statistics can be
calculated in the usual way and compared with the standard tables (Tables B.3 and
B.4, respectively).

Case 4. Constant Term and Time Trend Included
in the Regression; True Process Is Random Walk

With or Without Drift

Suppose,as in the previous case, that the true model is

>, = a +>,_,+ u,,

where u, is i.i.d. with mean zero and variance cr2. For this case, the true value of

a turns out not to matter for the asymptotic distribution. In contrast to the previous

case, we now assume that a time trend is included in the regression that is actually

estimated by OLS:

y, = a + py,.i + St + u,. [17.4.48]

If \320\260\320\2440, y,_, would be asymptotically equivalent to a time trend. Since a time
trend is already included as a separatevariable in the regression, this would make
the explanatory variables collinear in large samples. Describing the asymptotic
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distribution of the estimates therefore requires not just a rescaling of variables but

also a rotation of the kind introduced in Section 16.3.
Note that the regression model of [17.4.48]can equivalently be written as

y,
= A

- p)a + p[y,_l
- a(t - 1)]+ E + pa)t + u,

= a* + p*\302\243-i + S*t + u,,
[17.4.49]

where a* = A - p)a, p*
= p, S* = (S + pa), and \302\243,

= y, - at. Moreover,under

the null hypothesis that p = 1 and 8 = 0,

that is, \302\243,is the random walk described in Proposition 17.1. Consider, as in Section

16.3, a hypothetical regression of y,on a constant, \302\243,_,,and a time trend, producing

the OLS estimates

p\\

L 2/y, J

[17.4.50]

The maintained hypothesis is that a = aa, p = 1, and S = 0, which in the

transformed system would mean a* = 0, p* = 1, and S* = au. The deviations of
the OLS estimates from these true values are given by

L\302\253f
-

\302\253,.J

T 26-,

26-. 26?..
2* 2*\302\243_,

,-1 \342\226\240

2\302\253,

'

26-,\320\270,

2*\320\270,

[17.4.51]

Consulting the rates of convergencein Proposition 17.1, in this case the scaling

matrix should be

and [17.4.20] would be

\321\203
1/2

0

0

0
T
0

0
0

0
0
\342\226\240\342\226\2403/2

\320\233?

\320\240*\321\202~

ST
-

1

\302\253\320\276.

7-1/2 \320\276

\320\236 \320\223\021

\320\236 \320\236

-1/2

\320\236

\320\236

\320\236

7-i

\320\236

\320\236

\320\236

\321\202~

\320\242 26-, 2*
'

26-, 2tf-i 2\302\243_,f

L 2* 2*6-1 2*\320\263.

-1

7-1/2 \320\276
\320\276]

\320\236 \320\223\021 \320\236

\320\236 \320\236 \320\242~\321\210

\342\226\240

2\320\270,
\342\226\240

26-1\302\253,

2*\320\270,
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or

\320\223 \321\202

\320\242(\321\200*\321\202-

T~3lt2

The asymptotic distribution can then be found from Proposition 17.1:

[17.4.52]

TU2&*

\320\242(\321\200'\321\202-

a]

\302\253\320\276)

1

\320\251\320\263)

{

o-J W(r) dr

dr or^\\[W{r)fdr

o-J rW(r)dr

-! rW(r) dr

1

0

0

0

0

0
0
1

-1

-
I W(r)

dr}_^

1
J W(r) dr \\

J W(r) dr
J [W(r)]2dr j rW(r) dr

h I rW(r) dr i

[17.4.53]

10 0
x 0 \320\276-\320\236

lo \320\276i

1

0

0

0 0~|
<t 0

0 lj

G
0
0

0
1
0

0
0
a

-
J

J W(r) dr
\\ [W(r)]2 dr

J rW(r)

i
J rlV(r) dr |

W(l) -
j W(r) dr
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Note that pf, the OLS estimate of p based on [17.4.49], is identical to pr,
the OLS estimate of p based on [17.4.48].Thus, the asymptotic distribution of

T(pT- 1)is given by the middle row of [17.4.53]. Note that this distribution does
not depend on either a or a; in particular, it does not matter whether or not the
true value of a is zero.

The asymptotic distribution of
&fr,

the OLS standard error for pr, can be
found using similar calculations to those in [17.4.31] and [17.4.32]. Notice that

1 0]

\320\263

26-i

It

26-,

2*6-1
26-\342\226\240

= s\\[Q 1 0]

\320\223\0220 0

0 \320\223 0

0 0 T312
'

\320\242 26-,

26-1 2\302\2432-,

.
2* 2f6-,

0 1 0]
1

\320\223-\302\2532\320\261_,

2*

26-.'

It2
_

-i

\320\223-\302\25326_,

7\"-22^2_,

\320\223-^\320\261_ |

yl/2

0

_ 0

T-

0
\320\263

0

2S/

2r2

\320\241

0

-1

0
1
0

~o\"

1

0

o-2[0 1 0]

1

0
0

0

0

0
0
1_

W(r) dr
j

J W(r) rfr
J J rW(r) dr

rlV(r) dr

= [0 10]

-G.

J W(r) dr i

j[W(r)]2dr jrW(r)dr

J rW{r) dr i

[17.4.54]

From this result it follows that the asymptotic distribution of the OLS t test

of the hypothesis that p = 1 is given by

tT
= T(pT

- 1) +
(\320\2232*2,.)\022

\320\220
\320\223(\321\200\320\263

- 1) + VQ. [17.4.55]
Again, this distribution does not depend on a or a. The small-sampledistribution

of the OLS t statistic under the assumption of Gaussian disturbances is presented
under case 4 in Table \320\222.6. If this distribution were truly t, then a value below - 2.0
would be sufficient to reject the null hypothesis. However, Table B.6 revealsthat,

because of the nonstandard distribution, the / statistic must be below -3.4 before

the null hypothesis of a unit root could be rejected.
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The assumption that the true value of S is equal to zero is again an auxiliary
hypothesis upon which the asymptotic properties of the test depend. Thus, as in

case 2, it is natural to consider the OLS F test of the joint null hypothesis that
8 = 0 and p = 1. Though this Ftest is calculated in the usual way, its asymptotic
distribution is nonstandard, and the calculated F statistic should be comparedwith

the value under case 4 in Table B.7.

Summary of Dickey-Fuller Tests in the Absence

of Serial Correlation

We have seen that the asymptotic properties of the OLS estimate pT when

the true value of p is unity depend on whether or not a constant term or a time
trend is included in the regression that is estimated and on whether or not the
random walk that describes the true process for y, includes a drift term. These
results are summarized in Table 17.1.

Which is the \"correct\" case to use to test the null hypothesis of a unit root?
The answer depends on why we are interested in testing for a unit root. If the

analyst has a specific null hypothesis about the process that generated the data,
then obviously this would guide the choice of test. In the absenceof such guidance,

one general principle would be to fit a specification that is a plausible description

of the data under both the null hypothesis and the alternative. This principle would

suggest using the case 4 test for a serieswith an obvious trend and the case 2 test
for serieswithout a significant trend.

For example.Figure 17.2 plots the nominal interest rate series used in the
examples in this section. Although this series has tended upward over this sample
period, there is nothing in economic theory to suggest that nominal interest rates
should exhibit a deterministic time trend, and so a natural null hypothesis is that

the true processis a random walk without trend. In terms of framing a plausible
alternative, it is difficult to maintain that these data could have been generated by

i, = pi,, i + u, with |p| significantly less than 1. If these data were to be described
by a stationary process, surely the processwould have a positive mean. This argues

for including a constant term in the estimated regression, even though under the

null hypothesis the true process does not contain a constant term. Thus, case2 is
a sensible approach for these data, as analyzed in Examples 17.4 and 17.5.

As a second example. Figure 17.3 plots quarterly real GNP for the United

States from 1947:1 to 1989:1. Given a growing population and technological im-

improvements, such a series would certainly be expected to exhibit a persistent upward

trend, and this trend is unmistakable in the figure. The question is whether this
trend arises from the positive drift term of a random walk:

Hu: y,= a + y,_, + \320\270, \320\260> 0,

or from a deterministic time trend added to a stationary ARA):

HA:y, = a + St + py,., + u, |p| < 1.

Thus, the recommended test statistics for this case are those described in case 4.

The following model for 100 times the log of real GNP (denoted y,) was

estimated by OLS regression:

y,
= 27.24 + 0.96252 y,_l + 0.02753 t. [17.4.56]

A3.53) @.A19304) @.01.521)

(standard errors in parentheses). The sample size is \320\223= 168. The Dickey-Fuller
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p test is

T(fi
- 1) =

168@.96252
- 1.0) = -6.3.

Since-6.3 > -21.0,the null hypothesis that GNP is characterized by a random
walk with possible drift is accepted at the 5% level. The Dickey-Fuller t test,

_
0.96252 - 1.0

0.019304
\" '

exceeds the 5% critical value of -3.44, so that the null hypothesis of a unit root

is accepted by this test as well. Finally, the F test of the joint null hypothesis that

5 = 0 and p = 1 is 2.44.Since this is less than the 5% critical value of 6.42 from

Table B.7, this null hypothesis is again accepted.

TABLE 17.1
Summary of Dickey-Fuller Tests for Unit Roots in the Abseuce
of Serial Correlation

Case 1:

Estimated regression: y, = py,-x + u,

True process: y, = y,_, + \320\270, \320\270,
~ i.i.d. N@, a2)

\320\242(\320\240\321\202
~ 1) has the distribution described under the heading Case 1 in Table

B.5.

(pr -
l)l&fiT

has the distribution described under Case 1 in Table B.6.

Case2:
Estimated regression: y, = a + py,-\\ + u,
True process: y,

= y,_, + u, u, ~ i.i.d. N@, a2)

\320\242(\321\200\321\202
\342\200\224

1) has the distribution describedunder Case 2 in Table B.5.
(pr -

l)/<v,. has the distribution described under Case 2 in Table B.6.
OLSF test of joint hypothesis that a = 0 and p = 1 has the distribution

described under Case 2 in Table B.7.

Case 3:

Estimated regression: y, = a + py,-\\ + u,
True process: y,

= a + >,_, + \320\270, \320\260\320\2440, \320\270,
~ i.i.d. @, a2)

(Pt ~ l)/*,r^ N@, 1)

Case 4:

Estimated regression;: y,
= a + py,-{ + St + u,

True process: y,
= a + >,_, + u, a any, \320\270,

~ i.i.d. N@, a2)
T(pT \342\200\224

1) has the distribution describedunder Case 4 in Table B.5.
(pr -

\\)l&tr has the distribution described under Case 4 in Table B.6.
OLS F test of joint hypothesis that p = 1 and S = 0 has the distribution

described under Case 4 in Table B.7.

Notes to Table 17.1
Estimated regression indicates the form in which the regression is estimated, using observations

( = I, 2. . . . , Tand conditioning on observation ( = 0.

True process describes the null hypothesis under which the distribution is calculated.

pr is the OLS estimate of p from the indicated regression based on a sample of size 7\".

(p,
-

1)/<7\320\264,.is the OLS t test of p = 1.
OLS Ftest of a hypothesis involving two restrictions is given by expression [17.7.39].
If \320\270,

~ i.i.d. N@, a-2), then Tables B.5 through B.7 give Monte Carlo estimates of the exact
small-sample distribution. The tables are also valid for large \320\223when u, is non-Gaussian i.i.d. as well
as for certain heterogeneously distributed serially uncorrelated processes. For serially correlated \302\253\342\200\236see
Table 17.2 or 17.3.
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FIGURE 17.2 U.S. nominal interest rate on 3-month Treasury bills, data sampled
quarterly but quoted at an annual rate, 1947:1 to 1989:1.
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FIGURE 17.3 U.S. real GNP, data sampled quarterly but quoted at an annual

rate in billions of 1982 dollars, 1947:1to 1989:1.
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Of the tests discussed so far, those developed for case 2 seem appropriate

for the interest rate data and the tests developed for case 4 seem best for the GNP

data. However, more general tests presented in Sections 17.6and 17.7 are to be
preferred for describing either of these series. This is because the maintained

assumption throughout this section has been that the disturbance term u, in the

regression is i.i.d. There is no strong reason to expect this for either of these time
series. The next section develops results that can be used to test for unit roots in

serially correlated processes.

17.5. Asymptotic Results for Unit RootProcesses
with General Serial Correlation

This section generalizes Proposition 17.1 to allow for serial correlation. The fol-

following preliminary result is quite helpful.

Proposition 17.2: Let

\320\270,
=

\321\204\320\251\320\265,
= 2 \320\244/\320\265,-1<

where

2 \320\244/*,-/<

\302\243(\302\253,)
= 0

t2 for t = \321\202

2
1-\320\271

Then

\320\270,+ u2 + \342\226\240\342\226\240\342\226\240+ u, =
<Kl)-(\302\243, + \302\2532+\342\200\242\342\200\242\342\200\242+ \302\243,)+ 17,

-
17o, [17.5.3]

where \321\204(\\)
=

S,1.,,^, \342\226\240\302\273},
=

2JL \342\200\236\302\243):,\302\243,_,.,a;
=

-(\321\2041+1 + \321\204/+2+
\320\244/-\321\202

+ \" \342\200\242
). and

The condition in [17.5.2] is slightly stronger than absolute summability, though
it is satisfied by any stationary ARM A process.

Notice that if y, is an /A) process y, whose first difference is given by \320\270\342\200\236or

then

\320\243,
=

\"i + \022 + \342\200\242\342\200\242\342\200\242+ u, + y0
= i/f(l)-(fi| + \302\2532+\342\200\242\342\200\242\342\200\242+\302\243,)+ V,

~
Vu + \320\243\321\207-

Proposition 17.2 thus states that any /A) process whose first difference satisfies

[17.5.1] and [17.5.2] can be written as the sum of a random walk (i/f(l)-(fi, +

e2 + \342\226\240\342\226\240\342\226\240+ \302\243,)),initial conditions (yu
- %), and a stationary process (\342\226\240\302\273},).This

observation was first made by Beveridge and Nelson A981), and [17.5.3] is some-
sometimesreferred to as the Beveridge-Nelson decomposition.

Notice that \342\226\240\302\273},is a stationary process. An important implication of this is that

if [17.5.3] is divided by V?, only the first term (l/Vr)i/f(l)- (g, + e2 + \342\226\240\342\226\240\342\226\240+ e,)
should matter for the distribution of A/Vf) -(\320\270,+ u2 + \342\226\240\342\226\240\342\226\240+ u,) as t \342\200\224\302\273<\302\273.

As an example of how this result can be used, supposethat XT{r) is defined
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as in [17.3.2]:

\\Tr\\-

XT(r)
\321\210

A/\320\223)2 \320\270\342\200\236 [17.5.4]i-1

where u, satisfies the conditions of Proposition 17.2 with e, i.i.d. and E(e*) < <*.

Then the continuous-time process \320\273/\321\202-\320\245\321\202(\320\263)converges to <\321\202\321\204A)times standard
Brownian motion:

W{). [17.5.5]
To derive [17.5.5], note from Proposition 17.2 that

[T>T

Vr-xT(r)
= (i/VT)- 2 u,

2 ,| -
%) [17.5.6]

2

where we have defined ST(r)=
(l/\\/T)

\342\226\240
(r)m.

-
i7<>). Notice as in Example 17.2

that

5r()A0 [17.5.7]

as \320\223-*\302\260=.Furthermore, from [17.3.8],

'\320\231* L
A/VT)- 2 e,-* <r-W(r). [17.5.8]

Substituting [17.5.7] and [17.5.8] into [17.5.6] produces [17.5.5].
Another implication is found by evaluating the functions in [17.5.5] at

r = 1:
\320\263

A/VT) 2 \"/-* 0-<Ml)W(l). [17.5.9]/-i
Since W(l) is distributed N@, 1), result [17.5.9] states that

7\"

(l/VT) x \"/-* N(\302\260.\302\253\342\226\240^\342\200\242/'(i)]2).

which is the usual central limit theorem of Proposition 7.11.
The following proposition uses this basic idea to generalize the other results

from Proposition 17.1; for details on the proofs, see Appendix 17.A.

Proposition 17.3: Let u, = ${L)e, =
SJL\302\273\302\253\320\224/\320\265,-/,where S*_o/'|(A/| < <*>and {e,}

is an i.i.d. sequencewith mean zero, variance a2, and finite fourth moment. Define

y,
=

\302\243(\302\253,\302\253,-,)
= a2 2 \320\244\320\233,+,for]

= 0, 1, 2, ... [17.5.10]j-0

/-0 '
6=

\320\2704+ u2 + \342\226\240\342\226\240\342\226\240+ u, fort = 1,2, ... ,\320\223 [17.5.11]

with $, = 0. Then
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(a) r-\022

1
(b) \320\223-\320\270\302\243\320\270/_/\320\262,\320\233\320\273\320\223(\320\236,<\320\263\320\263%)/or/=1.2,...;

(c) \320\223'\320\245^\320\224\320\263, for j = 0,1,2, ...;

(\302\2530r-1 \302\243l-ieA
/\"I

\321\202

f(l/2){A2.[W(l)]2
-

y,,}

1A/2){A4WA)]2
-

\321\203,,}+ \320\223\320\276+ \320\223,+ \320\243\320\263+ \342\226\240\342\226\240\342\226\240+ \320\243,--.

forj= 1,2, . .. ;

\321\202-\321\202^ tu,_A\\-\\w(l)
- [' W(r) dr\\ forj = 0, 1, 2,(g)

(\320\236
\320\263-^\320\225^.\320\273

(\320\273
\321\202-'^t^-A^

(\320\272)\320\223-<\"+'>\320\243.\320\223-*l/(v +1) for v = 0,1

Again, there are simpler ways to describe individual results; for example, (a)
is a N@, A2).distribution, (d) is (l/2)o-A-[*2A) - 1],and (f) and (g) are both

N@, A2/3) distributions.
These results can be used to construct unit root tests for serially correlated

observations in two ways. One approach, due to Phillips A987) and Phillips and

Perron A988), is to continue to estimate the regressions in exactly the form indi-
indicated in Table 17.1. but to adjust the test statistics to take account of serial cor-
correlation and potential heteroskedasticity in the disturbances. This approach is de-
described in Section 17.6. The secondapproach,due to Dickey and Fuller A979), is

to add lagged changes of \321\203as explanatory variables in the regressions in Table
17.1.This is described in Section 17.7.

17.6. Phillips-Perron Testsfor Unit Roots

Asymptotic Distribution for Case 2 Assumptionswith Serially
Correlated Disturbances

To illustrate the basic idea behind the Phillips A987) and Phillips and Perron
A988)tests for unit roots, we will discuss in detail the treatment they propose for
the analog of case 2 of Section 17.4.After this case has been reviewed, similar
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results will be stated for case 1 and case 4, with details developedin exercises at
the end of the chapter.

Case 2 of Section 17.4consideredOLSestimation of a and p in the regression
model

y, = a + \321\200\321\203\321\206+ \320\270, [17.6.1]

under the assumption that the true a = 0, p = 1,and u, is i.i.d. Phillips and Perron
A988) generalized these results to the casewhen u, is serially correlated and possibly
heteroskedastic as well. For now we will assume that the true process is

y,
- y,-i =

\320\270,
=

\321\204{\320\246\320\265\342\200\236

where \\\\i{L) and e, satisfy the conditions of Proposition 17.3. More general con-
conditions under which the same techniques are valid will be discussed at the end of

this section.
If [17.6.1]were a stationary autoregression with |p| < 1, the OLS estimate

p 7-in [17.4.15] would not give a consistent estimate of p when \320\270,is serially correlated.
However, if p is equal to 1, the rate \320\223convergence of pT turns out to ensure that

Pt--^ 1 even when u, is serially correlated. Phillips and Perron A988) therefore
proposed estimating [17.6.1] by OLS even when u, is serially correlated and then

modifying the statistics in Section 17.4 to take account of the serial correlation.
Let \320\2607and p7 be the OLS estimates based on [17.6.1] without any correction

for serial correlation; that is, d^ and pT are the magnitudes defined in [17.4.15].
If the true values are a = 0 and p = 1, then, as in [17.4.22],

i\320\223'\320\247\320\242

where 2 denotes summation over t from 1 to T. Also, under the null hypothesis
that a = 0 and p

= 1, it follows as in [17.4.4] that

\320\243,
=

\320\243\320\270+ \"i + \022 + \342\200\242\342\200\242\342\200\242+ \",-

If \320\270,
= ty{L)e, as in Proposition 17.3,then y, is the variable labeled f, in Proposition

17.3, plus the inconsequential value yu. Using results (f) and (h) of that proposi-
proposition,

1 T-

\320\242-\320\252\321\2031.\320\233

W(r) dr

\320\263 \320\263 [17.6.3]

A-J W(r)dr A2-J [W(r)f drj

1 I W(r)dr

jw(r)dr \\[W{r)fdr

where the integral sign denotes integration over r from 0 to 1. Similarly, results
(a) and (e) of Proposition 17.3 give

\342\226\240

[i :]
\302\260

T-^u, I L \320\223 A-W(l) 1

-\320\247\321\203.^\320\270,]

~*

LHAW(i)]2
-

r\302\273}J

W{1) 1 \320\223 0 1
+- 1}J LHa2

-
y\302\273}J
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Substituting [17.6.3] and [17.6.4] into [17.6.2] produces

\320\223T\022aT 1 L \320\2231\320\236

[\321\202(\321\200\320\263
- i)J

\"*

Lo aJ

1
J W(r) di

Jw(r)dr j[W(r)fdr_

\320\2231\320\276\320\223'\320\223\320\2231
\320\276]

\320\223 w(i) \"I

Lo aJ IaLo aJ LH[w(i)F - i}J

J W(r) dt

\320\276

- r,,}

[17.6.5]

The secondelement of this vector states that

T(j>r
- 1)

1 j W(r) dr

1]

j\\V(r)dr j[W(r)fdr

1 J W(r) dr

J\\Y(r)dr j[W(r)Ydr

W(r) dr

[17.6.6]

A/2)-(A2
-

y,,)

[W(r)Y dr -

The first term of the last equality in [17.6.6] is the same as [17.4.28],which

described the asymptotic distribution that T(pT
- 1) would have if u, were i.i.d.

The final term in [17.6.6] is a correction for serial correlation. Notice that if u, is

serially uncorrelated, then \321\204\320\260
= 1 and \321\204;

= 0 for / = 1, 2, .... Thus, if u, is

serially uncorrelated, then A2 =
\320\2602-[\321\204A)]2

= a2 and \321\203\342\200\236
=

E(uj) = <r2.Hence
[17.6.6]includes the earlier result [17.4.28] as a specialcase when u, is serially
uncorrelated.

It is easy to use
&^r,

the OLS standard error for pT, to construct a sample statistic

that can be used to estimate the correction for serial correlation. Let YT be the matrix

defined in [17.4.21], and let s\\ be the OLS estimate of the variance of \320\270,:

s2= (T- 2)-' 2 (\320\243,
~

*\321\202- \320\240\321\202\320\243,-\320\2642-
/= i

Then the asymptotic distribution of T2- a\\T can be found using the same approach
as in [17.4.31] through [17.4.33]:
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[J!J

J fi oVTol
[o aJ [ij

Y{r) dr

\\ [W(r)f dr

[17.6.7]

J [W(r)f dr -
J W(r) dr

It follows from [17.6.6] that

T(pT- 1)
-

*(\320\2232-*
-

\320\223\320\276)

J [W(r)f dr -
y\\

W(r)
rfrj

[17.6.8]

W(r) dr

2 (A2
-

\320\223\320\276)

j [W{r)f dr -
[J W(r)

drj

Thus, the statistic in [17.6.8] has the same asymptotic distribution [17.4.28] as the
variable tabulated under the heading Case2 in Table B.5.

Result [17.6.8] can also be used to find the asymptotic distribution of the

OLSt test of p = 1:

f,= (P, ~ 1)

\302\261{[W(l)f
- 1} - W(l) J W(r) d

j [W(r)Y dr -
|J W{r)

rfrj

\321\201

W(r) dr

W(r)
rfrj

(l)} x {r\302\273

2 \\1
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\\ W(r) dr)

J [W(r)f dr -
|J

W(r)
rfrj j

'\320\242'

j J [W(r)]2 dr -
J W(r) dr >

)(A2
-

yA)} x {T^&l + *?,}\"* [17.6.9]

with the last convergence following from [17.6.7]. Moreover,

s\\ =(T- 2)-' 2 (\320\233
- *r -

\320\223>\321\202\320\243,-\320\26421*E(uj)
= y(, [17.6.10]

Hence,[17.6.9]implies that

f W(r) dr

t\320\2237^
I J [^WP dr -

J W(r) rfr
|

[17.6.11]

Thus,

dr [17.6.12]

which is the same limiting distribution [17.4.36] obtained for the random variable
tabulated for case2 in Table B.6.

The statistics in [17.6.8] and [17.6.12] require knowledge of the population
parameters y(l and A2. Although these moments are unknown, they are easy to
estimate consistently. Since yA

=
E(uj), one consistent estimate is given by

*, = T-1 X uf, [17.6.13]

where \320\271,
= y,

- aT -
pry,-\\ is the OLS sample residual. Phillips and Perron

A988) instead used the standard OLS estimate yu
= (T

-
2)'\320\247,\320\2712

= s2,. Similarly,
from result (a) of Proposition 17.3, A2 is the asymptotic variance of the sample
mean of u:

VT-\320\231 = \320\223-\0222 \302\253i
\"^ N@, A2). [17.6.14]

Recalling the discussion of the variance of the sample mean in Sections 7.2 and

10.5, this magnitude can equivalently be describedas

A2 =
<r2-\342\204\226(l)P

=
\320\223\320\276+ 2 E \321\203,

=
2\320\264\320\260\342\200\236@),[17.6.15]

\320\243-1

where yt is the /th autocovariance of u, and sB@)is the population spectrum of u,
at frequency zero.Thus, any of the estimates of this magnitude proposed in Section
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10.5 might be used. For example, if only the first q autocovariances are deemed

relevant, the Newey-West estimator could be used:

A2 = % + 2 2 [1 - Kq +
\320\251, [17.6.16]

where

%=
\320\223-'\320\224

u,u,-j [17.6.17]

andu, =
y,

- ar -
\320\240\321\202\320\243,-\\-

To summarize, under the null hypothesis that the first difference of y, is a
zero-meancovariance-stationary process, the Phillips and Perron9 approach is

to estimate equation [17.6.1]by OLS and use the standard OLS formulas to cal-
calculate p and its standard error

&(> along with the standard error of the regression
i. The/th autocovariance of u,

= y,
- a -

py,_i is then calculated from [17.6.17].
The resulting estimates ya and A2 are then used in [17.6.8] to construct a statistic
that has the same asymptotic distribution as does the variable tabulated in the case
2 section of Table B.5. The analogous adjustments to the standard OLS t test of

p = 1 described in [17.6.12] produce a statistic that can be compared with the case
2 section of Table B.6

Example 17.6
Let\320\271,denote the OLS sample residual for the interest rate regression [17.4.37]
of Example 17.4:

\320\271,
\342\226\240i,

- 0.211 - 0.96691 i,_, for t = 1, 2, . . . , 168.
@.112) @.019133)

The estimated autocovariances of these OLS residuals are

T T

% =
A/7\") 2 \"? = 0.630 y,

= (VT) 2 \320\231\320\220-1
= 0.114

/-1 1-2
\321\202 r

2 M,-2 = -0.162 -\321\203\320\267
=

A/\320\223)2 \"\320\233-\320\267
= 0.064

/-3 ' f-4
T

%
= (VT) S \320\271\320\220-4

= 0.047.
1-5

''Theprocedure recommended by Phillips and Perron differs slightly from that in the text. To see
the relution. write the first line of [17.6.7] as

1 |

1

where J_, \342\226\240\320\223'2^,-, and the last equality follows from [4.A.5]. Instead of this expression, Phillips

and Perron used

\320\242-\320\251\321\203,
- yf

The advanlage of the formula in the text is that it is trivial to calculate from the output produced by

standard regression packages and the identical formula can be used for cases 1, 2, and 4.
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Thus, if the serial correlation of u, is to be described with q
= 4 autocovariances,

A2 = 0.630 + 2(|S)@.114)+ 2($)(-0.162)+ 2(?)@.064) + 2(*)@.047)
= 0.688.

The usual OLS formula for the variance of the residuals from this regression
is

7\"

s2 = (T - 2)-' S \302\253?
= 0.63760.

Hence, the Phillips-Perron p statistic is

T(p - 1) -
A/2)-(\320\2232-<\320\263?\320\2332)-(\320\2202

-
\321\212)

= 168@.96691
- 1) -

\302\261{[A68)@.019133)]2/@.63760)}@.688
- 0.630)-

= -6.03.

Comparing this with the 5% critical value for case 2 of Table B.5,we see that

-6.03 > - 13.8.We thus accept the null hypothesis that the interest rate data

could plausibly have been generated by a simple unit root process.
Similarly, the adjustment to the t statistic from Example 17.4 described

in [17.6.12] is

G,,/A2)\022'
-

{i(A*
- %)(T-&,/s) + A}

= {@.630)/@.688)}1/2@.96691
- l)/0.019133

-{'(l/2)@.688- 0.630)[[A68)@.019133)/V@.63760)] -r V@.688)}
= -1.80.

Since -1.80 > -2.89,the null hypothesis of a unit root is again accepted at

the 5% level.

Phillips-Perron Testsfor Cases1 and 4

The asymptotic distributions in [17.6.8] and [17.6.12] were derived under the

assumption that the true process for the first difference of y, is serially correlated

with mean zero. Even though the true unit root process exhibited no drift, it was

assumed that the estimated OLS regression included a constant term as in case 2

of Section 17.4.
The same ideas can be used to generalize case 1 or case 4 of Section 17.4,

and the statistics [17.6.8] and [17.6.12]can be compared in each case with the

corresponding values in Tables B.5 and B.6. Theseresults are summarized in Table
17.2.The reader is invited to confirm these claims in exercises at the end of the

chapter.

Example 17.7

The residuals from the GNP regression [17.4.56]have the following estimated
autocovariances:

% =1.136 y, = 0.424 y2
= 0.285

y3 = 0.006 y4
= -0.110,

from which

A2 = 1.136 + 2{H@.424)+ ?@.285)+ 1@.006)
- i@.110)} = 2.117.
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Also, s2 = 1.15627. Thus, for these data the Phillips-Perron p test is

T(j>- 1) - K^2-^2)(A2~ %)

= 168@.96252
- 1) - J[A68)@.019304)P|B117_

L 1.15627 J
= -10.76.

Since -10.76 > -21.0, the null hypothesis that log GNP follows a unit root
processwith or without drift is accepted at the 5% level.

The Phillips-Perron t test is

(%/A2)\022'
- 0(A2 - %)(T-^/s) + A}

= {A.136)/B.117)}\022@.96252
- l)/0.019304

- 0B.117- 1.136)[[A68)@.019304)]/Vl.15627)]
+ VB.117)}

= -2.44.

Since -2.44 > -3.44, the null hypothesis of a unit root is again accepted.

More General Processes for u,

The Newey-West estimator A2 in [17.6.16] can provide a consistent estimate

of A2 for an \320\233/\320\233(\302\260\302\260)process, provided that q, the lag truncation parameter, goes
to infinity as the sample size \320\223grows, and provided that q grows sufficiently slowly
relative to T. Phillips A987) established such consistency assuming that qT-* \302\260\302\260

and <7\321\202-/\320\223\024
-\302\2730; for example, qT = A-Tll> satisfies this requirement. Phillips's

results warrant using a larger value of q with a larger data set, though they do not

tell us exactly how large to choose q in practice. Monte Carlo investigations have

been provided by Phillips and Perron A988), Schwert A989), and Kim and Schmidt
A990), though no simple rule emerges from these studies. Andrews's A991) pro-
procedures might be used in this context.

Asymptotic results can also be obtained under weaker assumptions about u,

than those in Proposition 17.3.For example, the reader may note from the proof
of result 17.3(e) that the parameter y0 appears because it is the plim of \320\223\"'x

S,7!, u2. Under the conditions of the proposition, the law of large numbers ensures

that this plim is just the expected value of u2, which expected value was denoted
ya. However, even if the data are heterogeneously distributed with E(u2) =

y0 \342\200\236

it may still be the case that T~' S,7., yOj converges to some constant. If

\320\223~12,11u2 also converges to this constant, then this constant plays the role of yu

in a generalization of result 17.3(e).

Similarly, let \320\277\321\202denote the sample mean from some heterogeneously dis-
distributed process with population mean zero:

7\"

\320\277\321\202=\320\242-'2 \320\272\302\273

and let A,- denote T times the variance of \320\277\321\202:

Aj-s T-Var(UT-) =
T-'-\302\243(ki + u2 + \342\226\240\342\200\242\342\226\240+ uTJ.

The sample mean \320\277\321\202may still satisfy the central limit theorem:

3'A)
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TABLE 17.2
Summary of Phillips-Perron Tests for Unit Roots

Case I:

Estimated regression:y,
= py,-i + u,

True process:y,
= y,-\\ + u,

Zp has the same asymptotic distribution as the variable described under the

heading Case 1 in Table B.5.

Z, has the same asymptotic distribution as the variable described under Case
1 in Table B.6.

Case 2:

Estimated regression: y, = a + \321\200\321\203,~\321\205+ \320\270,

True process: y, = y,_, + u,

Zp has the same asymptotic distribution as the variable describedunder Case

2 in Table B.5.
Z, has the same asymptotic distribution as the variable described under Case

2 in Table B.6.

Case 4:

Estimated regression: y, = a + \320\264\321\203,_,+ St + u,
True process:y,

= a + y,_, + u, a any

Zp has the same asymptotic distribution as the variable described under Case

4 in Table B.5.
Z, has the same asymptotic distribution as the variable described under Case

4 in Table B.6.
Notes to Table 17.2

Estimated regression indicates the form in which the regression is estimated, using observations
I = 1.2 T and conditioning on observation t = 0.

True process describes lhe null hypothesis under which the distribution is calculated. In each
case, it, is assumed to have mean zero but can be heterogeneously distributed and serially correlated
with

lim 7-' 2 E(u?)= yu

lim T-'E(u, + !!, + \342\200\242\342\200\242\342\226\240+ \320\275\320\263)-= \320\220-.
\342\226\240/\342\226\240\342\200\224*

Zt, is the following statistic:

where
\320\263

%\321\202-
\320\242-'^\320\271,\320\271,-1

\320\271,= OLS sample residual from lhe estimated regression

A> =*,.,\342\226\240+ 2-1A -//(<?+ l)]?,.r
r

s\\ =
G\"

\342\200\224
k)'1 2 \"r

\320\272= number of parameters in estimated regression

&fT
= OLS standard error for p.

Z, is the following statistic:
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or

\320\263-\0222 \320\270,\320\233 )

where

A2 = lim \\\\, [17.6.18]

providing a basis for generalizing result 17.3(a).
If u, were a covariance-stationary process with absolutely summable auto-

covariances, then Proposition 7.5(b) would imply that lim,^ k\\ = 5^,.,^..
Recalling [7.2.8], expression [17.6.18] would in this case just be another way to
describe the parameter A2 in Proposition 17.3.

Thus, the parameters y0 and A2 in [17.6.8] and [17.6.12] can more generally
be defined as

y0- lim \320\223\0212E(u}) [17.6.19]
7\"-.= /-I

A2 = lim T~ '\342\200\242\302\243(\302\253,+ u2 + \342\226\240\342\226\240\342\226\240+ uTf. [17.6.20]
7\"-\302\273=

Phillips A987) and Perron and Phillips A988) derived [17.6.8] and [17.6.12] as-

assuming that u, is a zero-mean but otherwise heterogeneously distributed process

satisfying certain restrictions on the serial dependence and higher moments. From
this perspective, expressions [17.6.19] and [17.6.20] can be used as the definitions

of the parameters yA and A2. Clearly, the estimators [17.6.13]and [17.6.16] continue

to be appropriate for this alternative interpretation.

On the Observational Equivalence of Unit Root
and Covariance-Stationary Processes

We saw in Section 15.4 that given any /@) process fory, and any finite sample
size \320\223,there exists an /A) process that will be impossible to distinguish from the

/@) representation on the basis of the first and secondsample moments of y. Yet
the Phillips and Perron procedures seem to offer a way to test the null hypothesis
that the sample was generated from an arbitrary /A) process. What does it mean
if the test leads us to reject the null hypothesis that y, is /A) when we know that
there exists an /A) process that describes the sample arbitrarily well?

Some insight into this question can be gained by considering the example in

equation [15.4.8],

A - L)y, =
A + 6L)e,, [17.6.21]

where \320\262is slightly larger than - 1 and e, is i.i.d. with mean zero and variance <r2.
The model [17.6.21]implies that

y, = (e, + 0e,_,)+ (e,_,+ 6e,_2) + \342\200\242\342\200\242\342\200\242+ (e, + 6e0) + y0

= e, + A + 0)e,_, + A + 0)e,-2 + \342\200\242\342\200\242\342\200\242+ A + \320\262)\320\265{+ \320\262\320\265\320\260+ y0

= e, + A + 0)\302\243,_,+ \320\262\320\2650+ y0,

where

\302\243_,
=

fi, + e2 + \342\226\240\342\200\242\342\226\240+ \302\243,_,.
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For large t, the variable y, is dominated by the unit root component,A + 0)\302\243,_b

and the asymptotic results are all governed by this term. However, if \320\262is close to

-1, then in a finite sample y, would behave essentially like the white noise series

e, plus a constant Fe0 + y0). In such a case the Phillips-Perron test is likely to

reject the null hypothesis of a unit root in finite samples even though it is true.10

For example, Schwert A989) generated Monte Carlo samplesof sizeT = 1,000

according to the unit root model [17.6.21] with \320\262= -0.8. The Phillips-Perron test

that is supposed to reject only 5% of the time actually rejected the null hypothesis
in virtually every sample, even though the null hypothesis is true! Similar results

were reported by Phillips and Perron A988) and Kim and Schmidt A990).
Campbelland Perron A991) argued that such false rejections are not nec-

necessarily a bad thing. If \320\262is near -1, then for many purposes an /@) model may

provide a more useful description of the process in [17.6.21] than does the true

/A) model. In support of this claim, they generated samples from the process

[17.6.21] and estimated by OLS both an autoregressive process in levels,

y, = \321\201+ \321\204\321\205\321\203,-\321\205+ \321\2042\321\203,-2+ \342\200\242\342\200\242\342\200\242+
\320\244\320\240\320\243,-\320\240

+ \320\265\320\277

and an autoregressive process in differences,

by, = a + ^\320\224.\321\203,-1+ \302\2432\320\254\321\203,-2+ \342\200\242\342\200\242\342\200\242+ Cpby^p + e,.

They found that for \320\262close to -1, forecasts based on the levels yt tended to
perform better than those based on the differences \320\224\321\203\342\200\236even though the true data-

generating process was /A).
A related issue, of course, arises with false acceptances. Clearly, if the true

model is

\320\243,
=

\320\240\320\243.-1+ e, [17.6.22]

with p slightly below 1, then the null hypothesis that p
= 1 is likely to be accepted

in small samples, even though it is false. The value of accepting a false null hy-

hypothesis in this case is that imposing the condition p = 1 may produce a better
forecast than one based on an estimated pr, particularly given the small-sample
downward bias of pT. Furthermore, when p is close to 1, the values in Table B.6

might give a better small-sample approximation to the distribution of (pT - 1) -r

&i,r than the traditional t tables.''
This discussion underscores that the goal of unit root tests is to find a par-

parsimonious representation that gives a reasonable approximation to the true process,
as opposedto determining whether or not the true process is literally /A).

17.7. Asymptotic Properties of a pth-Order
Autoregressionand the Augmented

Dickey-Fuller Tests for Unit Roots

The Phillips-Perron tests were based on simple OLS regressionsof y, on its own

lagged value and possibly a constant or time trend as well. Corrections for serial

correlation were then made to the standard OLS coefficient and t statistics. This
section discussesan alternative approach, due to Dickey and Fuller A979), which
controls for serial correlation by including higher-order autoregressive terms in the

regression.

'\"For more delailed discussion, see Phillips and Perron A988, p. 344).
\"See Evans and Savin A981, 1984) for a description of the small-sample distributions.
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An Alternative Representation of an AR(p) Process
Suppose that the data were really generated from an AR(p) process,

A
- *,L -

\321\204\320\2631?
- \342\226\240\342\226\240\342\226\240-

\321\204\321\2001\302\273)\321\203,
=

\320\265\342\200\236 [17.7.1]

where {e,} is an i.i.d. sequence with mean zero, variance <r2, and finite fourth
moment. It is helpful to write the autoregression [17.7.1]in a slightly different
form. To do so, define

\321\200^\321\204,+ \321\2042+ \342\226\240\342\226\240\342\226\240+
\321\204\321\200 [17.7.2]

Ci
s

-[\320\244,-+1
+

\320\244/+2
+ \342\226\240\342\226\240\342\226\240+

\320\244\342\200\236]for/
= 1, 2, p - 1. [17.7.3]

Notice that for any values of \321\204\321\205,\321\2042,.... \321\204\321\200,the following polynomials in L are

equivalent:

A - pL) -
Gr,L + \302\2432L2+ \342\200\242\342\200\242\342\200\242+ f,,_,L\"-')(l

- L)
= 1 - PL- CXL + ^L2

- C2L2+ C2L* fp-.L\"-1 + f,_,L\"
= 1 - (p

= 1 - [(*,+ \321\2042+ \342\226\240\342\226\240\342\226\240+
\321\204\321\200)

-
(\320\244\320\263+ \321\2043+ \342\226\240\342\226\240\342\226\240+

\321\204\321\200)}\320\254

-
[~(\320\244\320\267+ \320\244\320\260+ \342\226\240\342\226\240\342\226\240+

\320\244\320\240)
+ (\320\244\320\263+ \320\244\320\267+ \342\226\240\342\226\240\342\226\240+

\320\244\320\240)]1<2
- \342\200\242\342\226\240\342\200\242

-
[-(\320\244\321\200)

+
(\320\244\320\240-1

+
\320\244\321\200)]*-'-1

-
&P)L>

= 1 -
\321\204^

-
\321\204\320\2631? \321\204\321\200-,/,'-1

-
4>PL>. [17.7.4]

Thus, the autoregression [17.7.1]can equivalently be written

{A - pL) -
{C,L + C2L2 + \342\226\240\342\226\240\342\226\240+ fp-.^-'Xl

- L)}y, = e, [17.7.5]
or

\320\243,
=

\320\240\320\243,-1+ \302\243Ay,-i + Ciby.-i + \342\200\242\342\200\242\342\200\242+ Sp.Ay,-P + i + e,- [17-7.6]

Suppose that the process that generated y, contains a single unit root; that

is, suppose one root of

is unity,

1 -
\320\244,

-
\320\244\320\263

~ \342\226\240\342\226\240\342\226\240~
\320\244\342\200\236

= 0, [17.7.8]

and all other roots of [17.7.7] are outside the unit circle. Notice that [17.7.8] implies
that the coefficient p in [17.7.2] is unity. Moreover, whenp = 1, expression [17.7.4]

would imply

A - *z -
\321\2042:> \321\204\321\200:\320\263)

= A
- &z -

Ciz2 fp.jz'-'Xl
- z).

Of the p values of z that make the left side of [17.7.9] zero, one is z = 1 and all

other roots are presumedto be outside the unit circle. The samemust be true of

the right side as well, meaning that all roots of

A - fa -
C2Z2 fp-1*1\021)

= 0

17.7. Asymptotic Properties of a pth-Order Autoregression 517



lie outside the unit circle. Under the null hypothesis that p = 1,expression [17.7.5]

could then be written as

or

\320\224\320\233
=

\302\253,, [17-7.10]

where

\320\270,
= A

- f,L -
&L2 CP-ilS-T\\-

Equation [17.7.10] indicates that y, behaves like the variable \302\243,described in Prop-
Proposition 17.3, with

One of the advantages of writing the autoregression of [17.7.1] in the equiv-

equivalentform of [17.7.6] is that only one of the regressors in [17.7.6], namely, y,_,,
is /A), whereas all of the other regressors (\320\224.\321\203,_1,\320\224.\321\203,_2,\342\200\242. \342\200\242, \320\254\321\203,-\321\200+\320\264

are

stationary. Thus, [17.7.6] is the Sims, Stock, and Watson A990) canonical form,

originally proposed for this problem by Fuller A976). Since no knowledge of

any population parameters is needed to write the model in this canonical form,
in this case it is convenient to estimate the parameters by direct OLS estimation of
[17.7.6].

Results generalizing those for case 1 in Section 17.4 are obtained when the

regression is estimated as written in [17.7.6] without a constant term. Cases2 and

3 are generalized by including a constant term in [17.7.6], while case 4 is generalized

by including a constant term and a time trend in [17.7.6]. For illustration, the case
2 regression is discussed in detail. Comparableresults for case 1, case 3, and case

4 will be summarized in Table 17.3 later in this section, with details developedin

exercises at the end of the chapter.

Case 2. The Estimated Autoregression Includesa Constant

Term, but the Data Were Really Generatedby a Unit Root

Autoregression with No Drift

Following the usual notational convention for OLS estimation of autoregres-
sions, we assume that the initial sample is of size T + p, with observations numbered

{.V-p + i' \320\243-\321\200+2'
\342\226\240\342\226\240\342\226\240* \320\243\321\202),and condition on the first p observations. We are inter-

interested in the properties of OLS estimation of

y, =
\302\243Ay,-, + \302\243Ay,-2 + \342\200\242\342\200\242\342\200\242+ C~Ay,-p+i + \302\253+ py,-\\ + e,

where p =
(\302\243\342\200\236&, . . . , \302\243,_\342\200\236a, p)' and x, =

(\320\224^_,, \320\224_\321\203,_2.\342\200\242\342\200\242\342\200\242, \320\254\321\203.-p+ i, 1.
y,-^'- The deviation of the OLS estimate bT from the true value p is given by

\320\252\321\202
~

P =
\\i x*'J [S V,l. [17.7.12]
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Letting \320\270,
\321\210

\321\203,
\342\200\224

\321\203,-\\,the individual terms in [17.7.12] are

\321\202

x,x,'
= [17.7.13]

k,_,k,_,, + , 2k,_i

u,_lu,_p + l 2u,_2

2\320\274,_ i 2u,_,

2\320\272,_,\320\265,

[17.7.14]

with 2 denoting summation over t = 1, 2, . . . , T.

Under the null hypothesis that a = 0 and p = 1,we saw in [17.7.10] that y,
behaves like \302\243,

= ul + u^ + \342\200\242\342\200\242\342\200\242+ u, in Proposition 17.3.Consulting the rates
of convergence in Proposition 17.3, for this case the scaling matrix should be

[17.7.15]

[17.7.16]

Vf
0

0
0

0 \342\200\242\342\200\242\342\200\242

VT
\342\200\242\342\200\242\342\200\242

\320\276 ...

0 \342\200\242\342\200\242\342\200\242

0

0

VT
0

\320\276

0

0

T

Premultiplying [17.7.12] by YT as in [17.4.20] results in

P) S

Consider the matrix Yf l2x,x,'Yf'. Elements in the upper left (p x p) block of

2x,x,' are divided by \320\223,the first p elements of the (p + l)th row or (p + l)th
column are divided by T*2, and the row (p + 1), column (p + 1)clement of

2x,x,' is divided by T2. Moreover,

\320\223~12\320\272,_\321\203

-4 y\\t-j\\ from result (c) of Proposition 17.3

\302\243(\302\253,-/)
= 0 from the law of large numbers

.y-^ 0 from Proposition 17.3(e)

ly,_, \320\233A \342\200\242

J W(r) \320\233- from Proposition 17.3(f)

^,2_,-i A2-
J [W(r)]2 rfr from Proposition 17.3(h),

where

\321\203,
=

A - O-.K1) =
<r/(l

-

\320\276-2=
\302\243(\320\262?)

[17.7.17]
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and the integral sign denotes integration over r from 0 to 1. Thus,

\320\243\320\276

*

\320\243,,-2

0

0

\320\243|

\320\243\320\276

V

0

0

\320\243\342\200\236-\320\263

\320\243\320\276

\320\236

\320\236

\320\236

1
\\-jw(r)dr

W(r)dr A2-I [W{r)fdr

1o qJ-

where

\342\226\240\342\200\242\342\226\240
\320\243\321\200-2

\342\200\242\342\226\240\342\200\242
\320\243\321\200-\321\202.

\342\226\240\342\200\242\342\200\242
\320\243\320\276.

\320\243() \320\2431

\320\2431 \320\243\320\276

\320\243\321\200-2\320\243\321\200-

Q- r r
A2-J

[W(/-)]2dr

Next, consider the second term in [17.7.16],

Yf'[2x,e,] =

[17.7.18]

[17.7.19]

[17.7.20]

[17.7.21]

The first p
- 1 elements of this vector are VT times the sample mean of a martin-

martingaledifference sequence whose variance-covariance matrix is

u,_2e,
u,_2e, \342\200\242\342\226\240\342\226\240

\"
\320\243\320\276\320\2431

\342\226\240\342\226\240\342\226\240
\320\243\321\200-\320\263

\320\2431 \320\243\320\276
\342\200\242\342\200\242\342\200\242

\320\243\321\200-\321\212

\320\243\321\200-\320\267
\342\200\242\342\200\242\342\226\240

\320\243\320\276

[17.7.22]

= o-2V.
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Thus, the first p
- 1 terms in [17.7.21] satisfy the usual central limit theorem.

\320\233h,
~ /V@, <r2V). [17.7.23]

The distribution of the last two elementsin [17.7.21] can be obtained from results

(a) and (d) of Proposition 17.3:

Substituting [17.7.18] through [17.7.24]into [17.7.16] results in

Coefficients on
Ayt_;

The firstp
- 1 elementsof p are \302\243,,&. \342\200\242.\342\200\242. , \320\241\342\200\236~i, which are the coefficients

on zero-mean stationary regressors (\320\224\321\203,_1,\320\224.\320\243/-2.\342\200\242\342\200\242\342\200\242, \320\224^-\321\200+ \320\236-The block con-

consisting of the first p
- 1 elementsin [17.7.25] states that

Vf .t ~
\302\2432

[17.7.26]

Recalling from [17.7.23] that h,
~ /V@, <r2V), it follows that V-'h, ~

N@, a2\\''),

or

l.T -

C/i-X.T ip-l

,<r

\320\223\320\276\320\243i

\320\2431 \320\243\320\276

Ly\302\273-2

\320\243\321\200-2

\320\243\302\253J

[17.7.27]

where
\321\203,

=
,

This means that a null hypothesis involving the coefficients on the stationary

regressors (\302\243b&> \342\200\242\342\226\240\342\200\242, CP-\\) in [17.7.11] can be tested in the usual way, with the

standard t and F statistics asymptotically valid. To see this, suppose that the null

hypothesis is #\342\200\236:Rp
= \320\263for R a known [m x (p + 1)]matrix where m is the

number of restrictions. The Wald form of the OLS x2 test [8.2.23] is given by

[17.7.28]

f \320\2237 \320\223 \320\223

AT2-
= (Rb7

-
\321\202)'\320\254\320\2512 x,x; R' (Rb7 - r)

\320\223 \320\2237 \320\2231 \320\223
= [RVT(b7

- p^'b^R-VT 2 **i VT-R'

I L'-i J J
x [R-VT(br- P)],
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where

\321\202

4 =
\\\321\202

-
(\321\200+ l)Vl S {\321\203i

- Lr^y,-i -

[17-729]

If none of the restrictions involves a or p, then the last two columns of R contain
all zeros:

R = Ri 0 . [17.7.30]
\\mx(p + l)\\ \\_\\mx(p-i)\\ <\302\273ix2)J

In this case, RVT =
RYr for YT the matrix in [17.7.15], so that [17.7.28] can be

written as

X\\ = [RY7(b7 - e)]'-URYj \302\243
x,x;j YrR'J

[RY7(b7 - B)].

From [17.7.18], [17.7.25], [17.7.29], and [17.7.30], this converges to

-\320\263\320\260

ll7-73l)

But since h, ~ N@,<r2V), it follows that the (m x 1)vector [R,V\" lh,] is distributed
N@, [o^RtV^'Rl]). Hence, expression [17.7.31] is a quadratic form in a Gaussian

vector that satisfies the conditions of Proposition 8.1:

This verifies that the usual t or F tests applied to any subset of the coefficients

fi. li> \342\226\240\342\226\240\342\226\240. lP-\\ have the standard limiting distributions.

Note, moreover, that [17.7.27] is exactly the same asymptotic distribution

that would be obtained if the data were differenced before estimating the auto-

regression:

by, =
\302\243lby,-l + \302\2432by,-2 + \342\200\242\342\226\240\342\200\242+

\302\243p-Ay,-P + \\ + a + e,.

Thus, if the goal is to estimate \302\243i,\302\2432>\342\226\240\342\200\242\342\226\240\302\273\302\243P-\\
or test hypotheses about these

coefficients, there is no need based on asymptotic distribution theory for differ-

differencing the data before estimating the autoregression. Many researchers do rec-
recommend differencing the data first, but the reason is to reduce the small-sample
bias and small-sample mean squared errors of the estimates, not to change the

asymptotic distribution.

Coefficients on Constant Term and yt_,
The last two elements of \320\222are a and p, which ai

and the /A) regressor,y,_{.From [17.7.25], [
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limiting distribution is given by

\320\223\320\263'\302\253
\320\276]

\320\223&T 1

[ \320\276
t\\ [Pt

-
ij

A-j
W(r)dr

k*-\\[W(r)Ydr

J W(r) dr
J [W{r)f

1
\320\236]

\320\223 W{\\) 1

\320\236
AJ LH[WA)]2

- 1}J

1 J W(r) dr

J\\V(r)dr \\[W{r)fdr

cr-W(l) 1

'[J \320\223
[17.7.32]

0 tr/A
.

The secondelement of this vector implies that (A/cr) times T(pT
- 1) has the same

asymptotic distribution as [17.4.28],which described the estimate of p in a regression
without lagged \320\224\321\203and with serially uncorrelated disturbances:

T-{Klo){pT-

- 1} -
W(l)-j W(r)dr

TIT- [17-7.33]

\\W{r)f dr -
\\\\

W(r) dr

Recall from [17.7.17]that

\\l~ = A -
&

~
&

~ \342\226\240\342\226\240' ~

This magnitude is clearly estimated consistently by

[17.7.34]

where ljT denotes the estimate of f, based on the OLS regression [17.7.11]. Thus,
the generalization of the Dickey-Fuller p test when lagged changes in \321\203are included
in the regression is

~Cl.T~Cl.T~
\342\200\242\342\226\240\342\226\240-

\342\200\224.[17.7.35]

This is to be comparedwith the case 2 section of Table B.5.
Consider next an OLS t test of the null hypothesis that p = 1:

t-r
~

[17.7.36]

where ep+{ denotes a [(p + 1)x 1]vector with unity in the last position and zeros
elsewhere. Multiplying the numerator and denominator of [17.7.36]by T re-
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suits in

TjPr
~ 1)

[17.7.37]

But

, IV1 \320\276
e

[ 0 Q-

\\-{\\A2-|J
[W{r)fdr-

by virtue of [17.7.18] and [17.7.20]. Hence, from [17.7.37] and [17.7.33],

- 1}-
W{\\)-\\ W(r)dr

\\ [W{r)f dr -
|j W(r)

2{J

A2 [WO? dr-\\ wir) d*
rj j

[17.7.38]

- 1}-

rj j[W{r)f dr -
[J

W(r) rfr

This is the same distribution as in [17.4.36]. Thus, the usual t test of p = 1 for

OLS estimation of [17.7.11] can be comparedwith the case 2 section of TableB.6
without any corrections for the fact that lagged values of \320\224\321\203are included in the
regression.

A similar result applies to the Dickey-Fuller F test of the joint hypothesis
that a = 0 and p

= 1. This null hypothesis can be represented as Rp = r, where

|2x5+\342\200\236I

=
L (J .\342\200\236<2122,J

and \320\263= @, 1)'. The Ftest is then

Define YT to be the following B x 2) matrix:

\320\223/2 \320\236

R(b7
- P)/2. [17.7.39]

[17.7.40]
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Notice that [17.7.39] can be written

Ft = (bT -
PyR'Yrj^-YrR^xXK'R'Yr, ?

x Y7R(br
- P)/2.

The matrix in [17.7.40] has the property that

Y7R = RY7

forR = [0 IJ and Y7the (p + 1)x (p + 1) matrix in [17.7.15]. From [17.7.25],
RY7(b7

- P) \320\233Q-'h2. Thus, [17.7.41] implies that

FT
=

(\320\254\320\263
-

P)' iO-'YrR'f RY^b,-- P)/2

hJQ-'h2/Bo-2)

A

A2

1

2

'(r) dr

\342\226\240\\[W{r)fdr
-J

[17.7.42]

[J:]

1 J W(r) dr

\\w{r)dr \\[W{r)fdr
[it]\"

w(i)

idr

J W(r) rfr
J

This is identical to the asymptotic distribution of the F test when the regression
does not include lagged Ly and the disturbances are i.i.d. Thus, the F statistic in

[17.7.41] based on OLS estimation of [17.7.11] can be comparedwith the case 2

section of Table B.7without corrections.

Finally, consider a hypothesis test involving a restriction12 across f1.f2.---1
fp_ 1 and p,

*A>: ''if 1 + \320\2232\320\2412+ \342\200\242\342\226\240' + rp-^p-i + 0-a +
rp+ip

= r

'-Since the maintained assumption is that p = 1, this is a slightly unnatural way to write a hypothesis.
Nevertheless, framing the hypothesis this way will shortly prove useful in deriving the asymptotic

distribution of an autoregression estimated in the usual form without the Dickey-Fuller transformation.
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or

\320\263'\320\240
= \320\263. [17.7.43]

The distribution of the t test of this hypothesis will be dominated asymptotically
by the parameters with the slowest rate of convergence, namely, f,, f2. \342\226\240\342\200\242\342\200\242. Cn-1-
Since these are asymptotically Gaussian, the test statistic is asymptotically Gaussian

and so can becomparedwith the usual t tables. To demonstrate this formally, note
that the usual t statistic for testing this hypothesis is

'\320\2547.
-

\320\263)

Define fr to be the vector that results when the last element of \320\263is replaced by

rptl/Vf,

fr'lri r2
\342\200\242\342\226\240\342\200\242

r,_, 0 rll+i/Vf], [17.7.45]

and notice that

T^r = Yrfr [17.7.46]
for YT the matrix in [17.7.15]. Using [17.7.46] and the null hypothesis that r =
r'p, expression [17.7.44] can be written

t . [1/./.4/J

Notice from [17.7.45] that

fr-\302\273f,

where

f'-fr \321\202\320\263
\342\226\240\342\226\240\342\226\240

rp_, 0 0].

Using this result along with [17.7.18] and [17.7.25] in [17.7.47] produces

t-r^*

H
h r2

Since h,
~ N@, <r2V), it follows that

['. r2
\342\226\240\342\226\240\342\226\240

vJV-'h,

where

A = <r2[r, r2
\342\200\242\342\200\242\342\200\242

rp.t]V-% r2
\342\200\242\342\226\240\342\200\242

rp_,]'.

Thus, the limiting distribution in [17.7.48] is that of a Gaussian scalar divided by

its standard deviation and is therefore /V@, 1). This confirms the claim that the t

test of r'p = r can be compared with the usual t tables.
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One interesting implication of this last result concerns the asymptotic prop-
properties of the estimated coefficients if the autoregression is estimated in the usual

levels form rather than the transformed regression [17.7.11].Thus, suppose that

the following specification is estimated by OLS:

y,= a + \321\2041\321\203,.1+ \321\2042\321\203,_2+ \342\200\242\342\200\242\342\200\242+
\321\204\342\200\236\321\203,_\321\200

+ e, [17.7.49]

for somep a 2. Recalling [17.7.2] and [17.7.3], the relation between the estimates
(fn ?2. \342\200\242\342\200\242\342\226\240. fp-b p) investigated previously and estimates {\321\204\320\270\321\204\320\263,. . . , \321\204\321\200)
based on OLS estimation of [17.7.49]is

<i>P
=

-4-1

*,
=

\302\243,-\302\243,-, for/= 2,3, p-1

\320\244,
= P + li.

Thus, each of the coefficients \321\204],\321\2042,\342\226\240\342\226\240\342\226\240
,<\302\243,,is a linear combination of the elements

of (f,, f2, . . . , ip-i,p). The analysis of [17.7.43] establishes that any individual

estimate
<fy converges at rate VT to a Gaussian random variable. Recalling the

discussion of [16.3.20] and [16.3.21], an OLS t or F test based on [17.7.49] is

numerically identical to the equivalent t or F test expressedin terms of the rep-
representation in [17.7.11]. Thus, the usual t tests associated with hypotheses about

any individual coefficients \321\204\320\270\321\2042,\342\200\242\342\200\242. , \321\204,,
in [17.7.49] can be compared with

standard t or N@, 1) tables.Indeed, any hypothesis about linear combinations of
the <\302\243'sother than the sum \321\204,+ \321\2042+ \342\226\240\342\226\240\342\226\240+ \321\204\321\200satisfies the standard conditions.
The sum \321\204,+ \321\2042+ \342\226\240\342\226\240\342\226\240+ \321\204\321\200,

of course, has the nonstandard distribution of the
estimate p describedin [17.7.33].

Summary of Asymptotic Results for an Estimated

Autoregression That Includes a Constant Term

The preceding analysis applies to OLS estimation of

\320\243,
= CAy,-\\ + \302\2434^-2 + \342\226\240\342\200\242\342\226\240+ CP-Ay,-P+\\ + a + py,_x + e,

under the assumption that the true value of a is zeroand the true value of p is 1.

The other maintained assumptions were that e, is i.i.d. with mean zero, variance

a2, and finite fourth moment and that roots of

A -
ixz

- &* ft,-,*'-') = 0

are outside the unit circle. It was seen that the estimatesf,, f2. \342\200\242\342\200\242\342\226\240> (p-\\ converge
at rate VT to Gaussian variates, and standard t or F tests for hypotheses about

these coefficients have the usual limiting Gaussian or #2 distributions. The estimates

a and p convergeat rates VT and T, respectively, to nonstandard distributions.

If the difference between the OLS estimate p and the hypothesized true value of

unity is multiplied by the sample size and divided by A - f t
-

\302\2432
- \342\200\242\342\226\240\342\226\240-

(p_ ,),
the resulting statistic has the same asymptotic distribution as the variable tabulated
in the case 2 section of Table B.5.The usual t statistic of the hypothesis p = 1
does not need to be adjusted for sample size or serial correlation and has the same
asymptotic distribution as the variable tabulated in the case 2 section of TableB.6.
The usual F statistic of the joint hypothesis a = 0 and p = 1 likewise does not

have to be adjusted for sample size or serial correlation and has the same distri-

distribution as the variable tabulated in the case 2 section of TableB.7.
When the autoregression includes lagged changes as here, tests for a unit root

based on the value of p, t tests, or F tests are described as augmented Dickey-Fuller
tests.
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Example 17.8
The following model was estimated by OLS for the interest rate data described

in Example 17.3 (standard errors in parentheses):

i, = 0.335 \320\224(,_,
- 0.388 Ai,_2 + 0.276Ai,_3

A1.11788) @.0808) @.0800)

- 0.107 Ai,_4 + 0.195+ 0.96904i,_,.
@.0794) @.109) (\320\236.\320\2361\320\25014)

Dates t = 1948:11through 1989:1 were used for estimation, so in this case the

sample size is T = 164.For these estimates, the augmented Dickey-Fuller p
test [17.7.35] would be

164
1 - 0.335 + 0.388 - 0.276 + 0.107

Since -5.74 > -13.8, the null hypothesis that the Treasury bill rate follows
a fifth-order autoregression with no constant term, and a single unit root, is

accepted at the 5% level.TheOLSt test for this same hypothesis is

@.96904
- l)/@.018604)= -1.66.

Since -1.66 > -2.89, the null hypothesis of a unit root is accepted by the

augmented Dickey-Fuller t test as well. Finally, the OLS F test of the joint

null hypothesis that p = 1 and a = 0 is 1.65. Since this is less than 4.68, the

null hypothesis is again accepted.

The -null hypothesis that the autoregression in levels requires only four

lags is based on the OLS t test of f4
= 0:

-0.107/0.0794 = -1.35.

From Table B.3, the 5% two-sided critical value for a t variable with 158 degrees
of freedom is -1.98. Since -1.35 > -1.98,the null hypothesis that only four

lags are needed for the autoregression in levels is accepted.

Asymptotic Resultsfor Other Autoregressions

Up to this point in this section, we have consideredan autoregression that is
a generalization of case2 of Section17.4\342\200\224aconstant is included in the estimated
regression, though the population process is presumed to exhibit no drift. Parallel

generalizations for cases 1,3, and 4 can be obtained in the same fashion. The
reader is invited to derive these generalizations in exercises at the end of the chapter.
The key results are summarized in Table 17.3.

TABLE 17.3
Summary of Asymptotic Results for Autoregressions Containing a Unit Root

Case1:
Estimated regression:

\320\243,
=

\302\243Ay,-\\ + &\320\254\321\203,-\320\263+ \342\226\240\342\200\242\342\226\240+ Cp-Ay,-P*i + \320\240\320\243,-1+ e,

True process: same specification as estimated regression with p = 1

Any t or Ftest involving \302\2431;f2, \342\200\242\342\226\240\342\226\240, fp-i can be comparedwith the usual t
or F tables for an asymptotically valid test.
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TABLE 17.3 (continued)

ZDF has the same asymptotic distribution as the variable described under the

heading Case 1 in Table B.5.

OLS t test of p = 1 has the same asymptotic distribution as the variable

described under Case 1 in Table B.6.

Case 2:
Estimated regression:

\320\243,
=

\302\243Ay,-i + \302\243\320\220\321\203,-\320\263+ \342\200\242\342\200\242\342\200\242+ \302\243\342\200\236-\320\220\321\203,-\321\200+,
+ a + \321\200\321\203,_,+ \320\265,

True process: same specification as estimated regression with a = 0 and

P= 1

Any t or F test involving &,&>\342\200\242\342\200\242\342\200\242<\302\243P-i
can be compared with the usual t

or F tables for an asymptotically valid test.

ZDF has the same asymptotic distribution as the variable describedunder Case

2 in Table B.5.
OLS t test of p = 1 has the same asymptotic distribution as the variable

described under Case 2 in Table B.6.

OLS F test of joint hypothesis that a = 0 and p
= 1 has the same asymptotic

distribution as the variable describedunder Case 2 in Table B.7.
Case3:

Estimated regression:

\320\243,
=

\302\243Ayt-i + \320\241\320\263\320\254\321\203,-\320\263+ \342\200\242\342\200\242\342\200\242+
\302\243\342\200\236-\320\220\320\243,-\320\240+\\

+ \320\260+ p^_, + e,
True process:same specification as estimated regression with \320\260\320\2440 and

P= 1

pT converges at rate \320\242\321\210to a Gaussian variable; all other estimated coeffi-
coefficientsconverge at rate TU2to Gaussian variables.

Any t or F test involving any coefficients from the regression can be compared
with the usual tovF tables for an asymptotically valid test.

Case4:
Estimated regression:

y, = SAy,-i + \302\243\320\220\321\203,-\320\263+ \342\200\242\342\200\242\342\200\242+ \302\243P-Ay,-P + i + a + \320\240\320\243.-1+ 8t + e,
True process: same specification as estimated regression with a any value,

p
= 1, and S = 0

Any t or F test involving f|, &>\342\200\242\342\200\242\342\200\242>(P-1 can be compared with the usual t
or F tables for an asymptotically valid test.

ZDF has the same asymptotic distribution as the variable describedunder Case

4 in Table B.5.
OLS t test of p = 1 has the same asymptotic distribution as the variable

described under Case 4 in Table B.6.

OLS F test of joint hypothesis that p = 1 arid S = 0 has the same asymptotic
distribution as the variable described under Case 4 in Table B.7.

Notes to Table 17.3
Estimated regression indicates the form in which the regression is estimated, using observations

( = I. 2, . . . , T and conditioning on observations t = 0, -1, . . . , \342\200\224
p + 1.

True process describes the null hypothesis under which the distribution is calculated. In each
case it is assumed that roots of

A
- (,z- f,z- f,,-,z\"-')= 0

are all outside the unit circle and that e, is i.i.d. with mean zero, variance a--, and finite fourth moment.
ZUF in each case is the following statistic:

Zw- TiPr -
l)/(l

- l.T - Lt \302\243,-,.,),

where fiT. f,,T. f,-r ^,.,-7.
are the OLS estimates from the indicated regression.

OLS l test ofp= 1 is (pT
-

l)/oi,r.
where

&>\321\202
is the OLS standard error of />r.

OLS F test of a hypothesis involving two restrictions is given by expression [17.7.39].
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Example17.9
The following autoregression was estimated by OLS for the GNP data in Figure
17.3 (standard errors in parentheses):

y, = 0.329 \320\224_\321\203,_,+ 0.209 \320\254\321\203,_2
- 0.084 \320\224_\321\203,_3

A1.1O77) @.0813) @.1)818)

- 0.075 \320\224^,_4+ 35.92 + 0.94969 y,_i + 0.0378 t.
A1.D7SH) A3.57) AH19386) @.0152)

\320\235\320\265\320\263\320\265,\320\242= 164 and the augmented Dickey-Fuller p test is

164
1 - 0.329

- 0.209 + 0.084 + 0.075
@.94969

- 1) = -13.3.

Since -13.3 > -21.0, the null hypothesis that the log of GNP is ARIMAD,

1, 0) with possible drift is accepted at the 5% level.The augmented Dickey-

Fuller t test also acceptsthis hypothesis:

@.94969
- l)/@.019386)= -2.60> -3.44.

The OLS F test of the joint null hypothesis that p = 1 and S = 0 is 3.74 <
6.42,and so the augmented Dickey-Fuller Ftest is alsoconsistent with the unit
root specification.

Unit Root AR(p) Processes with p Unknown

Various suggestions have beenproposedfor how to proceed when the process
is regarded as ARIMA(p, 1, 0) with p unknown but finite. One simple approach

is to estimate [17.7.11] with p taken to be someprespecifiedupper bound p. The
OLS t test of

Cp-\\
= 0 can then be compared with the usual critical value for a t

statistic from Table B.3. If the null hypothesis is accepted, the OLS F test of the

joint null hypothesis that both Cp-1 =0 and
\320\241\321\200-\320\263

= 0 can be comparedwith the

usual FB, T - k) distribution in Table B.4. The procedurecontinues sequentially

until the joint null hypothesis that (-_[ = 0, ^_2 = 0,. . . , ^_t
= 0 is rejected

for some (. The recommended regression is then

y, = CAy,-\\ + \302\243\320\220\321\203,-2+ \342\200\242\342\200\242\342\226\240+ (p-Ay,-p+t + a + py,_{ + St.

If no value of ( leads to rejection, the simple Dickey-Fuller test of Table 17.1 is
used. Hall A991) discussed a variety of alternative strategies for estimating p.

Just as in the Phillips-Perron consideration of the MA(<*>) case, the researcher

might want to choose bigger values for p, the autoregressive lag length, the larger
is the sample size T. Said and Dickey A984) showed that as long as p goes to

infinity sufficiently slowly relative to T, then the OLS t test of p = 1 can continue

to be compared with the Dickey-Fuller values in Table B.6.

Again, it is worthwhile to keep in mind that there always exists a p such
that an ARIMA(p, 1, 0) representation can describe a stationary process arbi-

arbitrarily well for a given sample. The Said-Dickeytest of p = 1 might therefore

best be viewed as follows. For a given fixed p, we can certainly ask whether an

ARIMA{p
- 1, 1, 0) describesthe data nearly as well as an ARIMA(p, 0, 0).

Imposing p = 1 when the true value of p is close to unity may improve forecasts

and small-sample estimates of the other parameters. The Said-Dickey result permits

the researcher to use a larger value of p on which to base this comparison the

larger is the sample size T.

530 Chapter 17 \\ Univariate Processes with Unit Roots



17.8. Other Approaches to Testing for Unit Roots
This section briefly describes some alternative approaches to testing for unit roots.

Variance Ratio Tests

Let

\320\254\321\203,
= \320\260+ \320\270\342\200\236

where

Hi
\321\203-\320\276

for e, a white noise sequencewith variance a2. Recall from expression [15.3.10]
that the permanent effect of e,on the level of y,+s is given by

lim

\\iy, is stationary or stationary around a deterministic time trend, an innovation e,
has no permanent effect on y, requiring i/\302\273(l)

= 0.

Cochrane A988) and Lo and MacKinlay A988) proposeda test for unit roots
that exploits this property. Consider the change in \321\203over s periods,

y,+. ~
y,

= as + ul+s + \320\272,+,_, + \342\200\242\342\200\242\342\200\242+ \320\272,+\342\200\236 [17.8.1]

and notice that

(\320\243,+,
~

y,)ls = a + s-l(ul+s + u,+s_, + \342\200\242\342\200\242\342\200\242+ \320\272,+1). [17.8.2]

The second term in [17.8.2] could be viewed as the sample mean of s observations

drawn from the process followed by u. Thus, Proposition 7.5(b) and result [7.2.8]
imply that

lim j-Var[j-'(\302\253,+, + \320\270,+,_, +
\342\200\242\342\200\242\342\200\242+ \320\270,+1)]

=
<\320\2632-[^A)]2. [17.8.3]

Let aT denote the average change in \321\203in a sample of T observations:

\320\263

\302\253\320\263
= T~l 2 (\320\243,

~
\320\243,-\\)-

Consider the following estimate of the variance of the change in \321\203over its value s
periods earlier:

Ms) = T-1 t (y,+s
~

\320\243,
~

&TsJ. [17.8.4]

This should converge in probability to

Hs) = E(y,+S-
y,

- asJ =
E{u,+S + \302\253,+s_, +

\342\200\242\342\200\242\342\200\242+ ul+1J [17.8.5]

as the sample size T becomes large. Comparing this expression with [17.8.3],

lim s-'\342\226\240/(\302\253)
=

\320\276-2'[\321\204A)]2.

Cochrane A988) therefore proposed calculating [17.8.4] as a function ofs. If
the true process for y, is stationary or stationary around a deterministic time trend,
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this statistic should go to zero for large s. If the true process for y, is /A), this
statistic gives a measure of the quantitative importance of permanent effects of e
as reflectedin the long-run multiplier <AA). However, the statistic in [17.8.4] is
not reliable unless s is much smaller than T.

If the data truly followed a random walk so that <A(L)
= 1, then J(s) in

[17.8.5] would equal s \342\200\242<r2 for any i, where a2 is the variance of ur Lo and MacKinlay
A988) exploited this property to suggest tests of the random walk hypothesis based

on alternative values of s. See Lo and MacKinlay A989) and Cecchetti and Lam

A991) for evidence on the small-sample properties of these tests.

Other Testsfor Unit Roots

The Phillips-Perron approach was based on an MA(<*>) representation for Ly,,
while the Said-Dickey approach was based on an AR(<x>) representation. Tests based
on a finite ARMA(p, q) representation for \320\224_\321\203,have been explored by Said and

Dickey A985), Hall A989), Said A991), and Pantula and Hall A991).
A number of other approaches to testing for unit roots have been proposed,

including Sargan and Bhargava A983), SoloA984),Bhargava A986), Dickey and
Pantula A987), Park and Choi A988), Schmidt and Phillips A992), Stock A991),
and Kwiatkowski, Phillips, Schmidt, and Shin A992). See Stock A993) for an

excellent survey. Asymptotic inference for processes with near unit root behavior

has been discussed by Chan and Wei A987), Phillips A988), and Sowell A990).

17.9. Bayesian Analysis and UnitRoots
Up to this point in the chapter we have adopted a classicalstatistical perspective,

calculating the distribution of p conditional on a particular value of p such as p = 1.
This section considers the Bayesian perspective,in which the true value of p is

regarded as a random variable and the goal is to describethe distribution of this
random variable conditional on the data.

Recall from Proposition 12.3 that if the prior density for the vector of unknown
coefficients p and innovation precision a'1 is of the Normal-gamma form of [12.1.19]
and [12.1.20], then the posterior distribution of p conditional on the data is mul-

tivariate t. This result holds exactly for any finite sample and holds regardless of
whether the process is stationary. Thus, in the case of the diffuse prior distribution

represented by N = A = 0 and M~' = 0, a Bayesian would essentially use the

usual t and F statistics in the standard way.
How can the classical distribution of p be strongly skewed while the Bayesian

distribution of p is that of a symmetric t variable? Sims A988) and Sims and Uhlig
A991) provided a detailed discussion of this question. The classical test of the null

hypothesis p = 1 is based only on the distribution of p when the true value of p
is unity. By contrast, the Bayesian inference is based on the distribution of p|p for
all the possible values of p, with the distribution of p|p weighted according to the

prior probability for p. If the distribution of p|p had the same skew and dispersion
for every p as it does at p = 1, then we would conclude that, having observed any

particular p, the true value of p is probably somewhat higher. However, the dis-
distribution of p|p changes with p\342\200\224thelower the true value of p, the smaller the

skew and the greater the dispersion, since from [17.1.3] the variance of Vr(p -
p)

is approximately A \342\200\224
p2). Because lower values of p imply greater dispersion for

p, in the absenceof skew we would suspect that a given observation p = 0.95was

more likely to have been generated by a distribution centered at p = 0.90with
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large dispersion than by a distribution centered at p = 1 with small dispersion.
The effects of skew and dispersion turn out to cancel,so that with a uniform prior
distribution for the value of p, having observed p = 0.95, it is just as likely that
the true value of p is greater than 0.95 as that the true value of p is less than 0.95.

Example 17.10
For the GNP regression in Example 17.9,the probability that p 2 1 conditional
on the data is the probability that a t variable with T = 164 degrees of freedom\"

exceeds A
- 0.94969)/0.019386= 2.60.From Table B.3, this probability is

around 0.005. Hence, although the value of p must be large, it is unlikely to
be as big as unity.

The contrast between the Bayesian inference in Example 17.10 and the clas-
classical inference in Example 17.9 is one of the reasons given by Sims A988) and
Sims and Uhlig A991) for preferring Bayesian methods. Note that the probability
calculated in Example 17.10 will be less than 0.025 if and only if a classical 95%
confidence interval around the point estimate p does not contain unity. Thus, an
alternative way of describing the finding of Example 17.10 is that the standard

asymptotic classical confidence region around p does not include p
= 1. Even so,

Example 17.9 showed that the null hypothesis of a unit root is accepted by the

augmented Dickey-Fuller test. The classical asymptotic confidence region centered

at p = p seems inconsistent with a unit root, while the classical asymptotic con-
confidence region centered at p = 1supports a unit root. Such disconnected confidence
regions resulting from the classical approach may seem somewhat troublesome and

counterintuitive.14 By contrast, the Bayesian has a single, consistent summary of
the plausibility of different values of p, which is that implied by the posterior
distribution of p conditional on the data.

One could, of course,use a prior distribution that reflected more confidence
in the prior information about the value of p. As long as the prior distribution was
in the Normal-gamma class, this would causeus to shift the point estimate 0.94969
in the direction of the prior mean and reduce the standard error and increase the

degrees of freedom as warranted by the prior information, but a t distribution
would still be used to interpret the resulting statistic.

Although the Normal-gamma class is convenient to work with, it might not

be sufficiently flexible to reflect the researcher's true prior beliefs. Sims A988, p.
470)discussedBayesian inference in which a point masswith positive probability
is placed on the possibility that p = 1. DeJongand Whiteman A991) used numerical
methods to calculate posterior distributions under a range of prior distributions
defined numerically and concluded that the evidence for unit roots in many key

economic time series is quite weak.

Phillips A991a) noted that there is a prior distribution for which the Bayesian
inference mimics the classicalapproach. He argued that the diffuse prior distri-
distribution of Proposition 12.3 is actually highly informative in a time series regression
and suggested instead a prior distribution due to Jeffreys A946). Although this

prior distribution has some theoretical arguments on its behalf, it has the unusual

property in this application that the prior distribution is a function of the sample
size T\342\200\224Phillipswould propose using a different prior distribution for f(p) when

\"Recall from Proposition 12.3(b) that the degrees of freedom are given by N* = N. + T. Thus,
the Bayesian interpretation is not quite identical to the classical t statistic, whose degrees of freedom

would be T - k.

\"Stock A991) has recently proposed a solution to this problem from the classical perspective.
Another approach is to rely on the exact small-sample distribution, as advocated by Andrews A993).
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the analyst is going to obtain a sampleof size50 than when the analyst is going to
obtain a sampleof size100.This would not be appropriate if the prior distribution
is intended to represent the actual information available to the analyst before seeing
the data. Phillips A991b, pp. 468-69) argued that, in order to be truly uninfor-

mative, a prior distribution in this context would have this property, since the larger

the true value of p, the more rapidly information about p contained in the sample

{.Vi. \320\243\320\263,\342\226\240\342\226\240\342\226\240. \320\243\321\202\\'s going to accumulate with the sample size T. Certainly the

concept of what it means for a prior distribution to be \"uninformative\" can be
difficult and controversial.15

The potential difficulty in persuading others of the validity of one's prior
beliefs has always been the key weakness of Bayesian statistics, and it seems

unavoidable here. The best a Bayesian can do may be to take an explicit stand on

the nature and strength of prior information and defend it as best as possible. If

the nature of the prior information is that all values of p are equally likely, then

it is satisfactory to use the standard OLS t and F tests in the usual way. If one is
unwilling to take such a stand, then Sims and Uhlig urged that investigators report
both the classical hypothesis test of p = 1 and the classical confidence region
around p and let the reader interpret the results as he or she sees fit.

APPENDIX 17.A. Proofs of Chapter 17 Propositions

\342\226\240Proof of Proposition 17.2. Observe that

.1-1 J.l /\302\253(I

=
{0\320\233+ \320\244,\320\265,-1+ 0\320\274\320\263,.,+ \342\200\242\342\200\242\342\200\242+ 0,\320\265\342\200\236+ \320\244,+\320\245\320\265.\321\205+ \342\200\242\342\200\242\342\200\242}

+ {0,,\320\265,.,+ 0,\320\265,_,+ 0,\320\263,_.,+ \342\200\242\342\200\242\342\200\242+ \320\233-!\302\243\320\270+ \320\244,\320\265-\\+ \342\226\240\342\226\240\342\226\240)

+ {</\342\204\226-'+ i/\302\273i\302\243,-j+ ifce,-4 + \342\200\242\342\200\242\342\200\242+ \321\204,.2\320\225\320\270+ 0,->\302\243-i+ \342\226\240\342\226\240\342\226\240}

+ \342\226\240\342\200\242\342\200\242+ {</\302\273\342\200\236\302\243,+ !/\302\273,\302\243\342\200\236+ 0:\302\243,,+ \342\200\242\342\200\242\342\200\242}

=
0\342\200\236\320\265,+ @,, + 0,)\320\265,_,+ (\320\271,+ \321\204\321\205+ 0i)e,-2 + '\342\200\242\342\200\242

+ (\320\244\302\273+ \321\204,+ \321\204;+ \342\226\240\342\226\240\342\226\240+ \321\204,-,)\320\265\321\205+ (\321\204,+ \321\204,+ \342\226\240\342\226\240\342\226\240+ \321\204,)\320\265\342\200\236

+ (\320\2442+ \320\244*+ \342\226\240\342\226\240\342\226\240+ \320\244,+ ,)\320\265-1+ \342\200\242\342\226\240\342\226\240

'
=

(\321\204\320\270+ \321\204\321\205+ \321\2042+ \342\200\242\342\226\240\342\200\242)\302\243,
-

(\321\204\321\205+ \320\244,+ \320\244,+ \342\200\242\342\200\242\342\200\242)\302\253.

+ @1, + 0, + 04 + \342\200\242\342\200\242\342\200\242)\302\253,-!
-

@2 + 03 + \342\200\242\*,-\342\226\240

+ @,, + 0, + 0\321\207+ \342\200\242\342\200\242\342\200\242)\302\253,-:
-

(\320\244>+ 04 + \342\200\242\342\200\242\342\200\242)\302\253,-:+ \342\200\242\342\200\242\342\200\242

+ @U + 0, + \321\2042+ \342\200\242\342\200\242\342\200\242)\302\253!
- @, + 0,+1 + \342\200\242\342\200\242\342\200\242)*.

+ @. + 0J + 05 + \342\200\242\342\200\242\342\200\242)\320\265\321\205\321\205
~ @,+ , + \321\204,+ 2 + \342\226\240\342\226\240\342\226\240)\342\202\254\342\200\236

+ @2 + 0J + *, + \342\200\242\342\200\242\342\200\242)\302\243-)
~

\342\204\226+ 2 + \320\244,+ > + \"Oe-I + \342\200\242\342\200\242\342\200\242

where

\342\226\240\320\237,
=

-@. + 05 + 0\320\273+ \342\200\242\342\200\242\342\200\242)\302\253.
- (*! + \320\244>+ 04 + \342\226\240\342\226\240\342\226\240)\320\265,-1

-
(\320\244\320\267+ 04 + \320\244,+\342\200\242\342\200\242\342\226\240)\320\265,-2

~ \342\226\240\342\226\240\342\226\240

\320\247\320\270
= -@, + \320\2442+ 0, + \342\200\242\342\200\242\342\200\242)\302\253<!

-
@2 + 03 + 04 + \"Oe-I

-
@, + 04 + 05 + \342\200\242\342\200\242\342\200\242)S-2

- \342\226\240\342\226\240\342\226\240\342\200\242

\"See the many comments accompanying Phillips A991a).
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Notice that tj,
=

\320\245\320\224\321\206^\320\265,.^,where a, =
-(\321\2041+,+ \321\204/+2+ \"'). with {a/}/L,i absolutely

summable:

2\\\320\260,\\
= |0., + \321\204,+ \321\2043+\342\226\240\342\226\240\342\226\240]+ \\\321\2042+ \321\2043+ \321\204,+ ---| + |0., + 0, + 05 + \342\200\242\342\200\242\342\200\242!+ \342\200\242\342\200\242\342\200\242

s(W + \320\250+ \\\320\244>\\+ \342\226\240\342\226\240\342\226\240}+ \320\250+ \\\320\244,\\+ \320\250+ \342\226\240\342\226\240\342\226\240}

+ {\320\250+ \320\250+ \320\250+ \342\226\240\342\200\242\342\226\240}+ \342\226\240\342\200\242\342\200\242

)-\302\253

which is bounded by the assumptions in Proposition 17.2. \342\226\240

\342\226\240Proof of Proposition 17.3.

(a) This was shown in [17,5.9].
(b) This follows from [7.2.17] and the fact that \320\225(\321\211)

=
\321\203\342\200\236.

(c) This is implied by [7.2.14].

(d) Since \302\243
= 2;.,u,, Proposition 17.2asserts that

6 =
</\302\273(!)Z E.. + V,

~
*?\302\253\342\200\242 [I7.A.2]

\342\200\242-I

Hence,

\321\202 \321\202I t-\\
t-i V ^ t-i V I //i\\ V/ Z/ &-,\302\243,

= / Z/ I \320\244\\\321\2072j E.< + Vi-i ~ 4>

T
=

\321\204A)-\320\242->2 (\302\243,+ \302\243.-+ \342\200\242\342\200\242\342\200\242+ \302\243,-,)e, [17.A.3]

+ *
\"

Z/ \\Vi-i ~
%)\302\243c

1-2

But [17.3.26] establishedthat

\321\202

T-{ 2 (et + Ez + \342\200\242\342\200\242\342\200\242+ e,-,)^-^ (l/2)cr2-{[W(l)P - 1}. [17.A.4I
( = 2

Furthermore, Proposition 17.2 ensures that {(tj,_,
-

%)\302\243,},-,is a martingale difference

sequence with finite variance, and so, from Example 7.11,

T~l 2 (Vi-i
~

Vn)ei\342\200\224*Q' [17.A.5]

Substituting [17.A.4] and [17.A.5] into [17.A.3] yields

\320\263

2/ f'-i\302\243<~*
(l/2)cr--[i^(l)j\342\200\242{[H'(l)]-

- 1}, [17.A.6]

as claimed in (d).

(e) For/ = 0 we have from [17.1.11] that

T-{ 2 6-.\302\253,
= (\320\251\320\242~1&

-
(l/2)T-'(\302\253f + \302\253i+ \342\200\242\342\200\242\342\200\242+ u-T). [17.A.7]

But

\342\200\242
[17.A.8]

from result (a). Also,

r-'(\302\253f + \302\253\302\247+
\342\200\242\342\200\242\342\200\242+ <4)-^?o
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from result (\321\201).Thus, [17.A.7] converges to

T-1 2 t.tuA A/2){A--[WA)]2
-

?\342\200\236}, [17.A.9]

which establishes result (e) for / = 0.
For/ > 0, observe that

\302\243-,
=

f,_y_, + \320\230,-,+ U,.,-+, + \342\200\242\342\200\242\342\200\242+ \320\230,-!-

implying that

7-' 2 6-.\302\253,-/
= \320\223\"'2 (\302\243-;., + \320\230,.;+ U,./+1 + \342\200\242\342\200\242\342\200\242+ \320\230,_,)\320\230,_,

= \320\223\0212 \302\243-/-.\302\253,-/ [17.A.10]

\320\263

+ \320\242-12 (u,.; + u,_>+1 + \342\200\242\342\200\242\342\200\242+ \302\253,.,)\302\253,.,.

But

\320\263-2 \320\261-,_,\320\270,-,
=

[(\320\263
-

/)/\321\202]-(\321\202
- jy^t-vA (m){x?-[w(i)Y -

%}.
(-/+1 '->

as in [17.A.9]. Also,

7\"'-S (\",-y + \",-(+> + \342\226\240\342\226\240\342\226\240+ u,-i)u,-j^* % + Ti + \320\243\320\263+ \342\226\240\342\226\240\342\226\240+ \320\223;-!,

from result (c). This, [17.A.10]converges to

T-'f l-M-A A/2){\320\220\320\247\320\2511)]2
-

\321\203\342\200\236]+ {\321\203,+ \321\203,+ y2 + \342\226\240\342\226\240\342\226\240+ \321\203,..,).

Clearly, \320\223\0212/.,f,-,!/,-, has the same asymptotic distribution, since

(f) From the definition of \302\243in [17.5.11] and XT(r) in [17.5.4], it follows as in [17.3.15]
that

l'VT-XT(r)dr= r-^-i
Jo ,,,

Result (f) then follows immediately from [17.5.5].

(g) First notice that

T T

where/-T\0222,\320\263,1\320\270,_,-^0. Hence,

T T T

\321\202*-
2, tu,-i -* i 2,1'- /\320\232-;-\302\273

' 2, tu,.

But from [17.3.19],

T T T ft
Z/ *\"< = * 2j u, ~ ' 2j Sr-i ~* A- kKA) \342\200\224A' I vr(r) ar,
/-1 ,-1 ;-l Jo

by virtue of (a) and (f).

(h) Using the sameanalysis as in [17.3.20] through [17.3.22], for \302\243defined in [17.5.11]
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and XT(r) defined in [17.5.4], we have

\320\242~'\320\250/\320\242+t\\IT + \342\226\240\342\226\240\342\226\240+ ft. ,/7} =
\302\243

Wf-XT(r)Y dr \320\233
[\320\276\320\263>A)]2-|'

[W(r)f dr,

by virtue of [17.5.5].
(i) As in [17.3.23],

{([7V]\302\273+ 1)/\320\223}-{(\302\253,+ \320\2702+ \342\200\242\342\200\242\342\200\242+ um.)IT}dr

{([7V]\302\273+ l)/r}-Jfr(r)dr

\320\233\320\265\321\202-\321\204A)-j\\w(r)dr,

from [17.5.5] and the continuous mapping theorem,

(j) From the same argument as in (i),

l

{([Tr]* + 1)/\320\223}-{(\302\253,+ \302\253,+ \342\200\242\342\200\242\342\200\242+\320\270G>1.)/\320\223}=dr

(k) This is identical to result (h) from Proposition 17.1, repeated in this proposition
for the reader's convenience. \342\226\240

Chapter 17 Exercises

17.1. Let {\320\270,}be an i.i.d. sequencewith mean zero and variance cr1, and let y, = u, +
u2 + \342\226\240\342\226\240\342\226\240+ u, withy,, = 0. Deduce from [17.3.17] and [17.3.18] that

KMKMi !])\342\200\242

where 2 indicates summation over 1 from 1 to T. Comparing this result with Proposition
17.1,argue that

where the integral sign denotes integration over r from 0 to 1.

17.2. Phillips A987) generalization of case 1, Suppose that data are generated from the

process y, = y,-i + \320\270\342\200\236where \320\270,=
\321\204(\320\246)\320\265\342\200\2362,*\342\200\236/-]^|< \302\273,and e, is i.i.d. with mean zero,

variance cr2, and finite fourth moment. Consider01,5 estimation of the autoregression y,
=

py,_, + u,. Let pT =
By/3_,)-1By,-,y,) be the OLS estimate of p, si =

(\320\223
-

I)\021 x

2\320\271;the OLS estimate of the variance of the regression error, v\\T
= s\\- By,2_,)\"' the OLS

estimate of the variance of (iT,and tT -
(pT

-
l)/a-fT the OLS t test of p = 1, and define
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A \342\204\242
\321\201\320\263-\321\204A).Use Proposition 17.3 to show that

(a) T{fiT
- 1) \320\233\320\235

(b) r-tfL-i-

(c) ,\320\223\320\233

(d) \320\223(\321\200>
- 1) - <(

(e) (VA2)\023-^
-

\342\204\226
-

Y ~ 1},

\\[W(r)Ydr

'

[\320\251\320\263)\320\223

Suggest estimates of yn and A2 that could be used to constructthe statistics in (d) and (e),
and indicate where one could find critical values for these statistics.

17.3. Phillips and Perron A988) generalization of case 4. Suppose that data are generated

from the process y, = a + y,., + \302\253\342\200\236where u, =
i/i(L)en '2,*,\320\2771'\\\321\204/\\< \302\260\302\260.and \302\243,isi-i.d.

with mean zero, variance cr-, and finite fourth moment, and where a can be any value,
including zero. Consider OLS estimation of

y, = a + py,-t + St + \320\270,.

As in [17.4.49], note that the fitted values and estimate of p from this regression are identical
to thosefrom an OLS regression of y, on a constant, time trend, and f,_, \342\200\224y,-t

- a(t - 1):
y,

= a* + p'\302\243_,+ 5*/ + u,,
where, under the assumed data-generating process, f, satisfies the assumptionsof Proposition
17.3. Let (a*T,fi, 8$)' be the OLS estimates given by equation [17.4.50], Sf =

(\320\223-3)\021 x

2uf the OLS estimate of the variance of the regression error, \320\264-\321\206
the OLS estimate of

the variance of p\302\243given in [17.4.54], and t*T =
(p*T

-
!)/<?>,- the OLS t test of p

= 1.
Recall further that pj, &},\342\226\240,and t\\ are numerically identical to the analogousmagnitudes
for the original regression, p7, o-Jr, and tT. Finally, define A =

<\321\202-\321\204A).Use Proposition 17.3
to show that

T--2f

\"l

0

0

0

A

0

<fj
0

lj

1/2

(b)

W(/-) dr

jw(r)dr j[W(r)]2dr jrW(r)dr

1/2 [ r\\V(r) dr 1/3

1 0
0 A

0 0 1 -
j W(r) dr
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~A

0

0

0

1

0

\302\2601
0

1/2

111

W(r) dr

j[W(r)]2dr \\rW(r)dr

j
rW(r) dr 1/3

-
/ W(z-)

(d)

(e)

(f)

1 0]

j W(r) dr 1/2

j[W(r)Ydr jrW(r)dr

(\320\2207-\321\203\342\200\236)\321\202

1 0]

1/2

1/2

'(r) dr 1/2

(r)Ydr \\rW(r)dr

V(r) dr 1/3

1/3

W(l) - | W(r) dr

V;

(g) sr}A V +

Suggest estimates of -y,, and A: that could be used to construct the statistics in (f) and (g),
and indicate where one could find critical values for these statistics.

17.4. Generalization of case 1 for autoregression. Consider OLS estimation of

y,
= lAy,., + &\320\224.\320\243.-2+ \342\200\242\342\200\242\342\200\242+ lp-Ay,-P+i + \320\240\320\243'-i+ \302\253/\342\200\242

where e, is i.i.d. with mean zero, variance a2, and finite fourth moment and the roots
of A

- f,z -
\302\243>z2

- \342\200\242\342\200\242\342\200\242-
Cp izP~') \342\200\2240 are outside the unit circle. Define A \342\226\240

<rf(l -\302\243,-\302\2432-' \302\243P-i)and \321\203,
=

\302\243{(\320\224\321\203,)(\320\224\321\203,_,.)}.Let tT *
(\302\243,,r,\302\2432.T,. . . , f;,_,.r)'

be the (p - 1) x 1 vector of estimated OLS coefficients on the lagged changes in y, and
let \302\243be the corresponding true value. Show that if the true value of p is unity, then

- Q
T(pT

- 0'
hl

where V is the [(p - 1)x (p - 1)]matrix defined in [17.7.19] and h,
~ W@, cr-V). Deduce

from this that

(a) T^itr- \302\243)-4;V@,cr=V-');

(b) T(pT - -Lt &-..T-)\342\226\240*{[W(l)p
- 1}

j[W(r)fdr

'



[W(r)Y
drj

Where could you find critical values for the statistics in (b) and (c)?

17.5. Generalization of case 3 for autoregression. Consider OLS estimation of

y,
=

\302\243Ay,-i+ \302\243Ay,-2+ \342\226\240\342\226\240\342\226\240+ \302\243,-,\320\233\321\203,-,,,,+ a + py,_, + \320\265\342\200\236

where e< is i.i.d. with mean zero, variance or2, and finite fourth moment and the roots of

A
- f,z -

\302\243zz*
- \342\200\242\342\200\242\342\200\242-

\302\243l)_izp~l)
= 0 are outsidethe unit circle.

(a) Show that the fitted values for this regressionare identical to those for the following
transformed specification:

\320\243,
=

\302\243l\",-\\+ fA-2 + \342\200\242\342\200\242\342\200\242+ \302\243-1\"'-/.+1 + fl + \320\240\320\243.-1+ S,,

where \320\270,m \320\224\321\203,
\342\200\224

/i and /i = a/(l \342\200\224
\302\243,

\342\200\224
\302\2432

~ \"'' \342\200\224
\302\243p-\\)-

(b) Suppose that the true value of p is 1 and the true value of a is nonzero. Show

that under these assumptions,

\302\253,
= [1/A- \302\243,L-\302\2432L2 f,.,ir-')]e,

where

Conclude that for fixed yl)t the variables u, and f, satisfy the assumptions of Proposition 17.3
and that y, is dominated asymptotically by a time trend.

(c) Let 7; =
\302\243(w,u,_,), and let \302\243r

=
(\302\243,_r,\302\2432_T \302\243p-i.t)'be the (p - 1) x 1

vector of estimated OLS coefficients on (\320\270,.,,u,_2, . . . , u,_p+1); these, of course, are

identical to the coefficients on (\320\224\321\203,_!,\320\224\321\203,_2,.. . , \320\224\321\203,_/)+ 1) in the original regression. Show
that if p = 1 and \320\260\320\2440,

fv \320\276

0' 1

0' /j/2

0

i/2

2/3

- 1

.A,.

where

~ Nl
0
1

M/2

and V is the matrix in [17.7.19]. Conclude as in the analysis of Section 16.3 that any OLS
torF test on the original regression can be compared with the standard t and F tables to
give an asymptotically valid inference.

17.6. Generalization of case 4 for autoregression.Consider OLS estimation of

y,
=

\302\243Ay,.,+ f2Ay.-2 + \342\200\242\342\200\242'+ \302\243,-Ay,-p-n + \302\253+ \320\240\320\243-\\+ 8t + \320\265\342\200\236

where e, is i.i.d. with mean zero, variance cr2, and finite fourth moment and then roots of

A
\342\200\224

\302\243iz
\342\200\224

\302\243zz2
\342\200\224\342\200\242\342\226\240\342\200\242-

\302\243l,-iZ''~1)
= 0 are outside the unit circle.

(a) Show that the fitted values of this regression are numerically identical to those of

the following specification:

y,
= f,u,_, + \302\2432u,_2+ \342\226\240\342\226\240\342\226\240+ \302\243\342\200\236-.\302\253,-,,+. + M* + p\302\243-i+ S't + \302\243\342\200\236

where \320\270,
\321\210

\320\224\321\203,
-

\320\274,\321\206a a/(l -
f,

- f, - \342\200\242-.- ^.,), M* e A - p)M,f,_, -
\320\243\320\263_,

_

li(t - 1), and 8's5 + pfi. Note that the estimated coefficients \302\243rand ^r and their standard
errors will be identical for the two regressions.

(b) Suppose that the true value of p is 1 and the true value of 5 is 0. Show that under

these assumptions,

u, -
[1/A

- f,L -
\302\243X* fc-i^-1)]\",

\302\243.,
= y0 + \302\253i+ \022 + \342\200\242\342\200\242\342\200\242+ \".-I-
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Conclude that for fixed \321\203\342\200\236,the variables u, and f, satisfy the assumptions of Proposition
17.3.

(c) Again let p
= 1 and 5 = 0, and define yt = E(ujt,-j) and

A = o/A - I,- b- C-i).
Show that

\"~v \320\276 \320\276 \320\276

Sr-S)

\302\273r-1)

&?- 5*

0' 1
{\342\226\240j

W(r)dr 1/2

0' A-J W(r) rfr
A1-J [W(r)]2 dr

A-J rW(r) rfr

0' 1/2

h,

cr-W(l)

where h,
~

W@, cr3V) and V is as defined in [17.7.19].

(d) Deduce from answer (c) that

1/3

T(pT-

\342\200\242[01 0]

1/2

W(r) dr 1/2

W(r)f dr \\ r\\V(r) dr

rW(r) dr 1/3

where

1 0]

1/2

jw(r)dr \\[W(r)fdr jrW(r)dr

1/2 r\\V(r) dr 1/3

Notice that the distribution of V is the same as the asymptotic distribution of the variable
tabulated for case 4 in Table B.5,while the distribution of K/Vfi is the same as the asymptotic
distribution of the variable tabulated for case4 in Table B.6.
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18

Unit Roots

in Multivariate
Time Series

The previous chapter investigated statistical inference for univariate processes con-
containing unit roots. This chapter developscomparable results for vector processes.
The first section develops a vector version of the functional central limit theorem.
Section 18.2usesthese results to generalize the analysis of Section 17.7 to vector
autoregressions.Section18.3discusses an important problem, known as spurious

regression, that can arise if the error term in a regression is /A). One should be

concerned about the possibility of a spurious regression whenever all the variables
in a regression are /A) and no lags of the dependent variable are included in the
regression.

18.1. Asymptotic Results
for Nonstationary Vector Processes

Section 17.2 describedunivariate standard Brownian motion W(r) as a scalar con-
continuous-time process (W: r E [0, 1]-> Rl).The variable W(r) has a N@, r) dis-
distribution across realizations, and for any given realization, W(r) is a continuous

function of the date r with independent increments. If a set of n such independent

processes, denoted Wv(r), W2(r), . . . , Wn(r), are collected in an (n x 1) vector
W(r), the result is n-dimensional standard Brownian motion.

Definition: n-dimensional standard Brownian motion W(-) is a continuous-time

process associating each date r E [0, 1]with the (n x 1) vector W(r) satisfying the

following:

(a) W@) = 0;
(b) For any dates 0 ^ rx < r2 < \342\226\240\342\226\240\342\226\240< rk

< 1, the changes [\320\251\320\2632)
-

\320\251\320\263\320\236],

[W(r3)
- W(r2)],. . . ,[\320\251\320\263\320\272)

-
\320\251\320\263\321\214^\320\264]are independent multivariate Gaus-

Gaussianwith [W(s)
- W(r)] ~ N@, (s - r)ln);

(c) For any given realization, W(r) is continuous in r with probability 1.

Supposethat {v,}*.! is a univariate i.i.d. discrete-timeprocesswith mean zero

and unit variance, and let

\320\250\320\263)
- T~\\Vl + v2 + \342\226\240\342\226\240\342\226\240+ vl7>r),

where [Tr]* denotes the largest integer that is less than or equal to Tr. The func-
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tional central limit theorem states that as \320\223-*\302\260\302\260,

This readily generalizes. Suppose that{v,}r_i is an \320\270-dimensional i.i.d. vector proc-
processwith \302\243(v,)

= 0 and \302\243(v,v,')
=

1\342\200\236,and let

X?(r) -
\320\223-\302\273(\302\2731+ v2 + \342\200\242\342\200\242\342\200\242+ vtrr,.).

Then

-) \320\233
\320\251-). [18.1.1]

Next, consider an i.i.d. n-dimensional process {e,}T=i with mean zero and

variance-covariance matrix given by fl. Let P be any matrix such that

\320\237= PP'; [18.1.2]

for example,P might be the Cholesky factor of fl. We could think of e, as having

been generated from

e, =
Pv,, [18.1.3]

for v, i.i.d. with mean zero and variance 1\342\200\236.\320\242\320\276see why, notice that [18.1.3] implies
that et is i.i.d. with mean zero and variance given by

\302\243(e,e,')
=

P-\302\243(v,v,')P'
= P 1\342\200\236\320\240'= \320\237.

Let

\320\245\320\246\320\263)
^

\320\223-'(\320\2251+ e2 + \342\226\240\342\200\242\342\200\242+
\320\265G\320\243].)

= P-r-^v, + v2 + \342\226\240\342\200\242\342\200\242+ vG>].)

It then follows from [18.1.1] and the continuous mapping theorem that

VfXK)-^ P-W(-). [18.1.4]
For given r, the variable P-W(r) represents P times a N@, rl,,) vector and so has

a N@, r-PP') = N@, r-il) distribution. The process P-W(r) is described as
n-dimensional Brownian motion with variance matrix fl.

The functional central limit theorem can also be applied to serially dependent
vector processesusing a generalization of Proposition 17.2.J Suppose that

u,
= 2 *,\302\243,-.\342\200\236 [18.1.5]

where if
\321\204^

denotes the row i, column / element of 4^,

for eachi, j = 1,2,. . . , n. Then algebra virtually identical to that in Proposition
17.2 can be used to show that

E n, = *A)- 2 es + t,,
- t,0) [18.1.6]J=l S-l

where \320\244A)
s

(yfrn + %frl + yfr2 + \342\226\240\342\226\240
\342\226\240)and t\\,

= Sf.o \320\2605\320\265,_5for as =

'Thisis the approach used by Phillips and Solo A992).
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~(*j+i + *J+2+ *\320\273-\320\267+\342\226\240).and {ajf.o is absolutely summable.Expression

[18.1.6] provides a multivariate generalization of the Beveridge-Nelson decom-

decomposition.

If u, satisfies [18.1.5] where e, is i.i.d. with mean zero,. variance given by

fl = PP', and finite fourth moments, then it is straightforward to generalize to
vector processthe statements in Proposition 17.3 about univariate processes. For

example, if we define

XT(r) -
A/\320\223)2 u,, [18.1.7]

then it follows from [18.1.6] that

VT-xr(r)
= \320\263-

As in Example 17.2, one can show that

sup T-M\\r,im. -7,,,\342\200\236|\320\2330.
reto.l]

;=i,2t...,n

It then follows from [18.1.4] that

VT-XrO) \320\233V(l)-P-VT-XK-) -^ *A)-P-W(-), [18.1.8]

where *A)P-W(r) is distributed N@, \320\263[\320\244A)]\320\237-[\320\244A)]')across realizations. Fur-

Furthermore, for |, = u2 + u2 + \342\200\242\342\200\242\342\200\242+ u,, we have as in [17.3.15] that

T~3a !?,-.= \320\223VT-XrW dr \320\233\302\245(i).p. \320\223W(r) rfr, [18.1.9]
/aij JO JO

which generalizes result (f) of Proposition 17.3.

Generalizing result (e) of Proposition 17.3 requires a little more care. Consider
for illustration the simplest case, where v, is an i.i.d. (n x 1) vector with mean

zero and \302\243(v,v,')
=

1\342\200\236.Define

6|
\"to

tort= 1,2, ...,
for t = 0;

we use the symbols v, and |f here in place of u, and g, to emphasizethat v, is i.i.d.
with variance matrix given by 1\342\200\236.For the scalar i.i.d. unit variance case (n = 1,
A = y0 = 1), result (e) of Proposition 17.3 stated that

\320\223\0212 ff-ivA Wl)]2 - 1}. [18.1.10](-1
The corresponding generalization for the i.i.d. unit variance vector case (n > 1)
turns out to be

T-1 f \320\246\320\242-\320\243,+ vAt'J-i. [WA)]-[WA)]'
-

1\342\200\236; [18.1.11]

see result (d) of Proposition 18.1, to follow. Expression [18.1.11]generalizesthe

scalar result [18.1.10] to an (n x n) matrix. The row i, column i diagonal element
of this matrix expression states that

T-1 2 {&-,v, + vfca_J \320\233[Wi(l)p
- 1, [18.1.12]

where fj, v,,, and TV,(r)denote the ith elements of the vectors |f, vr, and W(r),
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respectively. The row i, column/ off-diagonal element of [18.1.11]asserts that

T-1 2 {ffj-iVfi
+ v,,&-i}

-^ [W,(lMWtil)] for i \320\244j. [18.1.13]c-l

Thus, the sum of the random variables T~1'S,f^1^_1vj, and T~lI,]L1vtl(;fj_l
convergesin distribution to the product of two independent standard Normal variables.

It is sometimes convenient to describe the asymptotic distribution of

r-12,7Lif?,_1v/, alone. It turns out that

f ft> \302\243 ,) [18.1.14]

This expression makes use of the differential of Brownian motion, denoted dWj(r).
A formal definition of the differential dWt(r) and derivation of [18.1.14]aresome-

somewhat involved\342\200\224see Phillips A988) for details. For our purposes, we will simply
regard the right side of [18.1.14] as a compactnotation for indicating the limiting

distribution of the sequence represented by the left side. In practice, this distribution

is constructed by Monte Carlo generation of the statistic on the left side of [18.1.14]
for suitably large T.

It is evident from [18.1.13] and [18.1.14] that

Wfr) dWt{r) = W^D-WfO) for i \320\244j,

whereas comparing [18.1.14] with [18.1.12] reveals that

W,(r) dWt(r)
=

4{[W,A)]2
- 1}. [18.1.15]

The expressions in [18.1.14] can be collectedfor i, j = 1, 2, . . . , n in an

(n x n) matrix:

\320\223'12 If-xv; \320\233\320\223[W(r)] [rfW(r)]'. [18.1.16]

The following proposition summarizes the multivariate convergence results

that will be used in this chapter.2

Proposition 18.1: Let u, be an (n x 1) vector with

u, =

where {i-*j}*_o is absolutely summable, that is, Sf_0 i-|i/'-J)|< <*>for each i, / = 1,
2, ... ,n for \321\204^

the row i, column j element of 4fs. Suppose that {e,} is an i.i.d.
sequencewith mean zero, finite fourth moments, and \302\243(e,e,')

= fl a positive definite

matrix. Let fl = PP' denote the Cholesky factorization of Si, and define

ay
= E(8a8jt) = row i, column j element of ft

(m-xl)

\302\243(u,u,'-,)
= L \342\231\246,+-\302\253\342\231\246:for s = 0, 1, 2, . . .

/or arbitrary v s 1 [18.1.17]

'These or similar results were derived by Phillips and Durlauf A986), Park and Phillips A988,1989),
Sims, Stock, and Watson A990), and Phillips and Solo A992).
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v - E(V;) =

\320\223\320\276\320\223,

\320\223-! \320\223\320\276

\320\263,.,1

\320\223\320\276J

\320\233- \320\244A)-\320\240
=

(\320\244\320\276+ *i + *2 + \342\200\242\342\200\242
-)-\320\240 [18.1.18]

(\320\270\321\205\320\270)

g, \320\265Ul + u2 + \342\200\242\342\226\240\342\200\242.+ u, fort = 1,2, ... ,\320\242 [18.1.19]

with g0 = 0. Then

\321\202

(\302\253) 2
(-1

<W A-W(l);

\320\263,\320\262\320\270\320\233N@, /or i = 1, 2, .... \320\270;

(\321\201)\320\223\0212 4,11,'-, \320\233\320\223, /or i = 0, 1, 2, . . . ;

- \320\2230 for s = 0

I A-[WA)]-[WA)]'-A' + E \320\223, /or.
= 1, 2, . . .

V H--J + 1

i fc.lB;4 \320\273-f
\320\223[w(r>] [rfW(r)]')-A' + i r;;

[rfW(r)]
j-P';

(\320\220)

@

(/)

-^2
\320\224

fur-, -*\342\226\240

\320\233-J rJ

-
\302\243

W(r)
rfrJ

/or * = 0, 1,2,

(-1

-[W(r)]'
rfrJ-A';

\320\263

@ \320\223-<\"+1>2 ''\"\342\231\246l/(v + 1) /or v = 0, 1, 2,/-1
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18.2. Vector Autor-egressions Containing Unit Roots
Suppose that a vector y, could be described by a vector autoregression in the

differences \320\224\321\203,.This section presents results developedby Park and Phillips A988,
1989)and Sims, Stock, and Watson A990) for the consequences of estimating the
VAR in levels. We begin by generalizing the Dickey-Fuller variable transformation
that was used in analyzing a univariate autoregression.

An Alternative Representation of a VAR(p) Process
Let y, be an (n x 1) vector satisfying

A\342\200\236
-

\320\244\320\263\320\254
-

\320\2442\320\2542 \320\244\321\200\320\254\\321\203,")
= \320\260+ \320\265\342\200\236[18.2.1]

where \320\244,denotes an (\320\277\321\205\320\277)matrix for s = 1, 2, . . . , \321\200and a and e, are
(\320\277\321\2051) vectors. The scalar algebra in [17.7.4] works perfectly well for matrices,

establishing that for any values of \320\244\321\214\320\2442). . . , \320\244\321\200,
the following polynomials

are equivalent:

(I-
- \302\253

where

t-

=

\342\200\224
[<

-
\320\2442\320\2542

- - 4

A\342\200\236
-

PL)
-

\302\253,L

\320\240-\320\244

I\302\273,+]+ \320\244,+2+
\342\200\242\342\200\242\342\200\242

\\LP)

+ taV

\342\200\2421+ \320\244

+ \320\244.

! +

2 +

]

\342\226\240\342\200\242\342\226\240+

fori

\320\244\321\200

= 1, 2, . .

[18.2.2]
')(i -

b),

[18.2.3]

.,p-l. [18.2.4]

It follows that any VAR(p) process[18.2.1]can always be written in the form

A\342\200\236
- PL)y, -

\302\253,L+ ?2L2 + \342\226\240\342\200\242\342\200\242+ tp.1L\"-I)(l
- L)y, = a + e,

or

\320\243,
= E^y.-i + \320\2252\320\224\321\203\302\253-2+ \342\200\242\342\200\242\342\200\242+

\320\225\342\200\236-1\320\224\321\203,-\342\200\236+ 1 + \302\253+ \320\240\320\243,-1+ e<- [18.2.5]

The null hypothesis considered throughout this section is that the first dif-

difference of \321\203follows a VAR(p
\342\200\224

1) process;

\320\224\320\243,
= kAy.-i + \320\2252\320\224\321\203<-2+ \342\200\242\342\200\242\342\200\242+ Ep-^y.-p + i + \302\253+ e,, [18.2.6]

requiring from [18.2.5] that

p =
1\342\200\236 [18.2.7]

or, from [18.2.3],

\320\244,+ \320\2442+ +
\320\244\342\200\236

=
1\342\200\236. [18.2.8]

Recalling Proposition 10.1, the vector autoregression [18.2.1] will be said to

contain at least one unit root if the following determinant is zero:

|1\342\200\236
-

\320\244,
-

\320\2442 \320\244,|
= \320\236. [18.2.9]

Note that [18.2.8] implies [18.2.9]but [18.2.9] does not imply [18.2.8]. Thus, this
section is considering only a subset of the class of vector autoregressions containing

a unit root, namely, the class described by [18.2.8]. Vector autoregressions for

which [18.2.9] holds but [18.2.8] does not will be considered in Chapter 19.
This section begins with a vector generalization of case 2 from Chapter 17.
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A Vector Autoregression with No Drift in Any

of the Variables

Here we assume that the VAR [18.2.1] satisfies [18.2.8] along with a = 0
and consider the consequences of estimating each equation in levels by OLS using
observations t = 1,2,. . . , Tand conditioning on y0, \321\203_\321\214. . . , \321\203_p + l. A constant
term is assumed to be included in each regression.Under the maintained hypothesis
[18.2.8], the data-generating process can be describedas

Assuming that all values of z satisfying

\\h
- ti* - bz2 e

lie outside the unit circle, [18.2.10]implies that

Ay, =
\"\342\200\236

where

-1! = \320\276

[18-2.10]

[18.2.11]

If e, is i.i.d. with mean zero, positive definite variance-covariance matrix fl =

PP', and finite fourth moments, then u, satisfies the conditions of Proposition 18.1
with

Also from [18.2.11], we have

\320\243,
=

\320\243\320\276+ \"i + \022 + \342\200\242\342\200\242\342\200\242+ \"<.

so that y, will have the same asymptotic behavior as \302\243,in Proposition 18.1.
Recall that the fitted values of a VAR estimated in levels [18.2.1] are identical

to the fitted values for a VAR estimated in the form of [18.2.5]. Consider the fth

equation in [18.2.5], which we write as

\320\243\320\270
= tnUr-i + -2 + \342\226\240+ \302\243,',\342\200\236_iu,_p+1 + a, + p;y,_! + \302\243,\342\200\236[18.2.13]

where u, =
\320\224\321\203,and \320\246denotes the rth row of \302\243,for s = 1, 2, . . . ,p

- 1. Similarly,

p,- denotes the fth row of p. Under the null hypothesis [18.2.7], p- = e,',where

e,' is the fth row of the (n X n) identity matrix. Recall the usual expression [8.2.3]
for the deviation of the OLS estimate br from its hypothesized true value:

br -
\320\255

= (Lxtx't)-\\?.xts), [18.2.14]

where 2 denotessummation over t = 1 through T. In the case of OLS estimation
of [18.2.13],

br- P

in
~ ia

la ~ ia

ii,p-l~ il.p

P,-e,

[18.2.15]
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Su,_,u;_2

2u,_2u,'_2 2u,_2u,'_p + 1 2u,_2

SU,_2E,,

[18.2.16]

[18.2.17]

Our earlier convention would append a subscript \320\223to the estimated coeffi-
coefficients Ib in [18.2.15]. For this discussion, the subscript T will be suppressed to
avoid excessively cumbersomenotation.

Define Yr to be the following matrix:

\342\226\240J4/2.

(up-I
Yr

1\342\200\236(\321\200_;

0'

0

i) 0

\342\200\242fl/2

0

0

0'

\320\223-1

[18.2.18]

Premultiplying [18.2.14] by Yr and rearranging as in [17.4.20] results in

Vr(br -
\320\255)

= (Vf \342\200\242SxA'Yfl)-4Vf \320\247\320\254\320\264). [18.2.19]

Using results (a), (c), (d), (g), and (i) of Proposition 18.1, we find

.-.n,'., r-MSy,_1n,'_2

n(_,+1 r-Msn,_p+1y;_1
1

[I q]'
[182-20]
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where

[\320\277(\321\200-1)\321\205\320\277(\321\200-1\320\257

\320\223\320\276

\320\223-!

L.r-p+2

\320\263,

\320\223\320\276

\320\223\320\276_

[18.2.21]

1 U \320\251\320\263)dr] -\320\233'

]'
rfrJ-\320\233'

\320\233-J
W(r) rfr \320\233-

Also, the integral sign denotes integration over r from 0 to 1, and

A-(I, - Si -
S2 Ep-O-'P

[18.2.22]

[18.2.23]

with \302\243(e,e,')
= PP'. Similarly, applying results (a), (b), and (f) from Proposition

18.1 to the second term in [18.2.19] reveals

[18.2.24]

where

~
N@,

e;PW(l)

for e, the ith column of 1\342\200\236.Results [18.2.19], [18.2.20], and [18.2.24] establish that

[18.2.25]

The first n(p - 1)elements of [18.2.25] imply that the coefficients on \320\224\321\203,_1,

\320\224\321\203,_2,. - . , \320\224\321\203,-\342\200\236+1converge at rate VTto Gaussian variables:

in
~ in

L - in
\\-%~N@, G,,- [18.2.26]

This means that the Wald form of the OLS x1 test of any linear hypothesis that
involves only the coefficients on \320\224\321\203,_5has the usual asymptotic x2 distribution, as

the reader is invited to confirm in Exercise 18.1.
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Notice that [18.2.26] is identical to the asymptotic distribution that would

characterize the estimates if the VAR were estimated in differences:

\320\224\320\243\320\271=\320\276\321\207+ En \320\224\321\203.-i+ \320\225\320\264\320\224\321\203<-2+ \342\200\242\342\200\242\342\200\242+ E,'.p-i \320\224\321\203,-\320\240+1
+ \320\262\320\270.[18.2.27]

Thus, as in the case of a univariate autoregression, if the goal is to estimate the

parameters \302\243(l,\302\243\320\271,. . . , E/.p_i or test hypotheses about these coefficients, there
is no need based on the asymptotic distributions for estimating the VAR in the
difference form [18.2.27]rather than in the levels form,

\320\243\320\270
=

\320\225\320\224\320\224\321\203<-1+ \320\225\320\260\320\224\321\203<-2+ \342\200\242\342\200\242\342\200\242+ E/j,-iAy,-p+i [18.2.28]
+ \302\253\302\253+ P('y<-i+ Bit.

Nevertheless, the small-sample distributions may well be improved by estimating
the VAR in differences, assuming that the restriction [18.2.8] is valid.

Although the asymptotic distribution of the coefficient on y,_, is non-Gaussian,
the fact that this estimate converges at rate \320\223means that a hypothesis test involving

a single linear combination of p,- and \320\225\320\271,\320\225\320\264>\342\200\242\342\200\242\342\200\242, E/,P-i will be dominated asymp-

asymptotically by the coefficients with the slower rate of convergence,namely, \302\243rt,\302\243\321\217,

. . . , Efj>-i> and indeed will have the same asymptotic distribution as if the true
value of p =

1\342\200\236were used. For example, if the VAR is estimated in levels form

[18.2.1], the individual coefficient matrices \320\244,are related to the coefficients for

the transformed VAR [18.2.5] by

\320\244,
= -t-i [18.2.29]

\320\244,
= L

- L-i for * = 2, 3, .... p
- 1 [18.2.30]

\320\244,
= p + {,. [18.2.31]

SinceVT(\302\243,- ^) is asymptotically Gaussian and since p is
\320\236\320\224\320\223\021),

it follows

that y/T(<bs -
\320\2443)is asymptotically Gaussian for s = 1,2, ... ,p assuming that

p a 2. This means that if the VAR is estimated in levels in the standard way, any

individual autoregressive coefficient converges at rate VT to a Gaussian variable

and the usual t test of a hypothesis involving that coefficient is asymptotically valid.

Moreover, an F test involving a linear combination other than <&j + \320\2442+ \342\200\242\342\200\242\342\200\242+

\320\244\321\200
has the usual asymptotic distribution.

Another important example is testing the null hypothesis that the data follow

a VAR(p0) withp0 > 1 against the alternative of a VAR(p) withp > p0.Consider

OLS estimation of the ith equation of the VAR as represented in levels,

yu
= a, + \320\244\320\277\321\203,_!+ \320\244\320\270\321\203,_2+ \342\226\240\342\200\242\342\200\242+

\320\244;\342\200\236\321\203,-\342\200\236
+ \320\262\320\270,[18.2.32]

where \320\244'\321\214denotes the ith row of \320\244,.Consider the null hypothesis

Ho: \320\244,.\320\273+1
=

\320\244,.\320\273+2
=

\320\244\321\204
= 0. [18.2.33]

The Wald form of the OLS x1 test of this hypothesis will be numerically identical
to the test of

Ho: \302\243,,\342\200\236\342\200\236
=

E,,P0+1
= \342\200\242\342\226\240\342\226\240=

\302\243,,\342\200\236_,
= 0 [18.2.34]

for OLS estimation of

[lg 2 35
+ a,- + pjy,-! + Eft.

Since we have seen that the usual F test of [18.2.34]is asymptotically valid and

since a test of [18.2.33]is basedon the identical test statistic, it follows that the
usual Wald test for assessing the number of lags to include in the regression is
perfectly appropriate when the regression is estimated in levels form as in [18.2.32].
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Of course, somehypothesis tests based on a VAR estimated in levels will not

have the usual asymptotic distribution. An important example is a Granger-causality

test of the null hypothesis that some of the variables in y, do not appear in the

regression explaining y,,. Partition y,
= (y(,, y^)', where y2, denotes the subset of

variables that do not affect yu under the null hypothesis. Write the regression in
levels as

\320\243\320\260
=

**iyi,/-l + K^li-X + \302\253\320\2312\320\243!,,_2+ \320\220.2\320\2432,,-2+ \342\200\242\342\200\242\342\200\242

+
\321\216\321\200\320\2431,'-\321\200

+
\320\272'\321\200\320\243^-\321\200

+ \302\253.+ \320\262\320\270

and the transformed regression as

\320\243\320\270
= PiAyu-i + ?;\320\224\320\2432,(-1+ \320\255\320\263\320\224\321\203\320\270-2+ 72\320\224\321\2032,,-2+ \342\200\242\342\200\242\342\200\242

+
\320\240;-1\320\224\320\243\320\270-\342\200\236-\320\274

+
7;-1\320\224\321\2032.,-\320\240+1

+ \302\253,-+ \342\200\242n'yi.z-i [18.2.37]

The F test of the null hypothesis A.J
=

A.2
= ' \" \" =

^p
= 0 basedon OLS estimation

of [18.2.36] is numerically identical to the F test of the null hypothesis 71 =
y2

=

\342\200\242\342\200\242\342\200\242=
7p_!

= 8 = 0 basedon OLS estimation of [18.2.37]. Since \302\247has a non-
standard limiting distribution, a test for Granger-causality based on a VAR esti-
estimated in levels typically does not have the usual limiting x2 distribution (see Ex-
Exercise 18.2 and Toda and Phillips, 1993b,for further discussion). Monte Carlo
simulations by Ohanian A988), for example,found that if an independent random

walk is added to a vector autoregression, the random walk might spuriously appear
to Granger-Cause the other variables in 20% of the samples if the 5% critical value
for a x1 variable is mistakenly used to interpret the test statistic. Toda and Phillips

A993a) have an analytical treatment of this issue.

A Vector Autoregression with Drift in Some of the Variables

Herewe again consider estimation of a VAR written in the form

\321\203,
=

^\320\224\321\203,-!+ \302\2432\320\224\321\203,-2+ \342\200\242\342\200\242\342\200\242+ lp-Ay,-p+x + \302\253+ \320\240\320\243,-1+ e,- [18.2.38]

As before, it is assumed that roots of

|1\342\200\236
- ixz - bz2 ^-i**-1!= 0

are outside the unit circle, that e, is i.i.d. with mean zero, positive definite variance

fl, and finite fourth moments, and that the true value of p is the (n x n) identity

matrix. These assumptions imply that

\320\224\321\203,
= 8 + u, [18.2.39]

where

e-0,-ti-b tp-i)\021\" [18-2.40]

u(
= *(L)e, [18.2.41]

In contrast to the previous case, in which it was assumed that 8 = 0, here we

suppose that at least one and possibly all of the elements of 8 are nonzero.

Since this is a vector generalization of case 3 for the univariate autoregression
considered in Chapter 17, one's first thought might be that, because of the nonzero

drift in the /A) regressors,if all of the elements of 8 are nonzero, then all the
coefficients will have the usual Gaussian limiting distribution. However, this turns
out not to be the case. Any individual element

yjt
of the vector y, is dominated by
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a deterministic time trend, and if
yjt appeared alone in the regression, the asymptotic

results would be the same as if yJt were replaced by the time trend t. Indeed, as

noted by West A988), in a regression in which there is a single /A) regressorwith

nonzero drift and in which all other regressors are /@),all of the coefficients would
be asymptotically Gaussian and F tests would have their usual limiting distribution.

This can be shown using essentially the same algebra as in the univariate auto-

regression analyzed in case 3 in Chapter 17. However, as noted by Sims, Stock,
and Watson A990), in [18.2.38] there are n different /A) regressors(the n elements

of y,_i), and if each of these were replacedby 8j(t
- 1), the resulting regressors

would be perfectly collinear. OLS will fit n separate linear combinations of y, so

as to try to minimize the sum of squared residuals, and while one of these will

indeed pick up the deterministic time trend t, the other linear combinations cor-

correspond to /A) driftless variables.
To developthe correct asymptotic distribution, it is convenient to work with

a transformation of [18.2.38]that isolates these different linear combinations. Note
that the difference equation [18.2.39] implies that

\321\203,
= y0 + \320\252-t+ \321\211+ u2 + + u,. [18.2.42]

Supposefor illustration that the nth variable in the system exhibits nonzero drift

(\320\261\342\200\236\320\2440); whether in addition S,- \302\245=0 for i = 1, 2, . . . , n - 1 then turns out to

be irrelevant, assuming that [18.2.8] holds. Define

\320\243\320\270
s

\320\243\320\270
~

(SilSn)ynl

\320\243\321\212^\320\243\321\212-(S2/8n)ynl

\320\243*-\320\270~\320\243\320\277-\320\270
~

(^\320\277-1^\320\277)\320\243\321\202

\320\243nt
s

\320\243\320\277/'

Thus, for i = 1, 2, . . . , n - 1,

\320\243*
=

[\320\243\321\217+ S^ + un + ua + \342\226\240\342\226\240\342\226\240+ u!t]

\320\243\342\200\236\320\276+ S,,t + unl + un2 + \342\226\240\342\226\240+ un

where we have defined

Collecting \302\253J,u\302\243,. . . , u*.u in an [(n - 1) x 1]vector uf, it follows from
[18.2.41]that

uf
=

\302\245*(L)e,,

where **(L) denotes the following [(n
- 1) x n] matrix polynomial:

for

H

l 0 0

0 1 0

0 -
0 -(S2/SJ

_o \320\276\320\276\342\226\240\342\226\240\342\226\240i -(\320\262\321\217_\320\220).
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Since {$-\320\247^}*_0 is absolutely summable, so is {s-4f*}'.0. Hence, the [(\320\273
-

1)
x 1] vector y* \342\200\224

(\321\203?,,\320\2432/.\342\200\242\342\226\240\342\200\242. \320\243\320\277-i.i)'has the same asymptotic properties as
the vector g, in Proposition 18.1with the matrix \320\244A)in Proposition 18.1 replaced
by \320\244*A).

If we had direct observations on y* and u,, the fitted values of the VAR as

estimated from [18.2.38] would clearly be identical to those from estimation of

\320\243,
=

\320\240*\320\243?-1
[18.2.43]

where p* denotes an [n X (n
- 1)] matrix of coefficients while 7 is an (n x 1)

vector of coefficients. This representation separates the zero-mean stationary re-

gressors (\320\270,_5
=

\320\224\321\203,_,
- 8), the constant term (a*), the driftless /@) regressors

(y*-i)> and a term dominated asymptotically by a time trend (ynJ-i). As in Section

16.3, once the hypothetical VAR [18.2.43] is analyzed, we can infer the properties
of the VAR as actually estimated ([18.2.38]or [18.2.1])from the relation between
the fitted values for the different representations.

Considerthe ith equation in [18.2.43],

+ \320\240*'\320\243,*-1+ \320\243\320\263\320\243\320\277.,-1+ \320\222\342\200\236,

where t,'i:s denotes the jth row of \302\243,and pf is the jth row of p*. Define

-
xf = (u;_!,u;_2,..., u;_p+l, 1, y*ix, ynj_xy

\320\2231/21\342\200\236(\321\200.1)0 0 0
'

\320\236' \320\2231'2 0' 0

\320\276 \320\276\321\202\\\320\277.\321\205\320\276

\320\236' \320\236 \320\236' \320\223\022

[18.2.44]

[18.2.45]

where \302\243(\320\265,\320\265,')
= \320\240\320\240'-Then, from Proposition 18.1,

/\320\263
\\

I '\320\263Zi (xi )(*! )x \321\202I

V

0'

where

0 A*-1 W(r) rfr

0'

W(r)
rfrj

-A\"

\342\226\240]'
*}\342\200\242\342\226\240

rW(r) rfr -A*'

\320\223\321\200-\321\200-2

1_\320\223-\321\200+ 2 \320\223_\321\200+ 3
\342\200\242- \342\200\242

\320\223\320\276J

[18.2.46]

0

\321\214\320\273

\\dr

S2/3

[18.2.47]
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and W(r) denotesn-dimensional standard Brownian motion while the integral sign
indicates integration over r from 0 to 1. Similarly,

h,

[18.2.48]

where hj
~ iV@, cr,-,V).The variables h2 and A4 are also Gaussian, though h3 is

non-Gaussian. If we define w to be the vector of coefficients on lagged \320\224\321\203,

then the preceding results imply that

YT(b*T
-

-
w)

-
\320\260\320\223)

~
Pf)

-
yt)

[18.2.49]

where *i e
(h2, hj, A4)' and Q is the [(n + 1) x (n + 1)]lower right block of the

matrix in [18.2.46]. Thus, as usual, the coefficients on \320\270,_,in [18.2.43] are asymp-
asymptotically Gaussian:

These coefficients are, of course,numerically identical to the coefficients on \320\224\321\203,_,

in [18.2.38]. Any F tests involving just these coefficients are also identical for the

two parameterizations. Hence, an Ftest about i^, \302\2432.\342\200\242\342\200\242\342\200\242. ?p-i in [18.2.38] has

the usual limiting x2 distribution. This is the same asymptotic distribution as if

[18.2.38] were estimated with p
=

In imposed; that is, it is the same asymptotic
distribution whether the regression is estimated in levels or in differences.

Sincepf and ^converge at a faster rate than \320\271>\320\263,the asymptotic distribution
of a linear combination of <i>r, p\302\243,and yT that puts nonzero weight on \321\214>\320\263has the

same asymptotic distribution as a linear combination that uses the true values for
p and 7. This means, for example, that the original coefficients \320\244,of the VAR
estimated in levels as in [18.2.1] are all individually Gaussian and can be interpreted

using the usual t tests. A Wald test of the null hypothesis of p0 s 1 lag against the

alternative of p > p0 lags again has the usual x1 distribution. However, Granger-

causality tests typically have nonstandard distributions.

18.3. Spurious Regressions
Consider a regression of the form

y,
= x,'P + u,,

for which elements of y, and x, might be nonstationary. If there does not exist some

population value for p for which the residual u, =
y,

- x,'P is /@), then OLS is

quite likely to produce spurious results. This phenomenon was first discovered in

Monte Carlo experimentation by Granger and Newbold A974) and later explained

theoretically by Phillips A986).
A general statement of the spurious regression problem can be made as

follows. Let y, be an (n x 1) vector of /A) variables. Define g \342\226\240(n
- 1), and
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partition y, as

\320\243/
=

where y2, denotes a (g x 1)vector.Considerthe consequences of an OLS regression
of the first variable on the others and a constant,

\320\243\320\270-\320\260+ \320\243'!*+ \302\253<\342\200\242 [18.3.1]

The OLS coefficient estimates for a sample of size T axe given by

\320\223\302\253\320\2631

[;:]

-
[;:] [i ^\320\223\320\253

where 2 indicates summation over \302\243from 1 to T. It turns out that even if yu is
completely unrelated to \321\203\321\214,the estimated value of 7 is likely to appear to be
statistically significantly different from zero. Indeed, considerany null hypothesis
of the form Ho: R/y

= \320\263where R is a known (m x g) matrix representing m
separate hypotheses involving 7 and \320\263is a known (m x 1)vector.The OLS F test
of this null hypothesis is

x {R.Yr
- r} -!\342\226\240m,

where

Unless there is somevalue for 7 such that yu
-

\321\203'\320\243\320\263\302\273is stationary, the OLS estimate
yT will appear to be spuriously precise in the sense that the Ftest is virtually certain

to reject any null hypothesis if the sample size is sufficiently large, even though
\342\200\242yrdoes not provide a consistent estimate of any well-defined population constant!

The following proposition, adapted from Phillips A986), provides the formal
basis for these statements.

Proposition 18-2: Consider an (n x 1) vector y, whose first difference is described
by

Ay,
=

\342\231\246(L)e,
= 2 *,e,_,

for e, an i.i.d. (n x 1) vector with mean zero, variance \302\243(e,e,')
= PP', and finite

fourth moments and where {s-4rs}*^0is absolutely summable. Let g = (n - 1)and

\320\233=
\320\244A)-\320\240.Partition \321\203,as \321\203,

= (yu, y^)', and partition AA' as

AA' =

22l 2\320\2632

Suppose that \320\233\320\233'is nonsingular, and define

s;
AX1)

21

[18.3.5]

(*t? - BU - SiiS^^i)- [18.3.6]
Let \320\252\320\277denote the \320\241holes Icy factor ofi,^1; that is, L22 \320\271the lower triangular matrix
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satisfying

Then the following hold.

(a) The OLSestimates aT and yT in [18.3.2] are characterized by

\320\223\320\242~\321\210&\321\2021 i
I I \342\200\224

where

1
/ [WJ(r)]' rfr

\320\251(\320\263)dr | [W2*(r)]-[WJ(r)]' rfr

/ Wf (r)

[18.3.7]

[18.3.9]

anrf fAe integral sign indicates integration over r from 0 to 1, TVf(r) denotes
scalar standard Brownian motion, and WJ (r) denotes g-dimensional standard

Brownian motion with W| (r) independent of W*(r).
(b) The sum of squared residuals RSSTfrom OLS estimation of [18.3.1] satisfies

T~2RSST- [18.3.10]

where

(\321\201)\320\223\320\220\320\265OL5 F tof [18.3.3] iato/t

[18.3.11]

where

{<7r-R*h2 - r*}' X
\\ (<\321\202?)*\320\235[\320\236R*]

W2*(r) rfr | [W2*(r)]-[WJ(r)]'

x W-R*h2
- r*} + m,

R ^
R*L>22

[18.3.12]
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The simplest illustration of Proposition 18.2 is provided when yu and y2, are
scalarsfollowing totally unrelated random walks:

\320\243\320\270
=

\320\243\321\205.,-1+ \320\262\320\270 [18.3.13]

\320\243\320\263,
=

\320\243\320\263.,-1+ \302\253\320\260, [18.3.14]

where e1( is i.i.d. with mean zero and variance erf, \302\2432,is i.i.d. with mean zero and

variance a\\, and eu is independent of e2t for all t and \321\202.For y, =
(yllt y2,)', this

specification implies

= 12

[i:

Result (a) then claims that an OLS regression of yx, on \321\2032,and a constant,

\320\243\320\272
= \302\253+ \320\243\320\243\320\263,+ \"\342\200\236

( [18.3.15]

produces estimates dr and yr characterized by

Note the contrast between this result and any previous asymptotic distribution

analyzed. Usually, the OLS estimates are consistent with br -4 0 and must be

multiplied by some increasing function of T in order to obtain a nondegenerate
asymptotic distribution. Here, however, neither estimate is consistent\342\200\224different

arbitrarily large samples will have randomly differing estimates yT. Indeed, the

estimate of the constant term aT actually diverges, and must be divided by Tm to
obtain a random variable with a well-specified distribution\342\200\224the estimate ar itself
is likely to get farther and farther from the true value of zero as the sample size

T increases.
Result (b) implies that the usual OLS estimate of the variance of ut,

s2T
=

(\320\223
- ny^RSSr,

again diverges as T\342\200\224*\302\260\302\260.To obtain an estimate that does not grow with the sample
size, the residual sum of squares has to be divided by T2 rather than T. In this

respect, the residuals \320\271,from a spurious regression behave like a unit root process;
if f, is a scalar /A) series,then T~l1t;2 diverges and T~22f2 converges.Tosee
why \320\271,behaves like an /A) series, notice that the OLS residual is given by

u, =
\321\203\320\270

- dr -
y'Ty21,

from which

-\302\273[1 -\320\2542*']\320\224\320\243\320\274[18.3.16]

where h2 = SjV^i + erf L^h^. This is a random vector [1 - hj'] times the /@)
vector \320\224\321\203,.
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Result (\321\201)means that any OLS t or F test based on the spurious regression
[18.3.1] also diverges; the OLS F statistic [18.3.3]must be divided by \320\223to obtain

a variable that does not grow with the sample size. Sincean F test of a single
restriction is the square of the corresponding t test, any t statistic would have to

be divided by Tm to obtain a convergent variable. Thus, as the sample size T
becomeslarger, it becomes increasingly likely that the absolute value of an OLS

t test will exceed any arbitrary finite value (such as the usual critical value of
t =

2). For example, in the regression of [18.3.15], it will appear that)>i, and \321\203\321\212

are significantly related whereas in reality they are completely independent.

In more general regressions of the form of [18.3.1], Lyx, and \320\224\321\203^may be

dynamically related through nonzero off-diagonal elements of P and \320\244(\320\254).While

such correlations will influence the values of the nuisance parameters cr*, 'L21,and

2\320\2632,provided that the conditions of Proposition 18.2 are satisfied, these correlations

do not affect the overall nature of the results or rates of convergence for any of
the statistics. Note that since W*(r) and W^r) are standard Brownian motion, the
distributions of hx, h2, and H in Proposition 18.2 depend only on the number of
variables in the regression and not on their dynamic relations.

The condition in Proposition 18.2 that \320\233-\320\233'is nonsingular might appear
innocuous but is actually quite important. In the case of a single variable (y,

=
ylt

with Lyx, =
i/r(L)\302\243i,), the matrix \320\233-\320\233'would just be the scalar [iKl)-^]2 and the

condition that \320\233-\320\233'is nonsingular would come down to the requirement that \321\204A)

be nonzero. To understand what this means, suppose that yx, were actually sta-

stationary with Wold representation:

\320\243It
=

\320\222\321\206+ CXEX^X + C2EX,_2+ \342\226\240\342\226\240\342\200\242= C(L)E1(.

Then the first difference kyu would be describedby

\320\224*,
= A

- L)C(L)su -
0(L)elf,

where i/<L) = A -L)C(L), meaning i/<1)
= A - l)-C(l) = 0.Thus, if yu were

actually /@) rather than /A), the condition that \320\233-\320\233'is nonsingular would not be
satisfied.

For the more general case in which y, is an (n x 1) vector, the condition that
\320\233-\320\233'is nonsingular will not be satisfied if some explanatory variable ylt is /@) or
if some linear combination of the elements of y, is /@). If y, is an /A) vector but

some linear combination of y, is /@), then the elementsof y, are said to be coin-
tegrated. Thus, Proposition 18.2 describes the consequences of OLS estimation of
[18.3.1]only when all of the elements of y, are /A) with zero drift and when the
vector y, is not cointegrated. A regression is spurious only when the residual u, is
nonstationary for all possible values of the coefficient vector.

Cures for Spurious Regressions
There are three ways in which the problems associated with spurious regres-

regressionscan be avoided. The first approach is to include lagged values of both the

dependent and independent variable in the regression. For example, consider the

following model as an alternative to [18-3.15]:

yu
= a + \321\204\321\203\320\245;.\320\263+ \321\203\321\203\321\212+

8\321\2032,_\321\205+ \320\270,. [18.3.17]

This regression does not satisfy the conditions of Proposition 18.1, because there
exist values for the coefficients, specifically \321\204

= 1 and \321\203
= \320\261= 0, for which

the error term u, is /@). It can be shown that OLS estimation of [18.3.17]
yields consistent estimates of all of the parameters. The coefficients \321\203Tand 8reach

18.3. Spurious Regressions 561



individually converge at rate VT to a Gaussian distribution, and the t test of the

hypothesis that \321\203
= 0 is asymptotically iV@, 1), as is the t test of the hypothesis

that 6 = 0. However, an F test of the joint null hypothesis that \321\203and S are both
zero has a nonstandard limiting distribution; see Exercise 18.3.Hence,including

lagged values in the regression is sufficient to solve many of the problems associated

with spurious regressions, although tests of some hypotheses will still involve non-
standard distributions.

A second approach is to difference the data before estimating the relation,

as in

Lyu
= a + \321\203\320\220\321\203\321\214+ \321\211. [18.3.18]

Clearly, since the regressorsand error term u, are all /@) for this regression under

the null hypothesis, aT and yT both converge at rate VT to Gaussian variables-.

Any t or F test based on [18.3.18] has the usual limiting Gaussian or x2 distribution.

A third approach, analyzed by Blough A992), is to estimate [18.3.15]with

Cochrane-Orcutt adjustment for first-order serial correlation of the residuals. We
will see in Proposition 19.4 in the following chapter that if \320\271,denotes the sample
residual from OLS estimation of [18.3.15], then the estimated autoregressive coef-

coefficient pT from an OLS regression of \320\271,on u,_l converges in probability to unity.
Blough showed that the Cochrane-Orcutt GLS regression is then asymptotically

equivalent to the differenced regression [18.3.18].
Because the specification [18.3.18] avoids the spurious regressionproblem as

well as the nonstandard distributions for certain hypotheses associatedwith the

levels regression [18.3.15], many researchers recommend routinely differencing

apparently nonstationary variables before estimating regressions. While this is the
ideal cure for the problem discussed in this section, there are two different situations

in which it might be inappropriate. First, if the data are really stationary (for

example, if the true value of \321\204in [18.3.17] is 0.9 rather than than unity), then
differencing the data can result in a misspecified regression. Second, even if both

ylt and \320\2432,are truly /A) processes, there is an interesting class of modelsfor which

the bivariate dynamic relation between yx and \321\203\320\263will be misspecified if the re-

researcher simply differences both y1 and y2. This classof models, known as coin-

tegrated processes, is discussedin the following chapter.

APPENDIX 18.A. Proofs of Chapter 18 Propositions

\342\226\240Proof of Proposition 18.1.

(a) This follows from [18.1.7] and [18.1.8] with r = 1.
(b) The derivation is identical to that in [11.A.3].

(c) This follows from Proposition 10.2(d).

(d) Note first in a generalization of [17.1.10]and [17.1.11] that

2 M,' = 2 (\302\253,-.+ u,)(&-i + u,)' = 2 (t-,\302\253.'-i + t-X + u,?;., + u,u,'),

so that

T T T T

Z (i-iu, + \",?,'-,)= 2, i$/ - Z (i-ii-i)- Z (u,u,')

= tA'r ~
\320\253'\320\276

~ 2 (u,u,') [18.A.1]

=
\320\253'\321\202

- 2 (\302\273*')\342\226\240
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Dividing by \320\223,

\320\242~\321\2052 (i-i\302\253; + u-\302\253,'-i)
=

\320\223-\320\247\320\263\320\223\320\263
- 7-1 2 \",\",'\342\226\240 [18.A.2]

But from [18.1.7], |\320\263
=

\320\223-\320\245\320\263A).Hence, from [18.1.8] and the continuous mapping theorem,

\320\242-'\320\253'\321\202
= [Vr-Xr(l)] [Vf-XTA)]' \320\233A-[WA)]-[WA)]'-A'. [18.A.3]

Substituting this along with result (c) into [18.A.2] produces

\320\223\"2 (\302\253.-\320\233'+ \302\273*.,)^ A-[WA)]-[WA)]'-A' -
\320\223\320\276, [18.\320\220.4]

which establishes
For s > 0,

result (d)
we have

for^

-,)

= r-

= 0.

T

1\320\250.+1

r- 2 \302\253.\342\200\224t\302\273;-+ n-fc'\342\200\224i)
i-j+i

+ T-* 2 [(u,.,u;.,) + (u,_,+1n,'_,)

]'-A'
- r0

+ [\320\223\320\276+ \320\223,+ \342\200\242\342\200\242\342\200\242+ \320\223,.,+ \320\223\320\276+ \320\223.,+ \342\200\242\342\200\242\342\200\242+ \320\223_,+1],

by virtue of [18.A.4]and result (\321\201).

(e) See Phillips A988).
(f) Define \342\202\254,*

\342\226\240e, + e2 + \342\200\242\342\200\242\342\200\242+ e, and \302\243(e,e,')
= PP'. Notice that result (e)

implies that

T-* 2 fc*-i\302\253;\320\233

?\342\200\242{/\342\200\236'
[W(r)]

[dW(r)]'}-P'.
[18.A.5]

{ }
For |, = u, + u2 + \342\200\242\342\200\242\342\200\242+ u,, equation [18.1.6]establishes that

2T-1 2 i-\320\233
= \320\223-2 (Dfc-i 4,- 4o},'-i '-i [18.A.6]

-'
2 \302\253,*-i\302\253;+ \320\263-'2 (\321\207.-1

-
\320\275\320\276)-*;.

1(-1

But each column of {(i),-!
\342\200\224

'\302\253loJ'S,'},7!,is a martingale difference sequence with finite
variance, and so, from Example 7.11of Chapter 7,

r-l2D.-t-4a)-\302\253:-*e. [18.A.7]

Substituting [18.A.5] and [18.A.7] into [18.A.6] produces

T-1 2 fc-i\302\253:\320\233

as claimed.

(g) This was shown in [18.1.9].

(h) As in
[17.3.17^,

we have

i-1
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or

\320\223\"\320\274\302\243m, = \320\223-'\"\302\243\320\270,
- \320\242-\342\204\242\302\243\302\253,_,-\320\254A-W(l)

- \320\233-\320\223W(r) dr, [18.A.8](-1 (-1 f-l -\342\204\242

from results (a) and (g). This establishesresult (h) for s = 0. The asymptotic distribution
is the same for any s, from simple adaptation of the proof of Proposition 17.3(g).

(i) As in [17.3.22],

\320\223'2\302\243{,_,{,'_, =
/' [VT-XT(r)]-[VT-XAr)]'dr

(j), (k), and A) parallel Proposition 17.3(i),(j), and (k). \342\226\240

\342\226\240Proof of Proposition 18.2. The asymptotic distributions are easier to calculate if we work
with the following transformed variables:

\320\243\320\270-\320\243\342\200\236-SJ.Si'yj, [18.A.9]

\321\203*\320\266L;2y2,. [18.A. 10]

Note that the inverses 2^', (<r*)~l,and L2-2' all exist, since \320\233\320\233'is symmetric positive
definite. An OLS regression of yj on a constant and yj,

\320\232
= \302\253*+ 7*'\320\243\320\260+ \320\270\320\223, [18.\320\220.11]

would yield estimates

\342\204\226

-
& ^]'\320\250

Clearly, the residuals from OLS estimation of [18.A. 11] are identical to those from OLS
estimation of [18.3.1]:

\320\243\320\270
~

\302\253\320\263
-

-\320\243\320\263\320\243\320\267,
=

\320\243\320\270
-

&\321\202
~

\320\243\321\202'\320\243^

=
(\321\203\342\200\236

-
2212^\320\2432,)

-
\302\253*\321\202

-
\320\223\321\202'^\320\243\320\263.)

=
\320\243\320\270

~
\302\253\321\202

~
{\320\243\321\202Li + 22125'}\320\2432\320\223.

The OLS estimates for the transformed regression[18.A.11]are thus related to those of
the original regression [18.3.1] by

\320\243\321\202
\342\226\240=L^y* + 2\320\231'2

implying that

Tr =
L\302\243yT

\342\200\224
\320\254\321\206'\320\224\321\2062

The usefulness of this transformation is as follows. Notice that

for

L yJ J~L \320\276 l^ J[yJsLy'

.,_ \320\223A/\302\273\320\223)(-1/<\321\202\320\223)-2212\302\243'1
L '

[ 0 L,, J-
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Moreover,

L'AA'AA'L = \320\223A/<\321\202\320\223)
(-^\320\236-^\320\271\320\237\320\223\320\267,,

Si,]
\320\223 A\320\232) 0']

[
0'

]\320\223
(I/O 0'

= \320\223

L

(l/af)-B,i
- Si.Si'S,,)
^ L52

0'

[18.A.15]

But [18.3.7]implies that

2H = (LaLiJ-' = (L22)-'L5\\
from which

LiS^ = ^{(L^J-'Ls'}^ = I,.
Substituting this and [18.3.6] into [18.A.15] results in

L'AA'L =
1\342\200\236. [18.\320\220.16]

One of the implications is that if W(r) is \320\273-dimensional standard Brownian motion,
then the \320\273-dimensional process W*(r) defined by

W'(r) - L'A-W(r) [18.A.17]

is Brownian motion with variance matrix L'AA'L = 1\342\200\236.In other words, W*(r) could also

be described as standard Brownian motion. Since result (g) of Proposition 18.1 implies that

it follows that

Similarly, result (i) of Proposition 18.1gives

= L'-\320\223-22 \320\243-\320\243.'-L
'-\342\226\240

[18.A.19]

\320\233

L'A-\320\246'
[W(r)]-[W(r)]'

drJ-A'L

= [ [W(r)]-[W(r)]' dr.

It is now straightforward to prove the claims in Proposition 18.2.

Proof of (a). If [18. A.12] is divided by <rf and premultiplied by the matrix

\320\223\320\263-\022
\320\276']

L 0 ij'
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the result is

[\"\320\223-\022\320\236']\320\223\302\253?/<\321\202\320\223]

=
\320\223\320\223-\022

\320\236']\320\223
\320\223 SyJ'

]\021\320\223\320\223-\320\234
\320\236'

]\"'\320\223\320\223-\302\253
\320\236'

[ \320\276iJL^yj, syjyj-J L \320\276 \320\263-'-iJ L \320\276 \321\202-\321\207

\320\276'
]\320\223

\320\263 2\320\243\302\243

-2iJUyj syjyrJL \320\276i

\302\273-
\320\220[ 8

Partition W*(r) as

W(r)
WJ(r)

Applying [18.A.18] and [18.A.19] to [18.A.20]results in

1
J[WJ(r)]'dr

J WJ(r)dr
\\ [Wf (r)]-[WJ(r)]' dr [18.A.21]

Recalling the relation between the transformed estimatesand the original estimates given
in [18.A.14], this establishesthat

Premultiplying by

L 0

and recalling [18.3.7]produces [18.3.8].

Proof of (b). Again we exploit the fact that OLS estimation of [18.A.11]would produce
the identical residuals that would result from OLS estimation of [18.3.1]. Recall the expres-
expressionfor the residual sum of squares in [4.A.6]:

{

\320\223-\302\273\320\236'
|\320\223\320\223

2\321\2031'1\320\223\320\223\022O'lVYr-^ 0'

0 r-4fJL2yl SyJyJ'JL 0 ijj L 0 r-'l

[18.\320\220.22]
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If both sides of [18.A.22] are divided by (\320\223-crfJ,the result is

T-2-RSST/(o-tJ

\320\233
f[wt(r)Y wTM dr

J[\302\2737(r)]-[WJ(r)]'
drj

dr
J[WJ(r)]-[WJ(r)]'

dr dr

Proof of (c). Note that an F test of the hypothesis Ha: R? = \320\263for the original regression
[18.3.1]would produce exactly the samevalue as an F test of R*7* = r* for OLS estimation
of [18.A.11], where, from [18.A.13],

R7 - \320\263= R{L227* +

for

R* =
R-\320\254\320\270

\320\263*\321\210r -
R2\302\243'22I.

[18.A.23]

[18.A.24]

The OL5 F test of R*7* = r* is given by

from which

\320\237
-

\320\263\302\273}+ \321\202.

= {R*7? - r*}'

v 1 \320\242-1.\320\223\321\201*1-
1 L 7\"J

[18.A.25]

But

2 (\320\271\320\223\320\243
=

(\320\223
- n)-t 21-1 1-1
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and so, from result (b),

\320\223-'-[*?]2
=

[\320\242\320\246\320\242-nfl-

Moreover, [18.A.18] and [18.A.19] imply that

[WJ(r)]' dr

j WJ(r) dr J [WJ(r)]-[WJ(r)]'dr

while from [18.A.21],

[18.A.26]

, [18.A.27]

[18.A.28]
Snbstituting [18.A.26] through [18.A.28] into [18.A.25],we conclude that

\320\223-'-iv\320\233{<7f-R*h2
-

\320\263*}'x
|\321\2162-\320\257[0

R*]

1
j[WHr)Y

dr

J(r) dr
J[WJ(r)]-[WJ(r)]'

dr \320\230}\"'\"
? R*h2 -

\320\263*}^ m.

Chapter 18 Exercises

18.1. Consider OLS estimation of

\320\243\302\273
=

5\320\277\320\224\320\243\320\263-1+ 5\320\277\320\224\320\243\320\263-\320\263+ \342\200\242\342\200\242\342\200\242+ S^-iAy.-p+i + a, + p;y,_, + elt,

where \321\203\342\200\236is the j'th element of the (n x 1) vector y, and s,, is the <th element of the
(n x 1)vector e,. Assume that e, is i.i.d. with mean zero, positive definite variance ft, and

finite fourth moments and that \320\224\321\203,
=

\320\247?(\320\254)\320\263\342\200\236where the sequence of (n x n) matrices

{s-4?,}\".0 is asolutely summable and 9A) is nonsingular. Let \320\272= np + 1 denote the number

of regressors, and define

x, =
(\320\264\321\203;.\342\200\236\320\264\321\203;_2,...,\320\224\321\203,'-\321\200+1>1, \321\203;.,)'.

Let b \320\263denote the (\320\272\321\2051) vector of estimated coefficients:

br =
(\320\260,\321\205;)-'B\321\205,\321\203\320\271),

where 2 denotes summation over t from 1 to \320\223.Consider any null hypothesis Ha: Rp
= \320\263

that involves only the coefficients on \320\224\321\203,-,\342\200\224thatis, R is of the form

R = R, 0 .

- r),
Let x2t be the Wald form of the OLS x2 test of Ho:

X2T** (Rbr
- ry^R^xO-'R'l-

where

s>T=(T- \320\272)-\320\251\321\203\342\200\236-\320\252'\321\202\321\205,\320\243.

Under the maintained hypothesis that a, = 0 and p,'
= e,' (where e,' denotes the ith row

of 1\342\200\236),show that x% -^ X2(.\">).

18.2. Suppose that the regressionmodel
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satisfies the conditionsof Exercise 18.1. Partition this regression as in [18.2.37]:

\320\243\320\275
=

\320\240{\320\224\320\243\320\270-1+ ?!\320\224\320\2432,,-1+ Pi^yi.,-2 + 7\320\263\320\224\321\2032.,-2+ \342\200\242\342\200\242\342\200\242

+ \320\240\321\200-^\320\243\320\270-\321\200-\320\270+ 7\321\200-1\320\224\321\2032.,-\321\200-\320\270+ \302\253,+ \320\247'\320\243\320\270-i

+ 6'y2J_,+ \320\265\342\200\236,

where \321\203,,is an (\320\273,\321\2051) vector and \321\203\321\214is an (n2 x 1) vector with nx + n2 = n. Consider
the null hypothesis 7, =

y2
= \342\200\242\342\200\242\342\200\242=

7p.t
= S = 0.Describe the asymptotic distribution

of the Wald form of the OLS x2 test of this null hypothesis.

18.3. Consider OLS estimation of

\320\243\320\247
=

\320\243\320\254\320\243*+ \302\253+ \320\244\320\243\320\270-1+ Wu-l + \320\230,,

where \321\203\321\214and \321\203\320\273are independent random walks as specified in [18.3.13]and [18.3.14]. Note
that the fitted valnes of this regressionare identical to those for [18.3.17] with aT, yT, and

\321\204\321\202the same for both regressions and \320\254\321\202
=

r\\T
-

yT.

(a) Show that

\320\242\"~\320\243\321\202

\320\223'\320\247\320\242

\320\246\320\244\321\202-1)

L

'V,

v2

where vt~ N@, a^l&i) and (v2, v3, vt)' has a nonstandard limiting distribution. Conclude that
\321\203\321\202,\320\260\321\202,\321\204\321\202,and tit are consistentestimates of 0, 0, 1, and 0, respectively, meaning that all

of the estimated coefficients in [18.3.17] are consistent.
(b) Show that the t test of the null hypothesis that \321\203

= 0 is asymptotically

N@, 1).
(c) Show that the t test of the null hypothesis that 5 = 0 in the regression model of

[18.3.17]is also asymptotically N@, 1).
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19

Cointegration

This chapter discusses a particular class of vector unit root processes known as
cointegrated processes. Such specifications were implicit in the \"error-correction\"
models advocated by Davidson, Hendry, Srba, and Yeo A978). However, a formal

development of the key concepts did not come until the work of Granger A983)
and Engle and Granger A987).

Section 19.1 introduces the concept of cointegration and develops several
alternative representations of a cointegrated system. Section 19.2discussestests of

whether a vector process is cointegrated. These tests are summarized in Table 19.1.

Single-equation methods for estimating a cointegrating vector and testing a hy-
hypothesis about its value are presented in Section 19.3. Full-information maximum
likelihood estimation is discussed in Chapter 20.

19.1. Introduction

Descriptionof Cointegration

An (n x 1) vector time series y, is said to be cointegrated if each of the series

taken individually is /A), that is, nonstationary with a unit root, while some linear
combination of the series a'y, is stationary, or /@), for some nonzero (\320\273x 1)
vector a. A simple example of a cointegrated vector processis the following bi-

variate system:
\320\243\320\270

=
\320\243\320\243\320\263,+ uu [19.1.1]

\320\243\321\214
=

\320\243\320\263,1-\321\205+ \320\270*, [19.1.2]

with uu and \320\274\321\214uncorrelated white noise processes. The univariate representation
for \321\2032,is a random walk,

\320\220\321\203\321\212
=

\320\2702(, [19.1.3]

while differencing [19.1.1] results in

\320\224\320\243\320\272
=

\321\203\320\254\320\243\320\263,+ \320\224\"\320\272
=

\320\243\"*+ \"\320\272
-

\302\253i,,-i- [19.1.4]

Recall from Section 4.7 that the right side of [19.1.4]has an MAA) representation:

A*, =
v, + ft\302\273,.,, [19.1.5]

where v, is a white noise process and \320\262\320\244-1 as long as \321\203\320\2440 and E(u\\,)
> 0. Thus, both yXl and \321\203\321\212are /A) processes, though the linear combination
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(\320\243\320\270
~

\320\243\320\243\320\263\320\264is stationary. Hence, we would say that y, = (ylt, y^)' is cointegrated

with a' = A, -y).
Figure 19.1 plots a sample realization of [19.1.1]and [19.1.2] for \321\203

= 1 and

\321\211,and \302\2532,independent iV@, 1) variables. Note that either series (ylt or \321\203\321\212)will

wander arbitrarily far from the starting value, though yu should remain within a
fixed distance of \321\203\321\203\321\212,with this distance determined by the standard deviation of
\302\253i,-

Cointegration means that although many developments can cause permanent
changes in the individual elements of y,, there is some long-run equilibrium relation

tying the individual components together, represented by the linear combination

a'y,. An example of such a system is the model of consumption spending proposed
by Davidson, Hendry, Srba, and Yeo A978).Their results suggest that although
both consumption and income exhibit a unit root, over the long ran consumption
tends to be a roughly constant proportion of income, so that the difference between
the log of consumption and the log of incomeappearsto be a stationary process.

Another example of an economic hypothesis that lends itself naturally to a

cointegration interpretation is the theory of purchasing power parity. This theory
holds that, apart from transportation costs, goods should sell for the same effective

price in two countries. LetP,denote an index of the price level in the United States

(in dollars per good), P* a priceindex for Italy (in lire per good), and 5, the rate
of exchange between the currencies (in dollars per lira). Then purchasing power

parity holds that

p,
= s,p:,

or, taking logarithms,

p, = s, + p*,
where p,

= log P,, s, =
log 5,, and p

* =
log Pf, In practice, errors in measuring

prices, transportation costs, and differences in quality prevent purchasing power

parity from holding exactly at every date t. A weaker version of the hypothesis is
that the variable z, defined by

*,-p.-s.-p? [19-1.6]

FIGURE 19.1 Sample realization of cointegrated series.
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is stationary, even though the individual elements (p,, s,, or p*) are all /A).

Empirical tests of this version of the puchasing power parity hypothesis have been

explored by Baillie and Selover A987) and Corbae and Ouliaris A988).
Many other interesting applications of the idea of cointegration have been

investigated. Kremers A989) suggested that governments are forcedpolitically to

maintain their debt at a roughly constant multiple of GNP, so that log(debt)
\342\200\224

log(GNP) is stationary even though each component individually is not. Campbell
and Shiller A988a, b) noted that if \321\203\321\212is /A) and yu is a rational forecast of future

values of y2, then \321\203\320\263and y2 will be cointegrated. Other interesting applications
include King, Plosser, Stock, and Watson A991), Ogaki A992), Ogaki and Park

A992), and Clarida A991).
It was asserted in the previous chapter that if y, is cointegrated, then it is not

correct to fit a vector autoregression to the differenced data. We now verify this

claim for the particular exampleof [19.1.1]and [19.1.2]. The issues will then be

discussed in terms of a general cointegrated system involving n different variables.

Discussion of the Example of [19.1.1] and [19.1.2}

Returning to the example in [19.1.1] and [19.1.2], notice that \320\265\321\212
\342\226\240

\321\211,is the

error in forecasting \321\203\321\212on the basis of lagged values of yy and y2 while e1; =
\321\203\320\270\321\212+ \320\251,is the error in forecasting yu. The right side of [19.1.4]can be written

G\"\321\214+ uu)
~

\320\251.1-1
= eu

- (eu_i -
ye2.(-i)

= (*
~ L)elt + \321\203\320\254\320\265\321\212.

Substituting this into [19.1.4] and stacking it in a vector system along with [19.1.3]
produces the vector moving average representation for (Aj'i,, \320\272\321\203\321\212)',

where

PL 7}
[19'L8]

A VAR for the differenced data, if it existed, would take the form

<&(L)Ay, = e,,

where <&(L)
= [9(L)]~l. But the matrix polynomial associated with the moving

average operator for this process, *(z), has a root at unity,

A-1) \321\203

\\\320\2511)\\
=

\320\276 i
=\302\260-

Hence the matrix moving average operator is noninvertible, and no finite-order

vector autoregression could describe \320\224\321\203,.

The reason a finite-order VAR in differences affords a poor approximation
to the cointegrated system of [19.1.1]and [19.1.2] is that the level of y2 contains

information that is useful for forecasting yi beyond that contained in a finite number
of lagged changes in y2 alone.

If we are willing to modify the VAR by including lagged levels along with

lagged changes, a stationary representation similar to a VAR for \320\224\321\203,is easy to find.

Recalling that \302\253!,_!
= yu.1

- yy2,,-i, notice that [19.1.4] and [19.1.3] can be

written as
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The general principle of which [19.1.9] provides an illustration is that with a

cointegrated system, one should include lagged levels along with lagged differences

in a vector autoregression explaining \320\224\321\203,.The lagged levels will appear in the form
of those linear combinations of \321\203that are stationary.

General Characterization of the Cointegrating Vector

Recall that an (\320\273x 1) vector y, is said to be cointegrated if each of its elements
individually is /A) and if there exists a nonzero (\320\273x 1) vector a such that a'y, is

stationary. When this is the case, a is calleda cointegrating vector.

Clearly, the cointegrating vector a is not unique, for if a'y, is stationary, then

so is \320\254\321\217'\321\203,for any nonzero scalar b; if a is a cointegrating vector, then so is ba. In

speaking of the value of the cointegrating vector, an arbitrary normalization must
be made, such as that the first element of a is unity.

If there are more than two variables contained in y,, then there may be two

nonzero (n x 1)vectorsa] and a2 such that ajy, and a^y, are both stationary, where
a, and a2 are linearly independent (that is, there does not exist a scalar b such that

aj
=

\320\254\320\260\320\263).Indeed, there may be A < n linearly independent (\320\273\321\2051) vectors (ab
a2,. . . , \320\260\320\273)such that A'y, is a stationary (A x 1) vector, where A' is the following

(A x n) matrix:1

A' = [19.1.10]

Again, the vectors (ab aj, . . , , \320\260\320\273)are not unique; if A'y, is stationary, then for

any nonzero A x A) vector b', the scalar b'A'y, is also stationary. Then the

(n x 1) vector tt given by it' = b'A' could also be described as a cointegrating

vector.

Suppose that there exists an (A x n) matrix A' whose rows are linearly
independent such that A'y, is a stationary (A x 1) vector. Suppose further that if

c' is any A x n) vector that is linearly independent of the rows of A', then c'y, is
a nonstationary scalar. Then we say that there are exactly A cointegrating relations

among the elements of y, and that (a,, a2, \342\226\240. \342\226\240, \320\260\320\273)form a basis for the space of

cointegrating vectors.

Implications of Cointegration
for the Vector Moving Average Representation

We now discuss the general implications of cointegration for the moving
average and vector autoregressive representations of a vector system.2 Since it is

assumed that \320\224\321\203,is stationary, let 8 =
\302\243(\320\224\321\203,)and define

u, =
\320\224\321\203,

- 8. [19.1.11]

Supposethat u, has the Wold representation

u,
= e, + \320\244.\320\265,.,+ \320\2442\320\265,_2+ \342\226\240\342\226\240\342\200\242

'If h = \321\217such linearly independent vectors existed, then y, would itself be /@). This claim will

become apparent in the triangular representation of a cointegrated system developed in [19.1.20] and

[19.1.21].
'These results were first derived by Engle and Granger A987).
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where E(e,) = 0 and

ft for t = \321\202

0 otherwise.

denote the (n x n) matrix polynomial \"9{\320\263)evaluated at z \342\200\2241; that is,

We first claim that if A'y, is stationary, then

\320\220'\320\244A)
= \320\236. [19.1.12]

To verify this claim, note that as long as {\321\203-\320\244\320\233\320\223-\320\276is absolutely summable, the
difference equation [19.1.11] implies that

\320\243/
=

\320\243\320\276+ 8-t + Uj + u2 + \342\226\240\342\226\240\342\226\240+ u,
=

\320\243\320\276+ 8-t + *(l)-(ei + e2 + \342\226\240\342\200\242\342\226\240+ \302\243,)+1),
- ifo,

where the last line follows from [18.1.6] for i), a stationary process.Premultiplying

[19.1.13] by A' results in

A'y, =
\320\220'(\320\243\320\276

-
TH) + A'8 f + \320\220'\320\244A)-(\320\265,+ e2 + \342\226\240\342\200\242\342\226\240+ e,) + \320\220\320\247-[19.1.14]

If \302\243(e,e,') is nonsingular, then <:'(\302\243[+ e2 + \342\226\240\342\226\240\342\226\240+ e,) is /A) for every nonzero

(n x 1) vector \321\201However, in order for y, to be cointegrated with cointegrating
vectors given by the rows of A', expression [19.1.14]is required to be stationary.
This could occur only if \320\220'\320\244A)

= \320\236.Thus, [19.1.12] is a necessary condition for

cointegration, as claimed.
As emphasized by Engle and Yoo A987) and Ogaki and Park A992), con-

condition [19.1.12] is not by itself sufficient to ensure that A'y, is stationary. From
[19.1.14],stationarity further requires that

A'8 = 0. [19.1.15]
If some of the series exhibit nonzero drift (8 \320\2440), then unless the drift across

series satisfies the restriction of [19.1.15], the linear combination A'y, will grow

deterministically at rate A'8. Thus, if the underlying hypothesis suggesting the

possibility of cointegration is that certain linear combinations of y, are stable, this

requires that both [19.1.12] and [19.1.15] hold.

Note that [19.1.12] implies that certain linear combinations of the rows of

\320\244A), such as \320\260^\320\244A),are zero, meaning that the determinant |\320\244(\320\263)|
= \320\236at

2 = 1. This in turn means that the matrix operator *P(L) is noninvertible. Thus,

a cointegrated system can never be represented by a finite-order vector auto-
regression in the differenced data \320\224\321\203,.

For the example of [19.1.1]and [19.1.2], we saw in [19.1.7] and [19.1.8] that

and

= \320\2231

~ z
yZ]

L 0 lj

-
[o I]

This is a singular matrix with \320\220'\320\244A)
= 0 for A' = [1 -y].
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Phillips's Triangular Representation

Another convenient representation for a cointegrated system was introduced

by Phillips A991). Supposethat the rows of the (A x n) matrix A' form a basis
for the space of cointegrating vectors. If the A, 1) element of A' is nonzero, we

can conveniently normalize it to unity. If, instead, the A, 1) element of A' is zero,
we can reorder the elements of y, so that yu is included in the first cointegrating
relation. Hence, without loss of generality, we take

1

A'

a/i

a12

\320\260\321\216\320\247

If a21 times the first row of A' is subtracted from the second row, the resulting row

is a new cointegrating vector that is still linearly independent of a1;a3, . . . , \320\260\342\200\236.3

Similarly we can subtract a31 times the first row of A' from the third row, and ahl
times the first row from the Ath row, to deduce that the rows of the following

matrix also constitute a basis for the space of cointegrating vectors:

\320\236\320\260*22ah

\320\236

\320\260\321\213

\302\2532*\342\200\236

\320\260*\321\213

Next, suppose that a22 is nonzero; if a\\\\
= 0. we can again switch \321\203\321\212with some

variable y2l, yM, . . . , \321\203\321\210that does appear in the second cointegrating relation.
Divide the second row of \\[ by a\\2. The resulting row can then be multiplied by

a12 and subtracted from the first row. Similarly, a*2 times the second row of AJ can
be subtracted from the third row, and a%2 times the second row can be subtracted
from the Ath. Thus, the space of cointegrating vectors can also be representedby

\021 0

0 1

A2 =

\302\253*\320\267*

ah*

at:'

0 0 \320\260*\321\216* \302\253*\342\200\236*

3Since the first and second moments of the (\320\233\321\2051) vector

do not depend on time, neither will the first and second moments of

\320\243,-

Furthermore, the assumption that at, a2, . . . , aA are linearly independent means that no linear com-

combination of a,, a2,. . . , aA is zero, and so no linear combination of a,, a2
\342\200\224a21a,, . . . , aA can be zero

either. Hence a,, a2
\342\200\224a21a1t. . . , aA also constitute a basis for the space of cointegrating vectors.

576 Chapter 19 \\ Cointegration



Proceeding through each of the A rows of A' in this fashion, it follows that

given any (\320\273x 1) vector y, that is characterized by exactly A cointegrating relations,
it is possible to order the variables (yu, \321\203\321\212,. . . , \321\203\321\210)in such a way that the
cointegrating relations can be represented by an (A x n) matrix A' of the form

A' =

1 0

0 1

0 0 -\320\243\320\273.,

[19.1.16]

where \320\223'is an (A x g) matrix of coefficients for g = n - A.

Let z, denote the residuals associated with the set of cointegrating relations:

z, =A'yf. [19.1.17]
(*xl)

Sincez, is stationary, the mean \\x.*
= E(z,) exists, and we can define

z? -
\302\253,

-
\320\270\320\223- [19.1.18]

Partition y, as
\"

\320\243\320\272

\320\243,
=

(nxl)

Substituting [19.1.16], [19.1.18],and [19.1.19] into [19.1.17] results in

[19.1.19]

or

\320\2431,
= \320\223'\342\226\240

y2, + \320\247-t+ \320\263*.
(\320\233\321\2051)(Axg) (gxl) (\320\233\321\2051)(\320\233\321\2051)

A representation for y2( is given by the last g rows of [19.1.11]:

\320\224\321\2032,
= 82 + u2, ,

[19.1.20]

[19.1.21]

where 62 and u2, represent the last g elements of the (\320\270\321\2051) vectors 8 and u,,
respectively. Equations [19.1.20] and [19.1.21] constitute Phillips's A991) triangular

representation of a system with exactly A cointegrating relations. Note that z(* and

ub represent zero-mean stationary disturbances in this representation.
If a vector y, is characterized by exactly A cointegrating relations with the

variables ordered so that [19.1.20] and [19.1.21] hold, then the (g x 1) vector y2,

is /A) with no cointegrating relations. To verify this last claim, notice that if some

linear combination c'y2, were stationary, this would mean that @', c')y, would be
stationary or that @', c') would be a cointegrating vector for y(. But @', c') is

linearly independent of the rows of A' in [19.1.16], and by the assumption that the
rows of A' constitute a basis for the space of cointegrating vectors, the linear

combination @', c')y, cannot be stationary.

Expressions [19.1.1] and [19.1.2] are a simple exampleof a cointegrated

system expressed in triangular form. For the purchasing power parity example
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[19.1.6], the triangular representation would be

P, =
\320\243\320\233+ \320\2432\320\240?+ M* + z*

As,
= 8S+ us,

Ap* = Sp. + \320\270\321\200.,\342\200\236

where the hypothesized values are yx
= y2 = 1.

The Stock-Watson CommonTrends Representation

Another useful representation for any \302\253(integrated system was proposed by

Stock and Watson A988). Suppose that an (\320\273x 1) vector y, is characterized by

exactly A cointegrating relations with g = n - A. We have seen that it is possible
to order the elements of y, in such a way that a triangular representation of the

form of [19.1.20] and [19.1.21]exists with (z*', u^,)' a stationary (\320\273x 1) vector
with zero mean. Suppose that

for e, an (\320\273\321\2051) white noise process, with {s-H,}\"_0 and {*-Jjr_0 absolutely
summable sequencesof (A x n) and (g x n) matrices,respectively.Adapting the

result in [18.1.6], equation [19.1.21] implies that

\320\2432,
-

\320\2432.0+ 82-t +
2fx

\302\2532,

[19.1.22]
=

\320\2432.0
+ Wt + J(l)-(8! + E2 +\342\226\240\342\226\240\342\226\240+ \302\243,)+Tfe,

- T|2.o,

where J(l)
\342\226\240(Jo + J, + J2 + \342\200\242\342\200\242\342\200\242

), iJ, =
Sf.oo^e,^, and 0^= -(J,+1 +

Jj+2 + J*+3 + \342\226\240\342\226\240\342\200\242)\342\226\240Since the (\320\270x 1) vector e, is white noise, the (g x 1) vector

J(l)-e, is also white noise, implying that each elementof the (g x 1) vector |b
defined by

fc,-JUK\"i + \302\2532+
\342\200\242\342\226\240\342\200\242+ e,) [19.1.23]

is describedby a random walk.

Substituting [19.1.23]into [19.1.22] results in

\320\2432,
=

M-2 + 82-* + g2,+ %, [19.1.24]
for jjl2

= (y20
-

\321\206^).Substituting [19.1.24] into [19.1.20] produces

ylt
= Ai + \320\223'(82-< + fe,) + T)U [19.1.25]

for M-i
\342\200\224

\320\234-\320\223+ \320\223'^\320\246\320\263and \321\202I(
= z* + \320\223'\321\202J,.

Equations [19.1.24] and [19.1.25] give Stock and Watson's A988) common
trends representation. These equations show that the vector y, can be describedas
a stationary component,

plus linear combinations of up to g common deterministic trends, as described by
the (g x 1)vector 82

\342\200\242
t, and linear combinations of g commonrandom walk variables

as described by the (g x 1) vector \302\2432\302\273-
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Implications of Cointegration
for the Vector Autoregressive Representation
Although a VAR in differences is not consistent with a cointegrated system,

a VAR in levels could be. Suppose that the level of y, can be represented as a
nonstationary pth-order vector autoregression:

y,
= a + \320\244^,.! + \320\244\321\217,_2+ \342\226\240\342\226\240\342\226\240+

\320\244\321\200\321\203,_\321\200
+ \320\265\342\200\236[19.1.26]

or

\320\244(/,)\321\203,
= a + \320\265\342\200\236 [19.1.27]

where

\320\244(\320\254)
= ln- \320\244\320\245\320\254

-
\320\2442\320\2542

- \342\200\242\342\226\240\342\226\240-
\320\244\321\200\320\270. [19.1.28]

Suppose that \320\224\321\203,has the Wold representation

A
-

L)y, = 8 + V(L)e,. [19.1.29]
Premultiplying [19.1.29] by \320\244{1)results in

A -
L)\302\253>(L)y,

=
\320\244A)8 + O(L)*(L)e,. [19.1.30]

Substituting [19.1.27]into [19.1.30], we have

A - L)e,= \320\244A)8 + O(L)*(L)e,, [19.1.31]

since A
- L)a = 0. Now, equation [19.1.31] has to hold for all realizations of e,,

which requires that

\320\244A)8
= \320\236 [19.1.32]

and that A -
L)\\n and \320\244(\320\254\321\203\320\244(\320\254)represent the identical polynomials in L. This

means that

A - 2I. =
\320\244(\320\263)\320\244(\320\263) [19.1.33]

for all values of z. In particular, for z = 1, equation [19.1.33] implies that

\320\244A)\320\244A)
= \320\236. [19.1.34]

Let \321\202\320\263'denote any row of \320\244A).Then [19.1.34] and [19.1.32] state that \321\202\320\263'\320\244A)
= 0' and \321\202\320\263'8= 0. Recalling [19.1.12] and [19.1.15], this means that \321\202\320\263is a

cointegrating vector. If a,, a2, \342\200\242\342\200\242\342\200\242, \320\260\320\273form a basis for the space of cointegrating
vectors, then it must be possible to express \321\202\320\263as a linear combination of au a2,
. . . , \320\260\320\273\342\200\224thatis, there exists an (A x 1) vector b such that

\321\202\320\263= [aj a2
\342\200\242\342\200\242\342\200\242

\320\260\320\273]\320\254

or

\321\202\320\263'= b'A'

for A' the (A x n) matrix whose ith row is af'. Applying this reasoning to each of
the rows of \320\244A),it follows that there exists an (\320\270\321\205A) matrix \320\222such that

\320\244A)
= BA'. [19.1.35]

Note that [19.1.34] implies that \320\244A)is a singular (\320\270\321\205n) matrix\342\200\224linear

combinations of the columns of \320\244A)of the form \320\244A)\321\205are zero for x any column

(). Thus, the determinant |\320\244(\320\263)|contains a unit root:

|1\342\200\236
-

\320\244^1
-

\320\2442\320\2632
- \342\226\240\342\226\240\342\226\240-

\321\204\321\2002\321\200\\=0 at z = 1.
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Indeed, in the light of the Stock-Watson common trends representation in [19.1.24]
and [19.1.25],we could say that \320\244(\320\263)contains g = n - A unit roots.

Error-Correction Representation

A final representation for a cointegrated system is obtained by recalling from

equation [18.2.5]that any VAR in the form of [19.1.26] can equivalently be written
as

\320\243<
=

\302\2431Ay,-i + \302\2432Ay,_2+ \342\226\240\342\226\240' +
\302\243p-iAy/-p + i + a + py,_! + e,, [19.1.36]

where

p
=

\321\204\320\263+ \321\2042+ +
\321\204\321\200 [19.1.37]

ls \320\262
-[\320\244,+1 + \320\244,+2+

\342\200\242\342\200\242\342\200\242+ \320\244\321\200]for j = 1, 2, . . . ,\321\200
- 1. [19.1.38]

Subtracting y,_! from both sides of [19.1.36]produces

\320\224\321\203,
= CiAy,_i + \302\2432\320\224\321\203,_2+ \342\200\242\342\200\242\342\200\242+ t,p-ihy,-p+i + a + \302\243oy<-i+ e<> [19.1.39]

where

io s P - I, = -(I. -
\320\2441

-
\320\2442 \320\244\320\240)

=
-\320\244A). [19-1.40]

Note that if \321\203,has A cointegrating relations, then substitution of [19.1.35]and

[19.1.40] into [19.1.39] results in

Ay,= CiAy,li + C2Ay,-2+- \342\200\242\342\200\242+
\320\241\321\200_1\320\224\321\203,_\321\200+1+\320\260-\320\222\320\220'\321\203,_1

+ \320\265,.[19.1.41]

Define z, \342\226\240
\320\220'\321\203\342\200\236noticing that \320\263,is a stationary (A x 1)vector.Then [19.1.41] can

be written

\320\224\321\203,
=

Ci\320\224\321\203,_1+ \302\2432\320\264\320\243,-2+ \342\200\242\342\200\242\342\200\242+ Cp_iAy,_p + i + \320\260- Bz,_! + \320\263,.[19.1.42]

Expression [19.1.42] is known as the error-correction representation of the

cointegrated system. For example, the first equation takes the form

\342\226\240+

where tfp indicates the row i, column / element of the matrix \302\243,,by indicates the
row i, column / element of the matrix B, and zit represents the ith element of z,.
Thus, in the error-correction form, changes in each variable are regressed on a

constant, (p
- 1) lags of the variable's own changes, (j>

- 1) lags of changes in

each of the other variables, and the levels of each of the A elements of z,_x.
For example,recallfrom [19.1.9] that the system of [19.1.1]and [19.1.2] can

be written in the form

Aj'ii1] = \320\223\021^\320\2233'1-'\021] + \320\2237\022'
+

\"\021

J L 0 OJL^-J L \302\253* J

[19.1.39] withp

\320\247;1 ;]\342\226\240

Note that this is a specialcaseof [19.1.39] withp = 1,

Co

ei<
= 7u2t + \320\270\320\272>e2t

=
U2t> an(^ 8U other parameters in [19.1.39] equal to zero.
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The error-correction form is

where z, = yu -
yy2l.

An economic interpretation of an error-correction representation was pro-
proposed by Davidson, Hendry, Srba, and Yeo A978), who examined a relation

between the log of consumption spending (denoted c,) and the log of income (yt)
of the form

A
- L*)c,= 13,A

- L*)y, + /32A
-

\320\230)\320\2431_\320\263+ /\320\227\320\267(\321\201,_4
-

j>,_4) + \320\270,.[19.1.43]

This equation was fitted to quarterly data, so that A
- L4)c, denotes the percentage

change in consumption over its value in the comparable quarter of the preceding
year. The authors argued that seasonal differences A

-
L4) provided a better

description of the data than would simple quarterly differences A
- L). Their

claim was that seasonally differenced consumption A
-

L*)c, could not be de-

described using only its own lags or those of seasonally differenced in-

income. In addition to these factors, [19.1.43]includes the \"error-correction\" term

/33(c,_4- y,-t). One could argue that there is a long run, historical average ratio
of consumption to income, in which case the difference between the logs of con-

consumption and income, c, - y,, would be a stationary random variable, even though

log consumption or log income viewed by itself exhibits a unit root. For /33 < 0,
equation [19.1.43] asserts that if consumption had previously been a larger-than-

normal share of income (so that c,_4
- y,_4 is larger than normal), then that causes

c, to be lower for any given values of the other explanatory variables. The term
(c,_4 - y,-t) is viewed as the \"error\" from the long-ran equilibrium relation, and

j83 gives the \"correction\" to c, caused by this error.

Restrictions on the Constant Term

in the VAR Representation
Notice that all the variables appearing in the error-correction representation

[19.1.42]are stationary. Taking expectations of both sides of that equation results

in

(In ~ Ci -
\302\2432 t-08

- a - B^f, [19.1.44]
where 8 =

\302\243(\320\224\321\203,)and \\x.*
= E(zt). Assuming that the roots of

|i.
-

\320\241*-bz2 t-i*'-1! = 0

are all outside the unit circle, the matrix A\342\200\236
\342\200\224

\302\243x
\342\200\224

\302\2432
\342\200\224- - - \342\200\224

fp _,) is nonsingular.
Thus, in order to represent a system in which there is no drift in any of the variables
(8 = 0), we would have to impose the restriction

a =
\320\222\320\246.?. [19.1.45]

In the absence of any restriction on a, the system of [19.1.42] implies that there

are g separate time trends that account for the trend in y,.

Granger Representation Theorem

For convenience,some of the preceding results are now summarized in the

form of a proposition.
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Proposition 19.1: {Granger representation theorem). Consider an (n x 1) vector

y, where \320\224\321\203,satisfies [19.1.29] for e, white noise with positive definite variance-

covariance matrix and {s-'\320\244,}]\302\260,\320\276absolutely summable. Suppose that there are exactly
h cointegrating relations among the elements of y,. Then there exists an (A x n)
matrix A' whose rows are linearly independent such that the (A x 1) vector z, defined

by

z, =
A'y,

is stationary. The matrix A' has the property that

= \320\236.

//, moreover, the process can be represented as the pth-order VAR in levels as in

equation [19.1.26],then there exists an (\320\273\321\205A) matrix \320\222such that

\320\244A)
= BA',

and there further exist (n x n) matrices t,lt \302\2432,. . . , ^p_l such that

2 + ' \342\200\242\342\200\242+ lp-iby,-p+i + a -
Bz,_, + e,.

19.2. Testing the Null Hypothesis
of No Cointegration
This section discusses tests for cointegration. The approach will be to test the null

hypothesis that there is no cointegration among the elements of an (\320\270\321\2051)
vector y,; rejection of the null is then taken as evidenceof cointegration.

Testing for Cointegration When
the Cointegrating Vector Is Known

Often when theoretical considerations suggest that certain variables will be

cointegrated, or that a'y, is stationary for some (\320\273\321\2051) cointegrating vector a, the

theory is based on a particular known value for a. In the purchasing power parity

example [19.1.6], a =
A, -1, -1)'. The Davidson, Hendry, Srba, and Yeo

hypothesis A978) that consumption is a stable fraction of income implies a co-
cointegrating vector of a = A, -1)', as did Kremers's assertion A989) that govern-
governmentdebt is a stable multiple of GNP.

If the interest in cointegration is motivated by the possibility of a particular

known cointegrating vector a, then by far the best method is to use this value

directly to construct a test for cointegration. To implement this approach, we first
test whether each of the elements of y, is individually /A). This can be doneusing

any of the tests discussed in Chapter 17. Assuming that the null hypothesis of a
unit root in each series individually is accepted,we next construct the scalar z, =
a'y,.Notice that if a is truly a cointegrating vector, then a'y, will be /@). If a is
not a cointegrating vector, then a'y, will be /A). Thus, a test of the null hypothesis
that z, is /A) is equivalent to a test of the null hypothesis that y, is not cointegrated.
If the null hypothesis that z, is /A) is rejected,we would conclude that z, = a'y,
is stationary, or that y, is cointegrated with cointegrating vector a. The null hy-

hypothesis that z, is /A) can also be tested using any of the approaches in Chap-
Chapter17.

For example, Figure 19.2 plots monthly data from 1973:1 to 1989:10for the

consumer price indexes for the United States (p,) and Italy (p,*), along with the
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FIGURE 19.2 One hundred times the log of the price level in the United States

(p,), the dollar-lira exchange rate (s,), and the price level in Italy (pt), monthly,
1973-89. Key: p,\\ *,; pt-

exchange rate (s,), where s, is in terms of the number of U.S. dollars needed to

purchase an Italian lira. Natural logs of the raw data were taken and multiplied

by 100, and the initial value for 1973:1 was then subtracted, as in

p, = 100-[log(P,)- log(PI973:1)].

The purpose of subtracting the constant log(P1973:1)from each observation is to
normalize each series to be zero for 1973:1 so that the graph is easier to read.

Multiplying the log by 100 means thatp, is approximately the percentage difference
between P, and its starting value Pi9n:i- The graph shows that Italy experienced
about twice the average inflation rate of the United States over this period and

that the lira dropped in value relative to the dollar (that is, s, fell) by roughly this

same proportion.
Figure 19.3 plots the real exchange rate,

z, = pt- s,~ Pt-

It appears that the trends are eliminated by this transformation, though deviations

of the real exchange rate from its historical mean can persist for several years.
To test for cointegration, we first verify thatp,,p*, and s,are each individually

/A). Certainly, we anticipate the average inflation rate to be positive (\302\243(\320\224\321\200,)
>

0), so that the natural null hypothesis is that p, is a unit root process with positive
drift, while the alternative is thatp, is stationary around a deterministic time trend.

With monthly data it is a good idea to include at least twelve lags in the regression.

Thus, the following model was estimated by OLS for the U.S. data for t = 1974:2
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FIGURE 19.3 The real dollar-lira exchange rate, monthly, 1973-89.

through 1989:10 (standard errors in parentheses):

p, =
0.55\320\224\321\200,_,

- 0.06 \320\224\321\200,_2+ 0.07 \320\224\321\200,_3+ 0.06 \320\224\321\200,_4
@.08) @.09) @.08) @.08)

- 0.08 \320\224\321\200,_5
- 0.05 \320\224\321\200,_6+ 0.17 \320\224\321\200,_7

- 0.07 \320\224\321\200,_8
@,08) @,07) @,07) @,07) [19.2.1]

+ 0.24 \320\224\321\200,_,
- 0.11 \320\224\321\200,_\321\216+ 0.12 \320\224\321\200,_\320\277+ 0.05 \320\224\321\200,_12

@,07) @.07) @.07) @,07)

+ 0.14 + 0.99400 \321\200,_,+ 0.0029 \320\263.

@.09) @.00307) @.0018)

The t statistic for testing the null hypothesis that p (the coefficient on p,~i) is unity

is

t = @.99400 -
1.0)/@.00307)

= -1.95.

Comparing this with the 5% crtical value from the case 4 section of TableB.6for

a sample of size T = 189,we see that -1.95 > -3.44. Thus, the null hypothesis
of a unit root is accepted. The F test of the joint null hypothesis that p = 1 and
S = 0 (for p the coefficient onp,_\320\263 and S the coefficient on the time trend) is 2.41.

Comparing this with the critical value of 6.40from the case 4 section of TableB.7,
the null hypothesis is again accepted, further confirming the impression that U.S.

prices follow a unit root process with drift.
If p, in [19.2.1] is replaced byp*, the augmented Dickey-Fuller t and Ftests

are calculated to be -0.13 and 4.25, respectively, so that the null hypothesis that

the Italian price level follows an /A) processis again accepted. Whenp, in [19.2.1]
is replaced by s,, the t and F tests are -1.58 and 1.49, so that the exchange rate

likewise admits an ARIMAA2, 1, 0) representation. Thus, each of the three series
individually could reasonably be described as a unit root process with drift.
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The next step is to test whether z, = p, - s, -
p* is stationary. According

to the theory, there should not be any trend in zt, and none appears evident in

Figure 19.3. Thus, the augmented Dickey-Fuller test without trend might be used.
The following estimates were obtained by OLS:

z, = 0.32 \320\224\320\263,_!
- 0.01 ^zl.2 + 0.01\320\224\320\263,_3+ 0.02 Az,_4

@.07) @,08) @.08) @.08)

+ 0.08 \320\224\320\263,_5
- 0.00 \320\224\320\263,_6+ 0.03 Az,_7 + 0.08 \320\224\320\263,_\342\200\236

@.08) @,08) @.08) @.08) [19.2.2]
- 0.05 \320\224\320\263,_9+ 0.08 \320\224\320\263,_\321\210+ 0.05 \320\224\320\263,_\342\200\236

- 0.01 \320\224\320\263,_12
@.08) @.08) @.08) @.08)

+ 0.00 + 0.97124 \320\263,_,.
@.18) @,01410)

Here the augmented Dickey-Fuller t test is

t = @.97124- 1.0)/@.01410) 2.04.

Comparing this with the 5% critical value for case 2 of TableB.6, we see that

-2.04 > -2.88, and so the null hypothesis of a unit root is accepted. The F test
of the joint null hypothesis that p = 1 and that the constant term is zero is 2.19
< 4.66, which is again accepted. Thus, we could accept the null hypothesis that

the series are not cointegrated.

Alternatively, the null hypothesis that z, is nonstationary could be tested using
the Phillips-Perron tests. OLS estimation gives

z, = -0.030 + 0.98654z,_! + \320\271,
@.178) @.01275)

with

\321\202

s2 =
(\320\223

-
2)\021 2 \320\271?

= B.49116J

cj
= \320\223\0212 \320\271\320\220-\321\203

(-/+1

c0 = 6.144

A2 = c0 + 2-2 [1 - (//13)]c,= 13.031.
\320\243-1

The Phillips-Perron Zp test is then

Zp
=

\320\251
- 1) -

\320\246\320\242-&,
+ *P(A2

-
\321\201\342\200\236)

= B01)@.98654
- 1)

-\302\247{B01)@,01275) + B.49116)}2A3.031 - 6,144)
= -6.35.

Since - 6,35 > -13.9, the null hypothesis of no cointegration is again accepted.

Similarly, the Phillips-Perron Z, test is

Z, = (co/A2I'2(p -
l)/<r,

-
\320\246\320\242-&,

* s}(\\2
-

co)/A

= F.144/13.031)\321\210@.98654
- l)/@.01275)

-i{B01)@.01275)-5- B.49116)}A3.031
- 6,144)/A3.031)\022

= -1.71,

which, since - 1.71 > -2.88, gives the same conclusion as the other tests.
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Clearly, the comments about the observational equivalence of 1@)and /A)

processes are also applicable to testing for cointegration. There exist both /@) and

/A) representations that are perfectly capable of describing the observed data for
z, plotted in Figure 19.3. Another way of describing the results is to calculate how

long a deviation from purchasing power parity is likely to persist. The regression
of [19.2.2]implies an autoregression in levels of the form

for which the impulse-responsefunction,

Yl
\320\264\320\262,

'

can be calculated using the methods described in Chapter 1. Figure 19.4 plots the

estimated impulse-response coefficients asa function of/. An unanticipated increase
in z, would cause us to reviseupward our forecast of zt+l by 25% even 3 years into

the future (\321\204\320\2636
= 0.27). Hence, any forces that restore z, to its historical value

must operate relatively slowly. The same conclusion might have been gleaned from
Figure 19.3 directly, in that it is clear that deviations of zt from its historical norm
can persist for a number of years.

Estimating the Cointegrating Vector

If the theoretical model of the system dynamics does not suggest a particular
value for the cointegrating vector a, then one approach to testing for cointegration
is first to estimate a by OLS. To see why this produces a reasonable initial estimate,

-0.2

FIGURE 19.4 Impulse-responsefunction for the real dollar-lira exchange rate.
Graph shows \321\2041

=
d(p,+l

-
s,+l

-
pT+j)le,

as a function of/.
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note that if z,
= a'y, is stationary and ergodic for second moments, then

\320\263 \320\263

By contrast, if a is not a cointegrating vector, then z, = a'y, is /A), and so, from

result (h) of Proposition 17.3,

W(r)]z dr, [19.2.4]

where W(r) is standard Brownian motion and A is a parameter determined by the

autocovariances of A - L)z,.Hence, if a is not a cointegrating vector, the statistic
in [19.2.3] would diverge to +\302\253.

This suggests that we can obtain a consistent estimate of a cointegrating vector

by choosing a so as to minimize [19.2.3] subject to some normalization condition

on a. Indeed, such an estimator turns out to be superconsistent, converging at rate
T rather than T12.

If it is known for certain that the cointegrating vector has a nonzero coefficient
for the first element of \321\203,(et \320\2440), then a particularly convenient normalization

is to set ax
= 1 and represent subsequent entries of a (a2, a3, . . . , \320\260\342\200\236)as the

negatives of a set of unknown parameters (y2, y3, . . . , yn):

[19.2.5]

In this case, the objective is to choose (\321\203\320\263,y3, . . . , yn) so as to minimize

\320\223\0212 (\302\253'\320\243,J
= \320\223\0212 (\320\243\320\270

-
\320\2432\320\243\321\214

-
\320\243\321\212\320\243\321\212,\320\243\320\277\320\243\320\277\320\243.[19-2-6]

This minimization is, of course,achieved by an OLS regression of the first element

of y, on all of the others:

a2

\302\2533=

~
1

\"

~\320\243\320\263

~\320\243\320\263

-In

\320\243\\,
=

\320\243\320\263\320\243\321\212+ \320\243\321\212\320\243\321\212, [19.2.7]

Consistent estimates of y2, y3, . . . , \321\203\342\200\236are also obtained when a constant term is
included in [19.2.7], as in

or

\320\2431,='\320\260+ \320\243\320\263\320\243\321\212+ \320\243\320\267\320\243\320\267,+ \342\226\240\342\226\240\342\226\240+ \320\243\320\277\320\243\321\202+ \320\270,

\320\243\320\270=<*

[19.2.8]

where \321\203'
-

(\321\2032,\321\2033,. . . , \321\203\320\277)and \320\243\320\263,
=

(\320\24321,\321\20331,. . . , \321\203\320\277,)'.

These points were first analyzed by Phillips and Durlauf A986) and Stock

A987) and are formally summarized in the following proposition.

Proposition 19.2: Let yu be a scalar and \321\203\321\212be a (g X 1) vector. Let n \342\226\240
g + 1,

and suppose that the (n X 1) vector (\321\2031\320\277yi,)' is characterized by exactly one

cointegrating relation (h = 1)that has a nonzero coefficient on ylr Let the triangular
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representation for the system be

\320\243\320\270
= \320\260+ 1'\320\243\321\212

\320\220\321\203\321\214
=

\022,-

Suppose that

\320\253=**

[19.2.9]

[19.2.10]

[19.2.11]

where e, is an (n X 1) i.i.d. vector with mean zero, finite fourth moments, and

positive definite variance-covariance matrix E(e,e't)
= PP'. Suppose further that the

sequence of (n X n) matrices {\302\253\342\200\242'\320\244'\320\233\320\223=\320\276\320\270absolutely summable and that the rows

of \320\244*A)are linearly independent. Let aT and yT be estimates based on OLSesti-
estimation of [19.2.9],

rj 1.2*2, \320\252\320\223\320\263\320\236*}
[19.2.12]

where 2 indicates summation over t from 1 to T. Partition \320\244*A)-\320\240as

\320\244*A)-\320\240
=

(\320\277\321\205\320\277)

r
(IX\

A|
te)

Then

W(r) dr '
dr\\ \342\226\240

\320\233\320\223
ca-

[19.2.13]

where W(r) \320\271n-dimensional standard Brownian motion, the integral sign denotes

integration over r from 0 to 1, and

Note that the OLS estimate of the cointegrating vector is consistent even

though the error term u, in [19.2.8] may be serially correlated and correlated with

\320\224\321\203\320\263,,\320\224.\320\243\320\267/,\342\200\242\342\200\242\342\200\242, \320\224\321\203\321\217\320\263The latter correlation would contribute a bias in the limiting

distribution of T(yT - y), for then the random variable h2 would not have mean
zero. However, the bias in yT is OP(T~X).

Sincethe OLS estimates are consistent, the average squared sample residual
convergesto

whereas the sample variance of yu,

-1
\302\243{yu

-
\321\203,)\\
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diverges to +\302\253.Hence, the R2 for the regression of [19.2.8]will converge to unity
as the sample size grows.

Cointegration can be viewed as a structural assumption under which certain

behavioral relations of interest can be estimated from the data by OLS. Consider
the supply-and-demand example in equations [9.1.2]and [9.1.1]:

4i = yp,+ el [19.2.14]
qi =

pp, + ef. [19.2.15]

We noted in equation [9.1.6] that if ef and es, are i.i.d. with Var(eJ) finite, then

as the variance of ef goes to infinity, OLS estimation of [19.2.14]producesa

consistent estimate of the supply elasticity \321\203despite the potential simultaneous
equations bias. This is because the large shifts in the demand curve effectively trace
out the supply curve in the sample; see Figure 9.3. More generally, if e* is /@)
and e? is /A), then [19.2.14] and [19.2.15] imply that (q,, p,)' is cointegrated with

cointegrating vector A, -y)'. In this case the cointegrating vector can be consis-
consistentlyestimated by OLS for essentially the same reason as in Figure 9.3. The

hypothesis that a certain structural relation involving /A) variables is characterized
by an 1@) disturbance amounts to a structural assumption that can help identify

the parameters of the structural relation.

Although the estimates based on [19.2.8] are consistent, there often exist

alternative estimates that are superior. These will be discussed in Section 19.3.
OLSestimation of [19.2.8] is proposed only as a quick way to obtain an initial

estimate of the cointegrating vector.
It was assumed in Proposition 19.2 that \320\224\321\203^had mean zero. If, instead,

\320\225(\320\220\321\203\321\212)
=

\320\2612,it is straightforward to generalize Proposition 19.2 using a rotation
of variables as in [18.2.43]; for details, see Hansen A992). As long as there is no

time trend in the true cointegrating relation [19.2.9],the estimate y.Tbased on OLS
estimation of [19.2.8] will be superconsistent regardless of whether the /A) vector
\320\243\320\263,includes a deterministic time trend or not.

The Role of Normalization

The OLS estimate of the cointegrating vector was obtained by normalizing
the first element of the cointegrating vector a to be unity. The proposal was then
to regressthe first element of y, on the others. For example,with n = 2, we would
regress yu on \321\203\321\212:

\320\243\320\270
= <* + \320\243\320\243\321\214+ \320\270,-

Obviously, we might equally well have normalized a2 = 1 and used the same

argument to suggest a regression of \321\203\321\212on ylt:

\320\24321
= \320\262+ Hyu + vr

The OLS estimate N is not simply the inverse of \321\203,meaning that these two regres-
regressionswill give different estimates of the cointegrating vector:

Only in the limiting case where the R2 is 1 would the two estimates coincide.

Thus, choosing which variable to call yx and which to call y2 might end up
making a material difference for the estimate of a as well as for the evidence one
finds for cointegration among the series. Oneapproach that avoids this normali-
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zation problem is the full-information maximum likelihood estimate proposed by

Johansen A988, 1991). This will be discussed in detail in Chapter 20.

What Is the Regression Estimating When There Is More
Than One Cointegrating Relation?
The limiting distribution of the OLS estimate in Proposition 19.2 was derived

under the assumption that there is just one cointegrating relation (A = 1). In the

more general case with h > 1, OLS estimation of [19.2.8] should still provide a

consistent estimate of a cointegrating vector by virtue of the argument given in

[19.2.3] and [19.2.4]. But which cointegrating vector is it?

Consider the general triangular representation for a vector with h cointe-
cointegrating relations given in [19.1.20] and [19.1.21]:

yu =
\320\246*+ \320\223'\321\2032,+ \320\263* [19.2.16]

\320\224\321\203*
= 82 + \320\274\321\212, [19.2.17]

where the (A X 1) vector ylt contains the first h elements of y, and y2, contains the
remaining g elements. Since \320\263*=

(\320\263*,,z*t, \342\200\242\342\200\242\342\200\242, z\302\243,)'lscovariance-stationary with

mean zero, we can define j32, jS3, . . . , j3A to be the population coefficients asso-

associated with a linear projection of z*,on z\302\243,z3l, . . . , z%t:

*\320\254
=

ftz\302\243+ p3zl + \342\200\242\342\200\242\342\200\242+ phzt + u,, [19.2.18]

where \320\270,by construction has mean zero and is uncorrelated with z*n z^n . . . ,

The following proposition, adapted from Wooldridge A991), shows that the

sample residual \320\271,resulting from OLS estimation of [19.2.8]convergesin proba-

probabilityto the population residual \320\270,associated with the linear projection in [19.2.18].

In other words, among the set of possible cointegrating relations, OLS estimation

of [19.2.8] selects the relation whose residuals are uncorrelated with any other /A)
linear combinations of (y2t, y3l, . \342\226\240. , ynt).

Proposition 19.3: Let \321\203,
=

(\321\203[\342\200\236y'^)' satisfy [19.2.16] and [19.2.17]with ylt an

(h X 1) vector with h > 1, and let fiz, (i3, . . . , ft, denote the linear projection
coefficients in [19.2.18]. Suppose that

where {s- ^/If.o \320\271absolutely summable and \320\263,is an i.i.d. (n X 1) vector with mean
zero, variance PP', and finite fourth moments. Suppose further that the rows of
\320\244*A)-\320\240are linearly independent. Then the coefficient estimates associated with

OLS estimation of

ylt
= a + \321\2032\321\203\321\212+ y3y3t + \342\226\240\342\226\240\342\226\240+ ynynl + u, [19.2.19]

converge in probability to

&\320\242\320\233[1-\320\240'\320\232, [19.2.20]

where

P - (ft, A. \342\200\242\342\200\242\342\200\242, ft,)'
(\320\233-1)\321\2051
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and

\320\243\320\263,\321\202

\320\270
[19.2.21]

where

-[-,]\342\226\240

Proposition 19.3 establishes that the sample residuals associated with OLS
estimation of [19.2.19]convergein probability to

yu - aT - ~
\320\243\321\215.\321\202\320\243\321\215,

- \342\200\242\342\200\242\342\200\242-
\321\203\320\277,\321\202\321\203\342\200\236,

\342\226\240\320\243\320\270-V-\320\240'\320\232
-

\320\240'

\320\243\321\202\321\205

Jh,

- [1 -\320\240\320\242'

\320\243\320\275

\320\270-\321\200\321\202,

[1 -\320\240']-\302\273\320\223,

-
\320\274-\320\223

-
\320\263>

with the last equality following from [19.2.16]. But from [19.2.18] these are the
same as the population residuals associated with the linear projection of z*, on
Z2li Z3n \342\200\242\342\200\242\342\200\242> zhf

This is an illustration of a general property observed by Wooldridge A991).
Considera regressionmodel of the form

y, = a + x,'P + \321\211. [19.2.22]

If y, and x, are 1@),then a + x,' P was said to be the linear projection of y, on x,
and a constant if the population residual u,

= y, - a -
x,'f$ has mean zero and

is uncorrelated with x,. We saw that in such a case OLS estimation of [19.2.22]
would typically yield consistent estimates of these linear projection coefficients. In
the more generalcasewhere y, can be /@) or /A) and elements of x, can be /@)
or /A), the analogous condition is that the residual u,

= y, \342\200\224a \342\200\224
x,'P is a zero-

mean stationary process that is uncorrelated with all /@) linear combinations of
x,. Then a + x,'(J can be viewed as the /A) generalization of a population linear
projection of y, on a constant and x,. As long as there is some value for p such

thaty,
- x,'p is /@), such a linear projection a + x/p exists, and OLS estimation

of [19.2.22]should give a consistent estimate of this projection.

What Is the Regression Estimating When There Is No

Cointegrating Relation?

We have seen that if there is at least one cointegrating relation involving yu,
then OLS estimation of [19.2.19] gives a consistent estimate of a cointegrating

vector. Let us now consider the properties of OLS estimation when there is no

cointegrating relation. Then [19.2.19] is a regression of an 1A) variable on a set
of (n

- 1) 1A) variables for which no coefficients produce an 1@) error term. The

19.2. Testing the Null Hypothesis of No Cointegration 591



regression is therefore subject to the spurious regression problem described in

Section 18.3. The coefficients aT and -yr do not provide consistent estimates of any
population parameters, and the OLS sample residuals \320\270,will be nonstationary.
However, this last property can be exploited to test for cointegration. If there is

no cointegration, then a regression of \320\270,on m,_j should yield a unit coefficient. If

there is cointegration, then a regression of \320\271,on \320\271,_\321\205should yield a coefficient that
is less than 1.

The proposal is thus to estimate [19.2.19] by OLS and then construct one of
the standard unit root tests on the estimated residuals, such as the augmented

Dickey-Fuller t test or the Phillips Zp or Z, test. Although these test statistics are
constructed in the same way as when they are applied to an individual series yt,

when the tests are applied to the residuals \320\274,from a spurious regression, the critical

values that are used to interpret the test statistics are different from those employed
in Chapter 17.

Specifically, let y, be an (n X 1) vector partitioned as

\320\243,
=

(\"XI)

\320\243\320\270
AX1)

\320\2432,

[19.2.23]

for g = (n - 1).Consider the regression

\320\243\320\270
= <* + 7'\320\243\320\260+ \320\270,. [19.2.24]

\320\263

Let \320\271,be the sample residual associatedwith OLS estimation of [19.2.24] in a

sample of size T:

\320\271,
=

\320\243\321\214
~

&\321\202
~

\320\243\321\202\320\243\320\263,for t = 1, 2, . . . , \320\223, [19.2.25]

where

\320\223\320\260\320\263]=
\320\223\320\223 2yi

\"

and where 2 indicates summation over t from 1 to T. Theresidual \320\271,can then be

regressed on its own lagged value \320\274,_!without a constant term:

\320\271,
=

\321\200\320\271,_!+ e, for t = 2, 3, . . . , T, [19.2.26]

yielding the estimate
\321\202

\320\240\321\202
=

\320\247 \342\200\242 [19-2.27]

2 a?-i1-2

Lets\\be the OLS estimate of the variance of e, for the regression of [19.2.26]:

s\\
=

(\320\223
-

2)\021 2 (\320\271,
-

\321\200\321\202\320\271,-\320\264\320\263,[19-2.28]
1-2

and let
&\321\204\321\202be the standard error of 0r as calculated by the usual OLS formula:

^
= 4 +

{ia?-i}- [19.2.29]
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Finally, let
\321\201,-\321\202be the /th sample autocovariance of the estimated residuals asso-

associated with [19.2.26]:

\320\263

)'1 2cjT =
(\320\223

- I)'1 2 i#i-i for/ = 0,1,2,. . . , \320\223- 2 [19.2.30]t-l + 2

for i,= \320\271,
-

\320\240\321\202\320\271,-\320\271and let the square of A T be given by

\\2T
= co,r + 2- 2 [1 -

//fo +
1)]\321\201/|\320\223, [19.2.31]

where # is the number of autocovariances to be used.Phillips's Zp statistic A987)
can be calculatedjust as in [17.6.8]:

ZPJ =
(\320\223

- l)(pr- 1) -
A/2)-{(\320\223- 1J-\320\276^

-i- sVi-\320\244\320\263-\320\241\320\276.\321\202\320\254[19.2.32]

However, the asymptotic distribution of this statistic is not the expression in [17.6.8]
but instead is a distribution that will be described in Proposition 19.4.

\320\232the vector y, is not cointegrated, then [19.2.24] will be a spurious regression
and i>T should be near 1. On the other hand, if we find that /}r is well below 1 \342\200\224

that is, if calculation of [19.2.32]yields a negative number that is sufficiently large
in absolute value\342\200\224then the null hypothesis that [19.2.24] is a spurious regression

should be rejected, and we would conclude that the variables are cointegrated.

Similarly, Phillips's Z, statistic associated with the residual autoregression

[19.2.26] would be

[\320\223
-

1)-&\321\204\321\202
-=- sT}-{X2T

-
\320\241\320\276,\320\263}\320\234\320\263[19.2.33]

for tT the usual OLS t statistic for testing the hypothesis p
= 1:

h = (Pt -
1\320\243&^

Alternatively, lagged changes in the residuals could be addedto the regression of

[19.2.26] as in the augmented Dickey-Fuller test with no constant term:

\320\231,
=

\302\243\342\204\226i-i+ \302\243M-2 + \342\200\242\342\200\242\342\200\242+
\320\223\321\200_1\320\224\320\274,_\321\200+1+ \321\200\320\271,_!+ \320\265,.[19.2.34]

Again, this is estimated by OLS for t = p + 1,p + 2, . . . , T, and the OLS t

testofp = 1 is calculated using the standard OLS formula [8.1.26].If this t statistic
or the Z, statistic in [19.2.33] is negative and sufficiently large in absolute value,
this again casts doubt on the null hypothesis of no cointegration.

The following proposition, adapted from Phillips and Ouliaris A990), provides
a formal statement of the asymptotic distributions of these three test statistics.

Proposition 19.4: Consider an (n X 1) vector y, such that

Ay,
=

\302\243*,e,_,

for e, an i.i.d. sequencewith mean zero, variance E(ete't) = PP', and finite fourth
moments, and where {s-'4f,}%0 is absolutely summable. Let g = n - 1 and \320\233=

\320\244A)-\320\240.Suppose that the {n X n) matrix \320\233\320\233'is nonsingular, and let L denote the

Cholesky factor of (\320\233\320\233')-1:

(\320\233\320\233')\021
= LI/. [19.2.35]
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Then the following hold:

(a) Thestatistic fiT defined in [19.2.27] satisfies

(\320\223
- l)(pT - 1) -h2]-[W(l)]-[W*(l)]'

L-h2J [19.2.36]

Here, W*(r) denotes n-dimensional standard Brownian motion partitioned
as

W*(r) =
(nxl)

f()
(lxl)

! \320\271a scalar and h2 a (g X 1) vector given by

1
{[Wf(r)]'dr

1 \320\223
jwt(r),

Jw2*(r)
dr

tAe integral sign indicates integration over r from 0 to 1; and

\321\217.
-

| [Wi*MF dr -
\320\223|

wrw dr | [Wf(/\342\200\242)]\342\200\242[\321\211(\320\263)\320\243
drj^

If q-+\302\260\302\260as T-+<*> but q/T-*O, then the statistic ZpJ in [19.2.32] satisfies

ZB.T\302\261Zn,

where

[19.2.37]

[19.2.38]

+ \321\217\342\200\236.

(c) If q-+\302\253>as T-+\302\253>but q/T-+Q, then the statistic ZtT in [19.2.33] satisfies

zUT^zn-Van + (i + h2h2;r. [19.2.39]
(d) If, in addition to the preceding assumptions, Ay, follows a zero-meanstationary

vector ARM A process andifp-*\302\253>as T-* \302\253
butp/T\342\204\242

-* 0, then the augmented
Dickey-Fuller t test associated with [19.2.34] has the same limiting distribution

Zn as the test statistic Zp7. described in [19.2.37].

Result (a) implies that /5r-^ 1. Hence,when the estimated \"\302\253\302\253integrating\"

regression [19.2.24] is spurious, the estimated residuals from this regression behave
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like a unit root process in the sense that if \320\271,is regressed on \302\253,_!,the estimated

coefficient should tend to unity as the sample size grows. No linear combination
of y, is stationary, and so the residuals from the spurious regression cannot be

stationary.
Note that since W*(r) and W*(r) are standard Brownian motion, the distri-

distributions of the terms hu h2, #\342\200\236,and Zn in Proposition 19.4depend only on the
number of stochastic explanatory variables included in the cointegrating regression
(n - 1)and on whether a constant term appears in that regression but are not

affected by the variances, correlations, and dynamics of \320\224\321\203,.

In the special case when \320\224\321\203,is i.i.d., then *(L) =
In and the matrix \320\233\320\233'=

\320\225[(\320\224\321\203,)(\320\224\321\203,')].Since LL' =
(\320\233\320\233')\021,it follows that (\320\233\320\233')

= (L')\021^)\021. Hence,
for this special case,

}\320\254
= L'(AA')L = L'{(V)-KL)-l}L = In. [19.2.40]

If [19.2.40] is substituted into [19.2.36],the result is that when \320\224\321\203,is i.i.d.,

(\320\223
- lHr -l)-iz,

for Zn defined in [19.2.38].
In the more general case when \320\224\321\203,is serially correlated, the limiting distri-

distribution of T(pT
\342\200\224

1) depends on the nature of this correlation as captured by the

elements of L. However, the corrections for autocorrelation implicit in Phillips's

Zp and Z, statistics or the augmented Dickey-Fuller t test turn out to generate
variables whose distributions do not depend on any nuisance parameters.

Although the distributions of Zp, Z,, and the augmented Dickey-Fuller t test
do not depend on nuisance parameters, the distributions when these statistics are
calculated from the residuals \320\271,are not the same as the distributions these statistics
would have if calculated from the raw data y,. Moreover, different values for n - 1
(the number of stochastic explanatory variables in the cointegrating regression of
[19.2.24])imply different characterizations of the limiting statistics hu h2, #\342\200\236,and

Zn, meaning that a different critical value must be used to interpret Zp for each
value of n - 1. Similarly, the asymptotic distributions of h2, #\342\200\236,and Zn are different
depending on whether a constant term is included in the cointegrating regression
[19.2.24],

The section labeled Case 1 in Table B.8 refers to the case when the cointe-
cointegrating regression is estimated without a constant term:

\320\243\320\270
=

\320\243\320\263\320\243\320\263,+ \320\243\321\212\320\243\320\263.+ \342\200\242' ' + \321\203\342\200\236\320\243\342\200\236,+ \320\270,. [19.2.41]

The table reports Monte Carlo estimates of the critical values for the test statistic

Zp described in [19.2.32], for \320\271,the date t residual from OLS estimation of [19.2.41].
The values were calculated by generating a sample of size T = 500 for ylt, y^,
. . , , ynt independent Gaussian random walks, estimating [19.2.41] and [19,2,26]
by OLS, and tabulating the distribution of (\320\223

- l)(pT - 1).For example, the

table indicates that if we were to regressa random walk yu on three other random

walks (\321\203\321\212,y3t, and y^), then in 95% of the samples, (\320\223
-

l)(pr
- 1)would be

greater than -27.9, that is, pT should exceed 0.94 in a sample of size T = 500.If
the estimate (>T is below 0.94, then this might be taken as evidence that the series
are cointegrated.

The section labeled Case 2 in Table B.8 gives critical values for Z^T when a

constant term is included in the cointegrating regression:

\320\243\320\270
= \320\260+ \320\243\320\263\320\243\321\202\321\205+ \320\243\320\267\320\243\320\267,+ \342\200\242\342\200\242\342\200\242+ \320\243\342\200\236\320\243\342\200\236,+ \320\270,. [19.2.42]

For this case, [19.2.26]is estimated with \320\271,now interpreted as the residual from
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OLSestimation of [19.2.42]. Note that the different cases A and 2) refer to whether

a constant term is included in the cointegrating regression [19.2.42]and not to

whether a constant term is included in the residual regression [19.2.26]. In each
case, the autoregression for the residuals is estimated in the form of [19.2.26] with

no constant term.
Critical values for the Z, statistic or the augmented Dickey-Fuller t statistic

are reported in Table B.9. Again, if no constant term is included in the cointegrating
regression as in [19.2.41], the case 1 entries are appropriate, whereas if a constant
term is included in the cointegrating regression as in [19.2.42], the case 2 entries

should be used. If the value for the Z, or augmented Dickey-Fuller t statistic is
negative and large in absolute value, this is evidence against the null hypothesis
that y, is not cointegrated.

When the corrections for serial correlation implicit in the Zf,Z,, or augmented

Dickey-Fuller test are used, the justification for using the critical values in Table
B.8 or B.9 is asymptotic, and accordingly these tables describe only the large-

sample distribution. Small-samplecritical values tabulated by Engle and Yoo A987)
and Haug A992) can differ somewhat from the large-sample critical values.

Testing for Cointegration Among Trending Series
It was assumed in Proposition 19,4 that \320\225(\320\224\321\203,)

=
\320\236,in which case none of

the series would exhibit nonzero drift. Bruce Hansen A992) described how the

results change if instead \302\243(\320\224\321\203,)contains one or more nonzero elements.

Consider first the case n = 2, a regression of one scalar on another:

\320\243\320\270
= <* + \320\243\320\2432,+ \320\270,. [19.2.43]

Suppose that

\302\2472+ M2,

with \302\2472^0. Then

f

\320\243\320\263,
=

\320\2432.0+ $2't + E \022..

which is asymptotically dominated by the deterministic time trend 82-1.Thus,

estimates aT and yTbasedon OLS estimation of [19.2.43] have the same asymptotic

distribution as the coefficients in a regression of an /A) serieson a constant and

a time trend. If

(where 8,, may be zero), then the OLS estimate yT based on [19.2.43] gives a
consistent estimate of (Sj/SJ, and the first difference of the residuals from that

regression convergesto ult
- (V^)\"^; see Exercise19.1.

If, in fact, [19.2.43] were a simple time trend regression of the form

yu
= a + yt + ut,

then an augmented Dickey-Fuller test on the residuals,

\320\271,
=

\320\254\320\224\320\271,.!+ \302\2432\320\224\320\271,_2+ \342\200\242\342\200\242\342\200\242+
^_1\320\220\320\271,_\321\200+1+put_! + \320\265\342\200\236[19.2.44]

would be asymptotically equivalent to an augmented Dickey-Fuller test on the

original series ylt that included a constant term and a time trend:

\320\243\320\270
=

\302\243\320\233\320\243\320\270-1+ \320\254\320\254\321\203\320\270-\320\263+ \342\200\242\342\200\242\342\200\242+
\302\243\321\200-\320\233\320\243\320\270-\320\240+1

[19 2 45]
+ \320\260+ pyh,.i + St + \320\270,.
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Since the residuals from OLS estimation of [19.2.43] behave like the residuals from

a regression of [yu
-

(S1/S2)y2i] \302\260na time trend, Hansen A992)showed that when

\321\203\321\212has a nonzero trend, the t test of p = 1 in [19.2.44] for u, the residual from

OLS estimation of [19.2.43]has the same asymptotic distribution as the usual

augmented Dickey-Fuller t test for a regression of the form of [19.2.45]with yu

replaced by [yu -
(SlL/S2)y2l]. Thus, if the cointegrating regression involves a single

variable \321\203\321\212with nonzero drift, we estimate the regression [19.2.43] and calculate
the Z, or augmented Dickey-Fuller t statistic in exactly the samemanner that was

specified in equation [19.2.33] or [19.2.34]. However, rather than compare these
statistics with the (n

\342\200\224
1) = 1 entry for case2 from Table B.9, we instead compare

these statistics with the case 4 section of Table B.6.
For convenience, the values for a sampleof sizeT = 500 for the univariate

case 4 section of TableB.6 are reproduced in the (n - 1)= 1row of the section
labeled Case3 in Table B.9. This is describedas case3 in the multivariate tabu-
tabulations for the following reason. In the univariate analysis, \"case3\" referred to a

regression in which the single variable y, had a nonzero trend but no trend term
was included in the regression. The multivariate generalization obtains when the
explanatory variable \321\203\321\212has a nonzero trend but no trend is included in the regres-
regression[19.2.43]. The asymptotic distribution that describes the residuals from that

regression is the same as that for a univariate regression in which a trend is included.

Similarly, if \321\203\321\212has a nonzero trend, we can estimate [19.2.43]by OLS and

construct Phillips's Zp statistic exactly as in equation [19.2.32] and compare this

with the values tabulated in the case 4 portion of Table B.5.These numbers are

reproduced in row (n
- 1) = 1 of the case 3 section of TableB.8.

More generally, consider a regression involving n - 1 stochastic explanatory

variables of the form of [19.2.42].Let 5, denote the trend in the ith variable:

E(Aytl)
=

5...

Suppose that at least one of the explanatory variables has a nonzero trend com-

component; for illustration, call this the nth variable:

8\342\200\236*0.

Whether or not other explanatory variables or the dependent variable also have
nonzero trends turns out not to matter for the asymptotic distribution; that is, the

values of 5b 5\320\267>\342\200\242\342\200\242\342\200\242> Sn_! are irrelevant given that Sn \320\2440.

Note that the fitted values of [19.2.42] are identical to the fitted values from
OLS estimation of

yt, = \302\253*+ 7\320\263\320\243\302\243+ \320\243\321\215\320\243\321\215,+ \342\226\240\342\226\240\342\226\240+ \321\203*\320\277-\321\205\320\243*-\321\205,+ \320\243*\320\277\320\243\320\274+ \320\251, [19.2.46]

where

\320\243\320\275
s

\320\243\320\275
~

WSn)ynl for i = 1, 2, . . . , \320\277- 1.

As in the analysis of [18.2.44], moments involving yn, are dominated by the time

trend Snt, while the y\302\243are drtftless /A) variables for 1 = 1, 2, . . . , n - 1. Thus,
the residuals from [19.2.46] have the same asymptotic properties as the residuals

from OLS estimation of

yt = \302\253*+ ytyl + ytyi + \342\226\240\342\226\240\342\226\240+ yi-iyt-u + ytbt + \320\251-[19.2.47]

The appropriate critical values for statistics constructed when \320\271,denotes the residual
from OLS estimation of [19.2.42] can therefore be calculated from those for an

OLS regression of an /A) variable on a constant, (n -
2) other /A) variables, and

a time trend. The appropriate critical values are tabulated under the heading Case
3 in Tables B.8 and B.9.
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Of course, we could instead imagine including a time trend directly in the

regression, as in

\320\243\320\270
= \320\260+ \320\243\320\263\320\243\321\212+\320\243\320\263\320\243\320\263,+ \342\200\242\342\200\242\342\200\242+ \321\203\342\200\236\320\243\321\210+ St + \320\270,. [19,2.48]

Since [19.2.48] is in the same form as the regression of [19,2.47], critical values for

such a regression could be found by treating this as if it were a regression involving

(n + 1) variables and looking in the case 3 section of Table B.8 or B.9 for the
critical values that would be appropriate if we actually had (n + 1) rather than n

total variables. Clearly, the specification in [19.2.42] has more power to reject a

false null hypothesis than [19.2.48], since we would use the same table of critical

values for [19.2.42] or [19.2.48]with one more degree of freedom used up by

[19.2.48]. Conceivably, we might still want to estimate the regression in the form
of [19.2.48]to cover the case when we are not sure whether any of the elements

of y, have a nonzero trend or not.

Summary of Residual-Based Testsfor Cointegration

The Phillips-Ouliaris-Hansen procedure for testing for cointegration is sum-
summarized in Table 19.1.

To illustrate this approach, consider again the purchasing power parity ex-

example where p, is the log of the U.S. price level, s, is the log of the dollar-lira
exchange rate, and pf is the log of the Italian price level. We have already seen

that the vector a =
A, -1, -1)' does not appear to be a cointegrating vector for

y,
=

(j>t, st,pf)'. Let us now ask whether there is any cointegrating relation among
these variables.

The following regression was estimated by OLS for t = 1973:1to 1989:10
(standard errors in parentheses):

p, = 2.71+ 0.051s, + 0.5300 p* + ut. [19.2.49]
@.37) @.012) @.0067)

The number of observations used to estimate [19.2.49]is T = 202. When the

sample residuals \320\271,are regressed on their own lagged values, the result is

\320\231,
= 0.98331 u,_! + \321\221,

@.01172)

s2 =
(\320\223

-
2)\021 2 t} = @.40374J1-2

c0
= 0.1622

c,
=

(\320\223
-

I)\021 \302\243\321\221,\321\221,\321\207
t-l+2

A2 =
\321\201\320\276+ 2-f [1

- (//13)]c/= 0.4082.

/-i

The Phillips-Ouliaris Zp test is

Z, = (T- l)(p -
1)

-
A/2){(\320\223

-
l)-&, + sY(P -

\302\2430)

= B01)@.98331
- 1)

- i{B01)@.01172)+ @.40374)}2@.4082
- 0.1622)

7.54.

Given the evidence of nonzero drift in the explanatory variables, this is to be

compared with the case 3 section of Table B.8.For (n
\342\200\224

1)
= 2, the 5% critical
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TABLE 19.1
Summary of Phillips-Ouliaris-Hansen Tests for Cointegration

Case1:
Estimated \302\253\302\253integratingregression:

\320\243\320\275
=

\320\243\320\263\320\243\321\212+ \320\243\320\267\320\243\320\267,+ \342\200\242\342\226\240\342\200\242+ \320\247\320\277\320\243\321\202+ \320\251

True process for \321\203,
= (yu, \321\203\321\212,. . . , >>\342\200\236,)':

Zp has the same asymptotic distribution as the variable describedunder the

heading Case 1 in Table B.8.

Z, and the augmented Dickey-Fuller t test have the same asymptotic distri-
distribution as the variable described under Case 1 in Table B.9.

Case2:
Estimated cointegrating regression:

\320\243\320\270
= <* + \320\243\320\263\320\243\321\212+ \320\243\321\215\320\243\321\215,+ \342\200\242\342\200\242\342\200\242+ \321\203\342\200\236\320\243\342\200\236,+ \320\270,

True process for \321\203,
= (yu, y2l, . . . , \321\203\342\200\236,)':

Ay. = E *A-,J-0

Zp has the same asymptotic distribution as the variable described under Case

2 in Table B.8.
Z, and the augmented Dickey-Fuller t test have the same asymptotic distri-

distribution as the variable described under Case 2 in Table B.9.

Case3:
Estimated cointegrating regression:

>'!, = \302\253+ \320\243\320\263\320\243\321\212+ \320\243\321\215\320\243\321\215.+ ' ' \342\200\242+ \320\243\320\277\320\243\320\277,+ \320\270,

True process for \321\203,
=

(\321\203\320\270,\321\203\321\212,. . . , ynt)':

Ay, = 6 + 2 \320\244,\320\265,_,
J-0

with at least one element of \302\2472,S3, . . . , 8\342\200\236nonzero.

Zp has the same asymptotic distribution as the variable describedunder Case

3 in Table B.8,
Z, and the augmented Dickey-Fuller (test have the same asymptotic distri-

distribution as the variable described under Case 3 in Table B,9,

Notes to Table 19.1
Estimated cointegrating regression indicates the form in which the regression that could describe

the cointegrating relation is estimated, using observations r = 1, 2, . . . , 7\".

True process describes the null hypothesis under which the distribution is calculated. In each
case, e, is assumed to be i.i.d. with mean zero, positive definite variance-covariance matrix, and finite
fourth moments, and the sequence {j-VJJ.0 's absolutely summable. The matrix *A) is assumed to
be nonsingular, meaning that the vector v, is not cointegrated under the null hypothesis. If the test
statistic is below the indicated critical value (that is, if Zp, Z,, or t is negative and sufficiently large in
absolute value), then the null hypothesis of no cointegration is rejected.

Zp is the following statistic,

Z, - (\320\223
-

l)ipT
\"

1)
-

(\320\250\320\226\320\223
-

lJ-*Jr

where fiTis the estimate of p based on OLSestimation of \320\271,= \321\200\320\271,.\321\205+ e,ioiu, the OLSsample residual
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value for Zp is -27,1. Since-7.54 > -27.1,the null hypothesis of no cointegration
is accepted. Similarly, the Phillips-Ouliaris Z, statistic is

Z, =
(co/\\y*(p

-
1)/S>

-
A/2){(\320\223

-
1)-*, + 5}(A2

- co)/A
= {@.1622)/@.4082)}M@.98331-

l)/@,01172)

- i{B01)@,01172) f @,40374)}@.4082- 0,1622)/@,4082)\321\210

= - 2.02,

Comparing this with the case 3 section of TableB.9,we see that - 2.02 > -3.80,
so that the null hypothesis of no cointegration is also accepted by this test. An
OLS regression of \320\271,on \320\271,_\321\205and twelve lags of \320\224\320\270,_,-produces an OLS t test of
p = 1 of -2,73, which is again above -3,80, We thus find little evidence that/?,,
s,, and pf are \302\253(integrated. Indeed, the regression [19,2.49] displays the classic

symptoms of a spurious regression\342\200\224the estimated standard errors are small relative

to the coefficient estimates, and the estimated first-order autocorrelation of the

residuals is near unity.

As a second example, Figure 19,5 plots 100 times the logs of real quarterly
aggregate personal disposableincome (y,) and personal consumption expenditures

(c() for the United States over1947:1to 1989:111. In a regression of y, on a constant,
a time trend, \321\203,\342\200\236\321\205,and Ay,4 for/ = 1,2,, , . ,6, the OLSt test that the coefficient

on >>,_! is unity is -1.28, Similarly, in a regression of c, on a constant, a time

trend, c,_!, and
\320\224\321\201,_;

for / = 1,2,. , . ,6, the OLS t test that the coefficient on

c,_! is unity is -1,88. Thus, both processesmight well be described as 1A) with

positive drift.

The OLS estimate of the cointegrating relation is

c, = 0.67+ 0.9865 \321\203,+ \321\211. [19,2.50]
B.35) @.0032)

A first-order autoregression fitted to the residuals produces

\320\271,
= 0,782 \320\271,_!+ \321\221\342\200\236

@.04S)

Notes to Table 19.1 (continued).

from the estimated regression. Here,

4 =
(\320\223

- 2)- \302\243el,
1-2

where i, = \320\271,
-

\321\200\321\202\320\271,_,is the sample residual from the autoregression describing \320\271,and
&>T

is the
standard error for fiT as calculated by the usual OLS formula;

Also,

kr = (T -
lytJLjA-,

\320\252
=

\320\263\342\200\236,\320\263+ 2$ [1
- jl(q + \320\251.\321\202.

Z, is the following statistic:

z, - (eo.rik\\)m-ipr
-

i)/*,r
-

(i/2)(A3-
-

\320\263\320\276.\320\263)A/\320\257\320\263){G-
-

Augmented Dickey-Fuller t statistic is the OLS t test of the null hypothesis that p = 1 in the
regression

\320\271,- iM,-i + tM,-i + \342\200\242\342\200\242\342\200\242+ CP-M,-p*i + pd,-,+ e,.
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FIGURE 19.5 One hundred times the log of personal consumption expenditures

(c,) and personal disposableincome (y,) for the United States in billions of 1982
dollars, quarterly, 1947-89. Key: \321\201,; y,.

for which the corresponding Zp and Z, statistics for q
= 6 are -32.0 and -4.28.

Since there is again ample evidence that y, has positive drift, these are to be
compared with the case 3 sections of Tables B.8 and B.9, respectively. Since
-32.0 < -21.5 and -4.28 < -3.42, in each case the null hypothesis of no

cointegration is rejected at the 5% level. Thus consumption and income appear to
be cointegrated.

Other Testsfor Cointegration

The tests that have been discussedin this section are based on the residuals

from an OLS regression of yu on (\321\203\321\212,\320\243\320\267,,.. . , \321\203\342\200\236,).Since these are not the same

as the residuals from a regression of y2t on (yu, \320\243\320\275,\342\226\240\342\226\240\342\200\242, ynl), the tests can give
different answers depending on which variable is labeled yx. Important tests for

cointegration that are invariant to the ordering of variables are the full-information

maximum likelihood test of Johansen A988, 1991) and the related tests of Stock

and Watson A988)and Ahn and Reinsel A990). Thesewill be discussed in Chapter
20.Other useful tests for cointegration have beenproposedby Phillips and Ouliaris

A990), Park, Ouliaris, and Choi A988), Stock A990), and Hansen A990).

19.3. Testing Hypotheses About the CointegratingVector
The previous section described some ways to test whether a vector y, is cointegrated.

It was noted that if y, is cointegrated, then a consistent estimate of the cointegrating
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vectorcanbeobtained by OLS, This section exploresfurther the distribution theory
of this estimate and proposes several alternative estimates that simplify hypothesis
testing.

Distribution of the OLS Estimate for a SpecialCase
Let ylt be a scalar and \321\203\321\212be a (g x 1) vector satisfying

\320\243\321\205,
= \302\253+ 1'\320\243\321\212+ z? [19.3.1]

\320\2432,
=

\320\2432,,-1
+ u2(. [19.3.2]

If yu and \321\203\320\263,are both 1A) but z* and 112, are 1@), then, for n \342\200\224
(g + i); the n-

dimensional vector (yu, y'2l)' is cointegrated with cointegrating relation [19.3.1].
Consider the special case of a Gaussian system for which \321\203\321\212follows a random

walk and for which zf is white noise and uncorrelated with u2t for all t and \321\202:

\320\253\342\200\224

Then [19.3.1] describes a regression in which the explanatory variables (y^) are
independent of the error term (z*) for all t and \321\202.The regression thus satisfies

Assumption 8,2 in Chapter 8. There it was seen that conditional on (y2i, \320\24322,\342\200\242\342\200\242\342\200\242,

\320\243\320\263\320\263)>the OLS estimates have a Gaussian distribution;

-
\320\243) [19,3,4]

where 2 indicates summation over f from 1 to \320\223.

Recall further from Chapter 8 that this conditional Gaussian distribution is
all that is needed to justify small-sample application of the usual OLS t or F tests.
Consider a hypothesis test involving m restrictions on a and \321\203of the form

= r,

where Ra and \320\263are known (m x 1) vectors and RY is a known (m x g) matrix

describing the restrictions. The Wald form of the OLS F test of the null hypothesis

[19.3.5]
X (Radr + RTYr

- r) -f- m,

where

\321\202

st - (T -
n)\021 2 (.\320\243\320\272

~
<*\320\263

~
7\320\263\320\2432(J-

Result [19.3.4] implies that conditional on (y21, y^, . . . , y2r), under the null

hypothesis the vector (Radr +
RY7r

- r) has a Gaussian distribution with mean
0 and variance

R if
\320\246\321\217 ^y'
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It follows that conditional on (y21, \320\24322,. \342\200\242. , \320\243\320\263\321\202)>the term

[19.3.6]
X (Radr + R^r

- r)

isa quadratic form in a Gaussian vector. Proposition 8.1 establishes that conditional
on (\320\243\320\263\321\214\320\243\320\263\320\263.\342\200\242\342\200\242\342\200\242> \320\243\320\263\320\263)>the magnitude in [19.3.6] has a X2(m) distribution. Thus,
conditional on (y21, y^, . . . , y2r), the OLS F test [19.3.5]could be viewed as the
ratio of a ^(m) variable to the independent x2(T

- n) variable (\320\223
- n)i^/o-f,

with numerator and denominator each divided by its degree of freedom.TheOLS
F test thus has an exact F(m, T -

n) conditional distribution. Since this is the

same distribution for all realizations of (y21, y22, . . . , y2r), it follows that [19.3.5]
has an unconditional F(m, T -

n) distribution as well. Hence, despite the 1A)

regressors and complications of cointegration, the correct approach for this example

would be to estimate [19.3.1]by OLS and use standard t or F statistics to test any

hypotheses about the cointegrating vector. No special procedures are neededto

estimate the cointegrating vector, and no unusual critical values needbeconsulted

to test a hypothesis about its value.

We now seek to make an analogous statement in terms of the corresponding

asymptotic distributions. To do so it will be helpful to rescalethe results in [19.3.4]
and [19.3.5] so that they define sequences of statistics with nondegenerate asymp-
asymptoticdistributions. If [19.3.4] is premultiplied by the matrix

\320\2237\342\204\2420' \"I

L 0 \320\223-lJ'

the implication is that the distribution of the OLS estimates conditional on (y21,

\320\24322.\342\200\242\342\200\242\342\200\242\342\200\242\320\243\320\263\320\263)is given by

\\TU\\&T
- a)

To analyze the asymptotic distribution, notice that [19.3.1] through [19.3.3]
are a specialcaseof the system analyzed in Proposition 19.2 with **(L) =

In and

where P22 is the Cholesky factor of \320\23622:

\302\25322
=

For this special case,

[19-3.8]
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The terms \\*' and \320\2332referred to in Proposition 19.2would then be given by

\320\245\320\223= [ \302\260-i \302\260'1
(lx.) 1AX1) (lxg)J

\320\2732*= \320\223\320\276 p^ 1
(I*\302\273) |_Uxl) Uxg)J-

Thus, result [19.2.13]of
Proposition 19.2 establishes that

\\Tll2{aT- \320\260)]
\320\223 1

l \320\247-\320\243\321\202-\320\243)J

=
Lr-3'2

[0

[0

where the integral sign indicates integration over r from 0 to 1. If the n-dimensional

standard Brownian motion W(r) is partitioned as

[o
Pjj/twwj-twwj'drjr^j

[19.3.9]

W(r) =
(nxl)

then [19.3.9] can be written

L \320\223G\320\263
-

\320\243)J

(lxl)

2 / W2(r) dr

P^j/
[W2(r)]

[W2(r)]'
dr|P22

[W2(r)][W2(r)]'dr[P22 [19.3.10]

where

,
\\ W2(r) dr

[W2(r)]
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[W2(r)]'

[W2(r)HW2(r)]'
drJp22

\342\200\242}

[19.3.11]



Since Wj(-) is independent of W2(-)> the distribution of (i\302\2731,v2)' conditional

on W2(-) is found by treating W2(r) as a deterministic function of r and leaving the

process W^-) unaffected. Then /[W2(r)] dW^r) has a simple Gaussian distribution,

and [19.3.11] describes a Gaussian vector. In particular, the exact finite-sample

result for Gaussian disturbances [19.3.7]implied that

(\320\24321>\320\24322>\342\226\240\342\226\240\342\226\240'
-a)

T(yT -
\321\203)

\320\232\320\256-

il'

Comparing this with the limiting distribution [19.3.10],it appears that the vector
(vi> \"\320\263)'has distribution conditional on W2(-)that could be described as

1
{/

[W2(r)]'

W2(r) dr
P22|J

[W2(r)]-[W2(r)]'
I

[19.3.12]

Expression [19.3.12] allows the argument that was used to motivate the usual

OLS t and F testson the system of [19.3,1] and [19.3.2]with Gaussian disturbances

satisfying [19.3.3] to give an asymptotic justification for these sametests in a system
with non-Gaussian disturbances whose means and autocovariances are as assumed

in [19.3.3]. Consider for illustration a hypothesis that involves only the cointegrating
vector, so that Ra = 0. Then, under the null hypothesis, m times the F test in

[19.3.5] becomes

\"
7)]

2 / Wa(r) dr PJ J [W2(r)].[W2(i)]' dr

jpia
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'< [0 It,]

[W2(r)]'drjP22

Pa/wa(r)dr [Wa(r)].[Wa(r)]
\302\253

dr}p22

-1 N \"I

[19.3.13]

Result [19,3,12] implies that conditional on W2(-), the vector1\320\246,\321\2032
has a Gaussian

distribution with mean 0 and variance

[0 RJ
[W2(r)]'

,
/ Wa(r) dr pJJ [Wa(r)]-[Wa(r)]'

rfr}p22

Since Sj- provides a consistent estimate of o-2, the limiting distribution of m-FT
conditional on W2(-) is thus x\\m)i and so the unconditional distribution is ;r2(m)
as well. This means that OLS t or F tests involving the cointegrating vector have
their standard asymptotic Gaussian or x2 distributions.

It is also straightforward to adapt the methods in Section 16.3 to show that

the OLS x2 test of a hypothesis involving just a, or that for a joint hypothesis
involving both a and -\321\203,also has a limiting x2 distribution.

The analysis to this point applies in the special case when yu and y^ follow
random walks. The analysis is easily extended to allow for serial correlation in

z* or u2,, as long as the critical condition that z* is uncorrelated with u2t for all
t and t is maintained. In particular, suppose that the dynamic process for
(z*, uj,)' is given by

\321\213

-
*\342\200\242<*\342\226\240

with {i-**}r.o absolutely summable, \302\243(e()
= 0, E(e,e't) = PP' if t= t and 0

otherwise, and fourth moments of e, finite. In order for z* to be uncorrelated with

u2t for all t and \321\202,both 4r*(L) and P must be block-diagonal:

0'

P =

implying that the matrix \320\244*A)\320\240is also block-diagonal:

[a-^tiil)

0' 1
0 *b(l)-pj [19.3.14]

Lo A^J
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Noting the parallel between [19.3.14] and [19.3.8], it is easy to confirm that if

Af \320\2440 and the rows of \320\233|2are linearly independent, then the analysis of [19.3.10]
continues to hold, with a-x replaced by \\* and P22 replaced by A^:

L \320\246\321\203\321\202-\321\203)

1

W2(r)dr

_
[Wa(r)]'<Jr

i{j[Wa(r)]-[Wa(r)]' [19.3.15]

[w2(r>]

Conditional on W2(-)> this again describes a Gaussian vector with mean zero and
variance

{J [Wa(r)]'
\320\233-}\320\273&'

Wa(r) dr
A2J| [W2(r)]-[W2(r)]' d

The same calculations as in [19.3.13] further indicate that m times the OLS F test

of m restrictions involving a or \321\203converges to (A*J/sr times a variable that is

^2(m) conditional on W2(-).Sincethis distribution does not depend on W2(-), the

unconditional distribution is also [(\320\232I!^'x\\m)-

Note that the OLS estimate s\\ provides a consistent estimate of the variance

of z*:

4-(\320\223-\320\273)\0212 (\321\203\342\200\236-&T- Etff

However, if z* is serially correlated, this is not the same magnitude as (AfJ.

Fortunately, this is simple to correct for. For example, s\\ in the usual formula for
the F test [19.3.5] could be replacedwith

\320\244

for

[19.3.16]

[19.3.17]

with \320\271,
= (yu

\342\200\224
&T

-
77\320\2432/)the sample residual resulting from OLS estimation

of [19.3.1]. If q ->\342\200\242oo but qlT^> 0, then Af.r
\320\233Af. It then follows that the test

statistic given by

[19.3.18]

- r)

has an asymptotic x^im) distribution.
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The difficulties with nonstandard distributions for hypothesis tests about the

cointegrating vector are thus due to the possibility of nonzero correlations between
z* and u2t. The basicapproach to constructing hypothesis tests will therefore be
to transform the regression or the estimates so as to eliminate the effects of this

correlation.

Correcting for Correlation by Adding Leads
and Lagsof \320\224\321\2032

One correction for the correlation between z* and u2t, suggested by Saikkonen

A991), Phillips and Loretan A991), Stock and Watson A993), and Wooldridge
A991),is to augment [19.3.1] with leads and lags of \320\224\321\203^.Specifically, since z* and
iia are stationary, we can define 2, to be the residual from a linear projection of
z* on

{u2-,_p, u2,_p+1, . . . , u2.,_1; Ua, u2.,+1,. . . , u2j+p}:

z,* = Z \320\255>2.<-*

where t, by construction is uncorrelated with u2,_, for s = -p, \342\200\224p+ 1,...,
p. Recalling from [19.3.2] that u2, =

\320\224\321\203^,equation [19.3.1] then can be written

+ 2, \320\255;\320\224\321\2032,(-,\320\243\320\270
= \320\260+ -\321\203'\321\2032,+ 2, \320\255;\320\224\321\2032,,_,+ \320\263,. [19.3.19]

s--p

If we are willing to assume that the correlation between z* and u2_,_,is zero for
|s|>p, then an F test about the true value of \321\203that has an asymptotic x2 distribution

is easy to construct using the same approach adopted in [19.3.18].
For a more formal statement, let yu and y^ satisfy [19.3.19] and [19.3.2] with

\320\230\022(J

where {i-\320\244\320\233\320\223-\320\276is an absolutely summable sequenceof (n x n) matrices and
{e,}T--\302\273is an i.i.d. sequence of

(n_
x 1) vectors with mean zero, variance PP', and

finite fourth moments and with \320\244A)-\320\240nonsingular. Suppose that z, is uncorre-

uncorrelatedwith u2t for all t and \321\202,so that

-
[o pj

where V^ and ^22(L) are (gxj) matrices for g e n - 1. Define

w, =
(u2.(_p, u2-,_p + 1, . . . , u2-,_b u2t, u2-(+1,. . . , u2.,+p)'

p-o;. \321\215;-. \321\215-\321\200)',

so that the regression model [19.3.19]can be written

yu =
\320\255\320\247+ \320\260+ \321\203'\321\203\321\212+ it. [19.3.22]

The readeris invited to confirm in Exercise 19.2that the OLS estimates of [19.3.22]
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satisfy

fQ-'hi'

where Q =
\302\243(w,w,'),

-\320\255)

-a)

l \320\246\321\203\321\202
-

\321\203)J

,i( \320\224h,, An = er, \342\200\242&,(!),and

[19.3.23]

\320\230-

1 i I [Wa(r)]'

A22 | Wa(r) dr

A22|
| [Wa(r)]-[Wa(r)]'

[Wa(r)] dW,<

Here \320\23322
=

\320\244\320\263\320\263\320\250'\320\240\320\270.^iW is univariate standard Brownian motion, W2(r) is

g-dimensional standard Brownian motion that is independent of W,(-), and the
integral sign denotes integration over r from 0 to 1. Hence, as in [19.3.12],

[19.3.24]

[Wa(r)]'

,
J Wa(r) dr

A22|/
[Wa(r)]-[Wa(r)]' dr [A22

Moreover,the Wald form of the OLS x1 test of the null hypothesis R77 = r,
where R7 is an (m x g) matrix and \320\263is an (m x 1) vector,canbe shown to satisfy

\321\201

r:

X\\ = flMr - r}' 0 R7]

2y2,w,'

\320\223

2y2,

2w,y2,\"

2y2,

2y2,y2,.

R7]

1 < I [Wa(r)]'

Wa(r) dr A,,] I tWa(r)]-[Wa(r)]'
r;

[19.3.25]
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see Exercise 19.3. But result [19.3.24] implies that conditional on W2(-), the expres-
expressionin [19.3.25] is (k1Js\\) times \320\260\320\2452(\321\202)variable. Since this distribution is the

same for all W2(-), it follows that the unconditional distribution also satisfies

**\342\200\242*(Af./jfr^m). [19.3.26]

Result [19.3.26] establishes that in order to test a hypothesis about the value
of the cointegrating vector y, we can estimate [19.3.19]by OLS and calculate a
standard F test of the hypothesis that R7-y

= \320\263using the usual formula. We need
only to multiply the OLS F statistic by a consistent estimate of (^\320\263/\320\220^),and the

F statistic can be comparedwith the usual F(m, T - k) tables for \320\272the number

of parameters estimated in [19.3.19] for an asymptotically valid test. Similarly, the
OLS t statistic could be multiplied by (\342\226\240$jv'A?1I'2and compared with the standard

t tables.

A consistent estimate of An is easy to obtain. Recall'that An =
\321\201\321\202\320\263^\320\277\320\250,

where z, = tj/n(L)eu and E(e},)
=

o-f. Suppose we approximate i^u(L) by an

AR(p) process, and let \320\271,denote the sample residual resulting from OLS estimation
of [19.3.19].If \320\271,is regressed on p of its own lags:

\320\271,
=

\321\204,\321\211_,+ \321\204\320\263\320\271,_2+ \342\200\242\342\200\242\342\200\242+ \321\204\321\200\320\271,_\342\200\236
+ \320\265\342\200\236

then a natural estimate of \320\220\321\206is

A2,,
= <VA

-
\320\272

~
\320\244\\ <\302\243\342\200\236), [19.3.27]

where

(-p+i

and where \320\223indicates the number of observations actually used to estimate [19.3.19].
Alternatively, if the dynamics implied by ijfu(,L) were to be approximated on the
basis of q autocovariances, the Newey-West estimator could be used:

A?,
= c0 + 2-1 [1 -

]l(q +
\320\251, [19.3.28]

where

cj
= \320\223\"'2 0A-y.

These results were derived under the assumption that there were no drift

terms in any of the elements of y2,. However, it is not hard to show that the same

procedure works in exactly the same way when some or all of the elements of \320\243\320\263,

involve deterministic time trends. In addition, there is no problem with adding a
time trend to the regression of [19.3.19] and testing a hypothesis about its value
using this same factor applied to the usual F test. This allows testing separately
the hypotheses that A) yu

-
-\321\203'\320\243\320\263,has no time trend and B) ylt

-
\321\203'\321\203\321\212is 1@),

that is, testing separately the restrictions [19.1.15] and [19.1.12]. The reader is
invited to verify these claims in Exercises 19.4 and 19.5.

Illustration\342\200\224Testing Hypotheses About the Cointegrating
Relation Between Consumptionand Income
As an illustration of this approach, consider again the relation between con-

consumption c, and income \321\203\342\200\236for which evidence of cointegration was found earlier.

610 Chapter 19 \\ Cointegration



The following regression was estimated for t = 1948:11to 1988:111 by OLS, with

the usual OLS formulas for standard deviations given in parentheses:

c, = -4.52 + 0.99216y, + 0.15 \320\224>>,+4+ 0.29 \320\224>>,+\321\215+ 0.26 \320\224\321\203,+,
B.34) @.00306) @.12) @.12) @.11)

+ 0.49 \320\224>>,+1
- 0.24 \320\224>>,

- 0.01 \320\224>>,_,+ 0.07 \320\224\321\203,_2
@.12) @.12) @.U) @,11) [19.3.29]

+ 0.04 \320\224>>,_\320\267+ 0.02 \320\224\321\203,_4+ \320\271,
@.11) @.11)

\320\263

s2 =
(\320\223- \320\230)\0212 \320\271?

= A.516J.
t-i

Here T, the number of observations actually used to estimate [19.3.29], is 162.To
test the null hypothesis that the cointegrating vector is a =

A, -1)', we start with

the usual OLS t test of this hypothesis,

t = @.99216 -
l)/0.00306

= -2.562.

A second-order autoregression fitted to the residuals of [19.3.29]by OLS produced

\320\271,
= 0.7180 fl,_,+ 0.2057 \320\271,_2+\321\221\342\200\236 [19.3.30]

where

\321\202

ai = (T -
2)\021 2 \302\253?

= 0.38092.
1-3

Thus, the estimate of \320\233\342\200\236suggested in [19.3.27] is

ln =
@.38092I/2/(l

- 0.7180 - 0.2057)= 8.089.
Hence, a test of the null hypothesis that a = A, -1)' can be based on

t-(slln) = (-2.562)A.516)/(8.089)= -0.48.
Since -0.48 is above the 5% critical value of -1.96 for a N@, 1) variable, we

accept the null hypothesis that a =
A, -1)'.

To test the restrictions implied by cointegration for the time trend and sto-
stochastic component separately, the regression of [19.3.29]was reestimated with a
time trend included:

c,
= 198.9 + 0.6812y, + 0.2690 / + 0.03 \320\224\321\203,+4+ 0.17 \320\224\321\203,+3

A5.0) @.0229) @.0197) @.08) @.08)

+ 0.15 \320\224\321\203,+2+ 0.40 \320\224\321\203,+1
- 0.05 \320\224\321\203,+ 0.13 \320\224\321\203,_!

@.08) @.08) @.08) @.08) [19.3.31]
+ 0.23 \320\224\321\203,_2+ 0.20 \320\224\321\203,_3+ 0.19 \320\224>,_4+ \320\271,

@.08) @.08) @.07)

s2 =
(\320\223- 12)-1 2 \320\271?=A.017J.

'\"'

A second-order autoregression fitted to the residuals of [19.3.31]produced

\320\271,
= 0.6872 fl,_,+ 0.1292 \320\271,_2+\321\221\342\200\236

where

\321\202

&\\
= (T -

2)\021 ^ if = 0.34395
/-3

and

In =
@.34395)\321\210/A

- 0.6872 - 0.1292)= 3.194.
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A test of the hypothesis that the time trend does not contribute to [19.3.31]is thus

given by

[@.2690)/@.0197)HA.017)/C.194)] = 4.35.

Since4.35 > 1.96, we reject the null hypothesis that the coefficient on the time
trend is zero.

TheOLSresults in [19.3.29] are certainly consistent with the hypothesis that

consumption and income are \302\253\302\253integratedwith cointegrating vector a =
A, -1)'.

However, [19.3.31] indicates that this result is dominated by the deterministic time
trend commonto c, and yt. It appears that while a = A, -1)' is sufficient to

eliminate the trend components of c,and y,, the residual \321\201,
-

\321\203,contains a stochastic

component that could be viewed as /A). Figure 19.6 provides a plot of \321\201,-\321\203,.It

is indeed the case that this transformation seems to have eliminated the trend,
though stochastic shocks to \321\201,

-
\321\203,do not appear to die out within a period as

short as 2 years.

Further Remarks and Extensions
It was assumed throughout the derivations in this section that z, is /@), so

that y, is \302\253\302\253integratedwith the cointegrating vector having a nonzero coefficient
on yu. If y, were not \302\253(integrated, then [19.3.19] would be a spurious regression

and the tests that were described would not be valid. For this reason estimation
of [19.3.19]\\yould usually be undertaken after an initial investigation suggested
the presence of a cointegrating relation.

-1.6

-3.2 -

-1.8 -

-6.1 -

-8.0 -

-9.6 -

-\320\237.2-

-12.8 -

-11.1
SS 59 63 67 75 79 83 87

FIGURE 19.6 One hundred times the difference between the log of personal

consumption expenditures (c,) and the log of personal disposable income (y,) for

the United States, quarterly, 1947-89.
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It was also assumed that \320\23322is nonsingular, meaning that there are no coin-
tegrating relations among the variables in y^,. Suppose instead that we are interested

in estimating h > 1 different \302\253\302\253integratingvectors, as represented by a system of
the form

[19.3.32]= \320\223'

(*xg)

= 82

\320\243\320\260

+ i

+

\302\2532/

(\320\233XI)
+ \302\253\320\223

(\320\233XI)

\320\263 [19.3.33]
(\302\253xl) fexl) (\302\253xl)

with

and \320\244*A) nonsingular. Here the generalization of the previous approach would
be to augment [19.3.32] with leads and lags of

\320\2431,
=

tM* + \320\223'\321\2032,+ 1 BjAy2,,_, + I,, [19.3.34]
-p

where B's denotes an (\320\233\321\205g) matrix of coefficients and it is assumed that z, is
uncorrelated with u2t for all t and \321\202.Expression [19.3.34] describes a set of h

equations. The ith equation regressesyH on a constant, on the current value of all
the elements of y2(, and on past, present, and future changes of all the elements
of y^. This equation could be estimated by OLS, with the usual F statistics mul-
multiplied by [s(/VA$]2, where s^-p is the standard error of the regression and A$ could
be estimated from the autocovariances of the residuals i;, for the regression.

The approach just described estimated the relation in [19.3.19] by OLS and
madeadjustments to the usual t or F statistics so that they could be compared with

the standard t and F tables. Stock and Watson A993) also suggested the more

efficient approach of first estimating [19.3.19] by OLS, then using the residuals to
construct a consistent estimate of the autocorrelation of u, as in [19.3.27] or [19.3.28],
and finally reestimating the equation by generalized least squares. The resulting

GLS standard errors could be used to construct asymptotically x1 hypothesis tests.
Phillips and Loretan A991, p. 424)suggested that instead autocorrelation of

the residuals of [19.3.19] could be handled by including lagged values of the residual

of the cointegrating relation in the form of

yu
= a + \321\203'\320\24321+ \302\243\320\255;\320\224\321\2032,,-,+\320\225\320\244,(\320\243\320\270-,

~
y'yi,,-s) + \320\265\342\200\236.[19.3.35]

1

Their proposal was to estimate the parameters in [19.3.35] by numerical minimi-

minimizationof the sum of squared residuals.

Phillips and Hansen'sFully Modified OLS Estimates

A related approach was suggested by Phillips and Hansen A990). Consider

again a system with a single cointegrating relation written in the form

\320\243\320\270
= <* + ?'\321\2032,+ z; [19.3.36]

\320\224\321\203\320\263,
= Ui, [19.3.37]

\320\230=\"\"

\302\243(e,e,')
= PP',
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where ya is a (j x 1) vector and e, is an (n x 1) i.i.d. zero-mean vector for

n = (g + i). Define

\320\233*=

2* -
\320\233*-[\320\233*]'

( )(\320\273\321\205\320\273)

\320\225* \321\203*/
11 ~21

(lxl) (lxg)
\320\225* \320\243*

21 ^-22
(\302\253xl)(sxg)

, [19.3.38]

with \320\233*as always assumed to be a nonsingular matrix.

Recall from equation [10.3.4]that the autocovariance-generating function for
(\320\263,*,\320\270\320\263,)'is given by

Thus, 2* could alternatively be described as the autocovariance-generating function

G(z) evaluated at \320\263= 1:

1 =
J

l '\342\226\240J

The difference between the general distribution for the estimated cointe-
grating vector described in Proposition 19.2 and the convenient special case in-

investigated in [19.3.15] is due to two factors. The first is the possibility of a nonzero
value for SJi > and the second is the constant term that might appear in the variable
h2 described in Proposition 19.2 arising from a nonzero value for

\320\232- 2 [19.3.40]

Thefirst issue can be addressed by subtracting 22V B\320\270)
~'

\320\224\321\203\320\263*fr\302\260mboth sides
of [19.3.36], arriving at

where

y\\, = a + Y'yj, + z],

[19.3.41]

Notice that since

for

Ua, the vector (zj, ui,)' can be written as

[ul]
=

L'[ul]
[19\023^

V
0

Ox \320\273) [19.3.43]

Suppose we were to estimate a and 7 with an OLS regression of y\\t on a constant
and \320\243\320\263,:

\320\250

-

il
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The distribution of the resulting estimates is readily found from Proposition 19.2.

Note that the vector \\*' used in Proposition 19.2 can be written as e| A* for e{ the

first row of 1\342\200\236,while the matrix A\302\243in Proposition 19.2 can be written as \320\246\320\220*for

\320\246the last g rows of L'. The asymptotic distribution of the estimates in [19.3.44]
is found by writing AJ in [19.2.13] as LJA*,replacing X?' = eJA* in [19.2.13] with

([A*, and replacing E(u2,z*+V) with \302\243(\320\2702,\320\263/+>,):

.-\320\260I

-\321\203) \\

W(r) dr

\342\202\254JA*WA)

[19.3.45]

where W(r) denotes n-dimensional standard Brownian motion and

= 2 E{\302\2732,[z?+v
-

2iVB22)\024,\302\253+v]} [19.3.46]

= 2 E{u2,[z?+V u2pl+j} .

Now, consider the (n x 1) vectorprocessdefined by

B(r) \321\210
\342\202\254^A*-W(r). [19.3.47]

From [19.3.43] and [19.3.38], this is Brownian motion with variance matrix

Lo ig JLs;, %JL-\342\204\226\302\243)-'% i,J

L

where

Partition B(r) as

[19.3.48]

[19.3.49]

B(r)
=

(nxl)
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Then [19.3.48]implies that B^r) is scalar Brownian motion with variance (<r\\J

while B2(r) is g-dimensional Brownian motion with variance matrix 2^, with \320\222\320\263(-)

independent of B2(<)- The process B(r) in turn can be viewed as generated by a

different standard Brownian motion Yfr(r), where

for P^PJz' =
2\302\243\320\263theCholesky factorization of 2|2. The result [19.3.45] can then

equivalently be expressed as

\\i\342\204\242{&\\

- a)

L \320\237\320\223\321\202
~

\320\243)J

[19.3.50]

If it were not for the presence of the constant \342\204\226,the distribution in [19.3.50]
would be of the form of [19.3.11],from which it would follow that conditional on
WJO, the variable in [19.3.50] would be Gaussian and test statistics that are

asymptotically x2 could be generatedas before.
Recalling [19.3.39], one might propose to estimate E* by

\\\302\245* \320\231'1
=

\320\223\320\276+ 1 {1 -
[v/fo + l)]}(f,. + f;.), [19.3.51]

Lz21 z22j v-i

where

\320\263,= \321\202-1

fg>

[19.3.52]

for i* the sample residual resulting from estimation of [19.3.36] by OLS and
&2,

= AJV To arrive at a similar estimate of \342\204\226,note that [19.3.46] can be written

= S

This suggests the estimator
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The fully modified OLS estimator proposed by Phillips and Hansen A990)is then

\320\223 s>L

L{2y*rt,
-

, =
>1(

-
2\320\274\320\244\320\262)~1\320\264\320\2432\302\253-This analysis implies that

\320\223\320\223*(\320\231?
-

a)] =
\320\223 1

\320\223-^\320\225\321\203^]\"']\"
7-1/2Eft \"I

L T{yV
- y) J LT-3'2^ \321\202-\320\252\321\203\321\214\321\203-JLr-^y,,*;

- ftj

where

[:;]=

P*l\342\226\240n

|2 / Wj(r) dr

It follows as in [19.3.12] that

for

2*2 | WJ(r) dr P?2

Furthermore, [19.3.49] suggests that a consistent estimate of (<r\\J is provided by

(*!)\302\273
= if,-iji'^yij.,

with E,J given by [19.3.51]. Thus, if we multiply the usual Wald form of the x2 test

of m restrictions of the form R? = \320\263by (sTl&\\J, the result is an asymptotically

X2(m) statistic under the null hypothesis:

R]

{ []} (Rv2)

~x\\m).
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This description has assumed that there was no drift in any elements of the

system. Hansen A992) showed that the procedureis easily modified if \302\243(\320\224\321\2032,)
=

82 \320\2440, simply by replacing u^ =
\320\224\321\203^in [19.3.52] with

=
Ay*

- 82.

where

Hansen also showed that a time trend could be addedto the cointegrating relation,
as in

\320\243\320\270
= a + y'y2t + St + z;,

for which the fully modified estimator is

\342\226\240*?\342\226\240

7?

\320\223\321\202 It

Ef2

Collecting these estimates in a vector bp = (d^, [7?]'. ^?)'>a hypothesis in-

involving m restrictions on \320\255of the form RJJ = \320\263can be tested by

It

R'

Park's Canonical Cointegrating Regressions
A closely related idea has been suggested by Park A992). In Park's procedure,

both the dependent and explanatory variables in [19.3.36] are transformed, and

the resulting transfonned regression can then be estimated by OLS and tested using

standard procedures. Park and Ogaki A991)exploredthe use of the VAR pre-

whitening technique of Andrews and Monahan A992) to replace the Bartlett es-

estimate in expressions such as [19.3.51].

APPENDIX 19.A. Proofs of Chapter 19 Propositions
\342\226\240Proof of Proposition 19.2. Define ft,

= zf + zj + \342\200\242\342\200\242\342\200\242+ z* for / = 1, 2
ft,o

\342\226\2400. Then

where

Hence, result (e) of Proposition 18.1establishes that

\320\223and

r-i -* A*-\\ [\320\251\320\263)][dVf(r)]'\\
U\302\260 J
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for

\320\220*= \302\245*A)-\320\240

It follows from [19.A.I] that

r- S W[z; \302\273y
= r- 2 P'-'-k- \302\273y+ r-' 2 [z*l[z;

\302\243\320\223\320\223.

Similarly, results (a), (g), and (i) of Proposition 18.1 imply

v> 14*1 l
r~w2 -^A*-W(l) [19.A.3]

\321\202-\320\266\302\243
\320\243\302\273

\320\254,\320\273*\342\200\242
\302\243

W(r) </r [19.A.4]

I' \320\272 \320\243\320\243-^\320\220*-I [W(r)]-[W(r)]'dr |-A\". [19.A.5]2

Observe that the deviations of the OLS estimates in [19.2.12] from the population
values a and 7 that describe the cointegrating relation [19.2.9] are given by

from which

5V 1 \320\223\320\243\321\203*\320\233\342\200\242^\320\243\320\263/*-\320\263,

\320\2237\302\253(\320\260\320\263-\320\260)\"|=
\320\223\320\223\320\223-^\320\236'

]\320\223
\320\223 SyJ, 1

0

1

But from [19. A.2],

Similar use of [19.A.3] to [19.A.5] in [19.A.6] produces [19.2.13]. \342\226\240

\342\226\240Proof of Proposition 19.3. For simplicity of exposition, the discussionis restricted to the
case when \302\243(\320\224\321\2032,)

= 0, though it is straightforward to develop analogous results using a

rescaling and rotation of variables similar to that in [18.2.43].
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Consider first what the results would be from an OLS regression of zf, on 4 =
(zj, z*,, . . . , z*,)', a constant, and yj,:

zf, = P'4 + a* + \320\232*'\320\2432,+ \320\270,. [19.\320\220.8]

If this regression is evaluated at the true values a* = 0, N* = 0, and P = (/32, /33, . . . ,

ft)' the vectorof population projection coefficients in [19.2.18], then the disturbance u, will

be the residual defined in [19.2.18]. This residual had mean zero and was uncorrelated with
4- The OLS estimates based on [19.A.8]would be

SyJ, Szf, [19.A.9]

The deviations of these estimates from the correspondingpopulation values satisfy

Pr-P
&T

rt?.

=
'I\302\273-,0 0

0' 1 0'
. fl

X

=

o r%.
\320\263\320\260,.,\320\276

0' T

0 0

\320\223-24'

'Szjz

SzJ' T Syi

0
0'

'iZj
1

2/ 2y2( ^-\320\243\320\263/\320\243\320\263\320\263-

\342\200\2241

T'l,., 0 0

0' \320\2230'

0 0 \320\223\"%.

.7

SzJk/

2\320\275,

[2\321\203\320\273.

[19. A. 10]

Recalling that E(z\302\243u)
= 0, one can show that T'[1i^u, A 0 and \320\242'\320\247\320\270,4. 0 by

the law of large numbers. Also, T'^iy^, -4 0, from the argument given in [19.A.7].
Furthermore,

\320\223-'24'

\"\302\243D4') \320\276

0' 1

0 A2* j W(r) dr

, [19.A.11]

where W(r) is n-dimensional standard Brownian motion and A| is a (g x n) matrix con-
constructed from the lastg rows of ^*A)-\320\240. Notice that the matrix in [19.A.11] is almost surely

nonsingular. Substituting these results into [19.A.10] establishes that

Pr ~ P
a*

0

0

0.

so that OLS estimation of [19.A.8] would produceconsistent estimates of the parameters
of the population linear projection[19.2.18].

An OLS regression of yu on a constant and the other elements of y, is a simple
transformation of the regressionin [19. A.8]. To see this, notice that [19. A.8] can be written

as

[1 -P']z,* = a* + \320\232*'\320\2432,+ iir. [19.A.12]
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Solving [19.2.16] for z* and substituting the result into [19. A.12] gives

[1 -\320\240'](\320\243\342\200\236
-

U-:
~

\320\223'\320\243\320\260)
= a* + \320\232*'\320\2432,+ \320\270,,

or, since \321\203\342\200\236
=

()>,\342\200\236>\342\200\236,. . . , \321\203,,,)',we have

>\302\253
=

\320\240\320\263\320\243\320\263,+ /33>j, + \342\200\242\342\200\242\342\200\242+ flj\302\273,+ a + K'yj, + u,, [19. A. 13]
where a = a* + [1 - P']|i*and N' - X*' + [1 -

\320\240']\320\223.
OLS estimation of [19. A.8] will produceidentical fitted values to those resulting from

OLS estimation of [19.A.13],with the relations between the estimated coefficients as just
given. Since OLS estimation of [19.A.8] yields consistentestimates of [19.2.18], OLS es-
estimation of [19.A.13] yields consistentestimates of the corresponding transformed param-
parameters,as claimed by the proposition. \342\226\240

\342\226\240Proof of Proposition 19.4. As in Proposition 18.2, partition \320\233\320\233'as

[19.A.14]
\320\2232,, 4, I

AA' =\342\226\240<lxl> <lx\302\253>,
*\342\226\240\"\">S,, ^

L(fXi) <\302\253X,)J

and define

L,
\320\223

L

where

(of\320\243
- (S,, - SiSa'S,,) [19.A. 16]

and L22 is the Cholesky factor of S^1:

2,V
= L^LJ2. [19. A. 17]

Recall from expression [18.A.16] that

L'AA'L =
1\342\200\236, [19.\320\220.18]

implying that AA' = (L')-'(L)'1 and (\320\233\320\233')\021
= LL'; thus, L is the Cholesky factor of

(\320\233\320\233')-1referred to in Proposition 19.4.
Note further that the residuals from OLS estimation of [19.2.24] are identical to the

residuals from OLS estimation of

>\342\200\242
= a* + y'yj + \320\270,* [19.\320\220.19]

for y*i =
>\302\253

-
S^S^y\302\273 and y\302\243

- L^^. Recall from equation [18.A.21] that

Finally, for the derivations that are to follow,

T* m T - 1.

Proof of (a). Since the sample residuals \320\271*for OLS estimation of [19.A.19]are identical

to those for OLS estimation of [19.2.24], we have that

T*(Pt - 1) = \320\223*\342\226\240

[19.A.21]

S

/\022
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But

'
\320\266<\320\223*'-1\320\237-4*\320\247']\302\243*-(&*J ^)\\ [19.A.22]

for

I? -
\320\223\";1

- L'yt. [19.A.23]
L \320\2432\302\273J

Differencing [19.A.22] results in

(a:
- a;.,) = <rf-[i -\320\223\321\202'/\320\276-\320\223\320\234\320\223-[19.\320\220.24]

Using [19.A.22] and [19.A.24], the numerator of [19.A.21] can be written

(\320\263*)-12 *;-.,(*;-a?.,)
/=2

= (a;y-(T')-i i |[i -yf'/o-riS?.,- (a*/0f)j|(A!,\[")_,.l/o..

[19.A.25]

Notice that the expression

is a scalar and accordingly equals its own transpose:

= A/2)

= A/2) [1
-*f/of]{(\320\237-

2
(lT-,(Afc\")

+ (\320\2201\320\223)A^

[19.A.26]

But from result (d) of Proposition 18.1,

2-2
(lT-i

2 ((; (y)(y))} [19.A.27]

'-A' -
\302\243[(\320\224\321\203,)(\320\224\321\203,')]}-\320\254
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for W*(r) = L'A'W(r) the \320\273-dimensional standard Brownian motion discussedin equation

[18.A.17]. Substituting [19.A.27]and [19.A.20] into [19.A.26] produces

1
-Yi-Ar.J

[19.A.28]

1J

Similar analysis of the secondterm in [19.A.25] using result (a) of Proposition 18.1reveals

that

G-)-\320\270(*?/<\320\263\320\223)-{(\320\237-\320\270
2

^*')}[-4/o-r]
\320\233

MW*AI'[-h2}
t19A'29l

Substituting [19.A.28]and [19.A.29] into [19.A.25], we conclude that

2 u;.,(u; - a*.,)

\320\2409.\320\220.\320\2550]

The limiting distribution for the denominator of [19.A.21] was obtained in result (b)
of Proposition 18.2:

2 \320\232)\342\200\236
/-2

Substituting [19.A.30] and [19.A.31] into [19.A.21] produces[19.2.36].

Proof of (b). Notice that

S

=
(\320\223)\"' 2 W ~

\320\240\321\202\320\271\320\223-\320\226-,
~

MT-,^) [19.A.32]1-1*2

=
\320\241\320\237'12 (\320\224\320\271;

- osr -
1)\320\271;.,}-{\320\264\320\271;.\321\203

- 05r - 1N,%.,}.
<\302\253/+2

But [19.A.22] and [19.A.24] can be used to write

[19.A.33]

But result (a) implies that (T*ya(pT
- 1)AO, while the other terms in [19.A.33] have

convergent distributions in the light of [19.A.20]and results (a) and (e) of Proposition 18.1.
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Hence,

(\320\237-'_\302\2432(\320\240\321\202-

-
1)\320\271\320\223-,\320\220\320\262\320\223_,

\320\2330. [19.\320\220.34]

Similarly,

(\320\223*)-'X (\320\240\321\202-1J\"\320\223-1\302\253,*-/-1

\320\263

1-1*1

[1,%-. [19 \320\22035]

\321\205[1 -yf'/o-\320\223 -(\320\242*)-^\320\260*\321\2021\320\260\320\223]'

\320\220\320\236,

given that (\320\223)-22\320\223./+2&-\320\2631\320\223-\320\243-1and (\320\223)\"\320\2342|\320\223-,are \320\236\320\2241)by results (i) and (g) of

Proposition 18.1. Substituting [19.A.34], [19.A.35], and then [19.A.24]into [19.A.32] gives

\320\223-/+2

It follows that for given q,

[19.A.36]

^^l
-

\\j\\/(q

Thus, if 9 -\342\231\246\302\273with q/T-* 0,

\320\263)
-

(Ay/.,)]
j-L- [ \320\224J

[19.\320\220.37]

by virtue of [19.A.18].
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But from [19.2.29] and [19.A.31],

(\320\223)\0222 *?-i'-2 [19.A.38]

It then follows from [19.A.36] and [19.A.37] that

^7 + 4}-{A2,-- \321\201,.,}
[19.A.39]

Subtracting {times [19.A.39]from [19.2.36] yields [19.2.37].

Proofof (c). Notice from [19.2.33] that

[^ls2r)mT*(pT-
1) -

A/2)\342\200\242

with the last line following from [19.A.37], [19.A.38], and [19.2.37].

Proof of (d). See Phillips and Ouliaris A990). \342\226\240

Chapter 19 Exercises

19.1. Let

l = M + \320\253

J UJ L\302\253J'

[19.A.40]

But since

(\321\201\320\276\320\243\321\204
=

(\320\223
-

2)/(\320\223
- 1) - 1,

it follows that

where 5j ^ 0 and S, may or may not be zero.Let u,
=

(\320\270,\342\200\236\321\211,)',and suppose that u, =

4t{L)E,for e, an i.i.d. B x 1) vector with mean zero, variance PP', and finite fourth
moments. Assume further that {t-VJf.o is absolutely summable and that ^A)-\320\240 is non-

smgular. Define fj, \342\226\2402;.,^, fa =
2;_i\302\2532,.and y0 = S,/^.

(a) Show that the OLS estimatesof

\320\243\321\214
= \302\253+ \320\243\320\243\321\212+ \",
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satisfy

-
To) S1/3

Conclude that d,-and 7,- have the sameasymptotic distribution as the coefficients

from a regression of (&,- 7of2,) on a constant and Sj times a time trend.:

(b) Show that first differences of the OLS residuals convergeto

A- t
Au, \342\200\224\302\273uv

-
ytfh,.

19.2. Verify [19.3.23].

19.3. Verify [19.3.25].

19.4. Consider the regression model

\320\243\320\270
=

\320\240\320\247+ \302\253+ ?'\320\2432,+* + \302\253,.

where

w, =
(Ay2.,-P, Ay2.,.p + 1, . . . , AyL-i. AyL, Ay2,+1 Ay2,,+P)'.

Let \320\224\321\203\320\263,
=

\320\237\320\260,where

\320\223*\320\277(\302\243)\320\276'1\320\223\302\253\342\200\236

and where e, is i.i.d.with mean zero, finite fourth moments, and variance

Suppose that {\320\263\320\244^\320\223-\320\276is absolutely summable, A,,= \320\276\321\203$\320\263\342\200\236A)^ 0>

is nonsingular. Show that the OLS estimates satisfy

!-
- P)

,- -
a)

\320\263
-

5) J

where Q =
plim r-'2w,w,', r-1/22w^rA hn and

H

-I\302\273,
(r)

1/2

[W2(r)]-[W2(r)]'

IJ r[W2(r)]'

1/2

1/3

Reason as in [19.3.12] that conditional on W2('), the vector (\302\273,,v2, v3)' is Gaussian with

mean zero and variance H\"'. Use this to show that the Wald form of the OLS x2 test of

any m restrictionsinvolving a, y, or 5 converges to (A^/st-) times a x2(m) variable.

19.5. Consider the regressionmodel

\320\243\320\270
= P'Wr + a + \321\202\320\263'\321\203\320\270\342\200\236
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where

Suppose that

where at least one of the elementsof 82 is nonzero. Let u, and Uj, satisfy the sameconditions

as in Exercise 19.4.
Let \321\203\320\267,

= (y^, y3l, . . . , \321\203\342\200\236,\321\203and 82 = C2, 83, . . . , 8\342\200\236)\\and suppose that the
elementsof y^ are ordered so that \320\225(\320\254\321\203\342\200\236)

=
5\342\200\236\320\2440. Notice that the fitted values for the

regression are identical to those of

\320\243\320\270=
\320\240\320\247*+ a* \"\342\200\236

where

w,* =
[(\320\224\321\203,,_,

- *0'. (\320\224\321\2032,-\342\200\236+1
-

\320\262,)',.. . , (\320\224\321\2032,+\320\240
=

\320\262,)']'

\321\203*
- \" \"'

yS
Ki-O*i]

T2

\320\242\320\267

a* = a + P'(l \302\25682),

with 1 a [Bp + 1) x 1]column of Is.
Show that the asymptotic properties of the transformed regressionare identical to

those of the time trend regression in Exercise 19.4.Conclude that any F test involving 7 in
the original regression can be multiplied by (sr/^h) and compared with the usual F tables
for an asymptotically valid test.
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20
Full-Information
Maximum Likelihood

Analysis
of Cointegrated Systems

An (\320\270x 1) vector y, was said to exhibit h cointegrating relations if there exist h

linearly independent vectors alt a2, . . . , a,, such that ajy, is stationary. If such

vectors exist, their values are not uniquely defined, since any linear combinations

of ab a2, . . . , aft would also be described as cointegrating vectors. The approaches
described in the previous chapter sidestepped this problem by imposing normali-
normalizationconditions such as an = 1. For this normalization we would put yu on the
left side of a regression and the other elements of y, on the right side. We might
equally well have normalized al2 = 1 instead, in which case \321\203\321\212would be the variable
that belongs on the left side of the regression. The results obtained in practice can

thus depend on an essentially arbitrary assumption. Furthermore, if the first var-
variable does not appear in the cointegrating relation at all (au

= 0), then setting
au = 1 is not a harmless normalization but instead results in a fundamentally
misspecified model.

For these reasons there is some value in using full-information maximum

likelihood {FIML) to estimate the linear space spanned by the cointegrating vectors

ab a2, . . . , aft. This chapter describes the solution to this problem developed by

Johansen A988, 1991), whose work is closely related to that of Ahn and Reinsel
A990), and more distantly to that of Stockand Watson A988). Another advantage
of FIML is that it allows us to test for the number of cointegrating relations. The
approach of Phillips and Ouliaris A990) described in Chapter 19 tested the null

hypothesis that there are no cointegrating relations. This chapter presents more
generaltests of the null hypothesis that there are h0 cointegrating relations, where

h0 could be 0, 1,. . . , or \320\270- 1.
To developthese ideas,Section 20.1 begins with a discussion of canonical

correlation analysis. Section 20.2 then develops the FIML estimates, while Section

20.3 describes hypothesis testing in cointegrated systems. Section 20.4offers a brief

overview of unit roots in time series analysis.

20.1. Canonical Correlation

Population Canonical Correlations
Let the (nx x 1) vectory, and the (n2 x 1) vectorx, denote stationary random

variables. Typically, y, and x, are measured as deviations from their population
means, so that E(y,y't) represents the variance-covariance matrix of y,. In general,
there might be complicated correlations among the elements of y, and x,, sum-
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marized by the joint variance-covariance matrix

(n, x n,) (\320\233|x n2)

E(x,y',) E(x,x;)
, (\320\2372*\320\237])(\320\2572\320\245\320\2572)-

We can often gain some insight into the nature of these correlations by defining
two new (n x 1) random vectors, \321\206,and |\342\200\236where \320\270is the smaller of nx and n2.
These vectors are linear combinations of y, and x,, respectively.

4r = \320\273y, [20.1.1]

[20.1.2]

Here SfC'and j\302\243'are (\320\270\321\205\320\270,)and (n x n2) matrices, respectively. The matrices

\320\226'and si' are chosen so that the following conditions hold.

A) The individual elements of \321\206,have unit variance and are uncorrelated with

one another:
-

\320\227\320\241'\320\225^\320\227\320\241
=

1\342\200\236. [20.1.3]

B) The individual elements of |, have unit variance and are uncorrelated with

one another:

^t =
In- [20.1.4]

C) The ith element of \321\206,is uncorrelated with the /th element of g, for i \342\226\240*/; for

i = /, the correlation is positive and is given by r,:

where

R =

>i 0
0 r2

= R,

0

0

0 0 \342\200\242\342\226\240\342\226\240/\342\200\242\342\200\236

D) The elements of i\\, and g, are ordered in such a way that

A S r, S r2 S \342\200\242\342\200\242\342\226\2402: rn 2: 0).

[20.1.5]

[20.1.6]

[20.1.7]

The correlation rt is known as the ith population canonical correlation between
y, and x,.

The population canonical correlations and the values of % and si can be
calculated from Eyy\302\273̂xx* and 2XY using any computer program that generates
eigenvalues and eigenvectors, as we now describe.

Let (Al5 A2, . . . , Ani) denote the eigenvalues of the (\320\273,\321\205\320\270,)matrix

^YY^YxSxxSxYi [20.1.8]
ordered as

(At 2 A2 s \342\200\242\342\200\242\342\226\240s
\320\220\320\257]), [20.1.9]

with associated eigenvectors (k,, k2, . . . , \320\272\320\237]).
Recall that the eigenvalue-

eigenvector pair (A;, \302\243,)satisfies

SWSvxE^xSxyk,- = A;k;. [20.1.10]
Notice that if k, satisfies [20.1.10],then so does ck; for any value of \321\201The usual
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normalization convention for choosing \321\201and thus for determining \"the\" eigenvector

k, to associate with A, is to set k;'k(= 1.For canonical correlation analysis, however,
it is more convenient to choose \321\201so as to ensure that

\320\272,'\320\225\321\203\321\203\320\272;=1 for i = 1, 2, . . . , \321\211. [20.1.11]

If a computer program has calculated eigenvectors (k\\, k2,. . . , kni) of the matrix
in [20.1.8] normalized by (k,;k() = 1, it is trivial to change these to eigenvectors
(kb k2, . . . , \320\272\320\237])

normalized by the condition [20.1.11]by setting

k, =
fc, + VkTE^ftr

We further may multiply k,- by
\342\200\2241 so as to satisfy a certain sign convention to be

detailed in the paragraphs following the next proposition.
The canonical correlations (ru r2, . . . , rn) turn out to be given by the square

roots of the corresponding first \320\270eigenvalues (A,, A2, . . . , \320\220\342\200\236)of [20.1.8]. The
associated (nx x 1) eigenvectors kl; k2, . . . , \320\272\342\200\236,when normalized by [20.1.11]
and a sign convention, turn out to make up the rows of the (\320\270\321\205\320\273,)matrix %'

appearing in [20.1.1]. The matrix si' in [20.1.2] can be obtained from the normalized

eigenvectors of a matrix closely related to [20.1.8]. These results are developed in
the following proposition, proved in Appendix 20.A at the end of this chapter.

Proposition 20.1: Let

be a positive definite symmetric matrix and let (A,, A2, . . . , Ani) be the eigenvalues
of the matrix in [20.1.8], ordered A,

>
A2 s \342\226\240\342\226\240\320\263

\320\220\320\2571.Let (\320\272\342\200\236\320\2722,. . . , \320\272\342\200\236,)be

the associated (nx x 1) eigenvectors as normalized by [20.1.11]. Let (\321\206\320\270y^, . . . ,

/1\342\200\2362)
be the eigenvalues of the (n2 x n2) matrix

[20.1.12]

ordered /xt s ^ > \342\226\240\342\226\240\342\226\240>
\321\206\342\200\2362.

Let (a,, a2, . . . , \320\260\342\200\236,)be the eigenvectors of
[20.1.12]:

[20.1.13]
normalized by

\320\260/^\321\205\321\205\320\262/=1 for i = 1, 2, . . . , n2. [20.1.14]

Let n be the smaller of \320\270,and n2, and collect the first n vectors k,- and the first n

vectors &i
in matrices

\320\255\320\241= [k, k2 \342\200\242\342\200\242\342\200\242
kn]

A = [a, a2 \342\200\242\342\200\242\342\200\242
\320\260\342\200\236].

(\320\273\320\267x \320\277)

Assuming that A,, A2,. . . , \320\220\342\200\236are distinct, then

(a) 0 <
X, < 1 for i = 1, 2, . . . , n, and 0 s

/xy
< 1 for] = 1, 2, . . . , rij-

(b) A;
= in for i = 1,2, . . . , \320\270;

(c) \320\255\320\241'\320\225\321\203\321\203\320\255\320\241
=

1\342\200\236and st'ExxSt =
1\342\200\236:

(\320\260)̂ '\320\225\320\270\320\226
= R,

where R is a diagonal matrix whose squared diagonal elements correspond to the
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eigenvalues of [20.1.8]:
~

i, 0 \342\200\242\342\226\240\342\200\2420

R2
0 A2

\342\226\240\342\200\242\342\200\2420

0 0 \342\200\242\342\200\242\342\200\242
\320\220\342\200\236

KE denotes the variance-covariance matrix of the vector (y,', x,')', then results

(c) and (d) are the characterization of the canonical correlations given in [20.1.3]
through [20.1.5].Thus, the proposition establishes that the squares of the canonical
correlations {r\\,r\\,. . . , r2) can be found from the first n eigenvalues of the matrix
in [20.1.8]. Result (b) states that these are the same as the first n eigenvalues of
the matrix in [20.1.12]. The matrices \320\226and si that characterize the canonical

variates in [20.1.1] and [20.1.2] can be found from the normalized eigenvectors of
these matrices.

Themagnitude a,'2XYk, calculated by the algorithm describedin Proposition

20.1 need not be positive\342\200\224the proposition only ensures that its square is equal to

the square of the corresponding canonical correlation. If \320\260,'2\321\205\321\203\320\272,< 0 for some i,
one can replace k/ as calculated with -\320\272,-,so that the ith diagonal element of R
will correspond to the positive square root of A;.

As an illustration, suppose that y, consists of a single variable (nt
= \320\270= 1).

In this case, the matrix [20.1.8] is just a scalar, a A x 1) \"matrix\" that is equal
to its own eigenvalue. Thus, the squared population canonical correlation between

a scalar y, and a set of \320\2372explanatory variables x, is given by

To interpret this expression, recall from equation [4.1.15] that the mean squared
error of a linear projection of y, on x, is given by

MSE = Eyy \342\200\224S

and so

1 -
r\\

=
|g

- SraSxxSxr= A\302\253\302\243

[20.1.15]

Thus, for this simple case, r\\ is the fraction of the population variance that is
explained by the linear projection; that is, r\\ is the population squared multiple

correlation coefficient, commonly denoted R2.
Another interpretation of canonical correlations is also sometimeshelpful.

The first canonical variates iju and fI( can be interpreted as those linear combi-
combinations of y, and x,, respectively, such that the correlation between rju and \302\243uis

as large as possible(seeExercise 20.1). The variates TJ2,and &, give those linear

combinations of y, and x, that are uncorrelated with r)lt and f,, and yet yield the

largest remaining correlation between 7J2, and fj,, and so on.

Sample CanonicalCorrelations
The canonical correlations rt calculated by the procedure just described are

population parameters\342\200\224they are functions of the population moments Eyy, 2YX,
and Exx. Here we describetheir sample analogs, to be denoted /7.
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Suppose we have a sampleof T observations on the (rtt x 1) vector y, and

the (\320\2702x 1) vector x,, whose samplemoments are given by

= (i/r) 2 y,y;
r-l

[20.1.16]

[20.1.17]

\302\243xx
=

A/\320\223)2 *,*,'\342\200\242 [20.1.18]

Again, in many applications, y, and xr would be measured in deviations from their
sample means.

To calculate sample canonical correlations, the objective is to generate a set
of \320\223observations on a new (\320\270x 1) vector rj,, where \320\270is the smaller of nt and n\302\261.

The vector rj, is a linear combination of the observed value of y,:

Tj,
=

&'\320\243\342\200\236 [20.1.19]

for \320\226an (\302\253!x n) matrix to be estimated from the data. The task will be to choose
\320\226so that the ith generated series (fj,,) has unit sample variance and is orthogonal
to the /th generated series:

2 \342\204\242;
= in [20.1.20]

Similarly, we will generate an (\320\270x 1) vector \302\243rfrom the elements of x,:

fc = d\\. [20.1.21]
Each of the variables |ft has unit sample variance and is orthogonal to |/7 for

i \320\244j:

\320\243;
= [20.1.22]

Finally, fji, is orthogonal to
|/V

for i \320\244j, while the sample correlation between

and |rt is calledthe sample canonical correlation coefficient:

for

R =

r, 0

0 r2

0 0

[20.1.23]

[20.1.24]

Finding matrices \320\226,d, and R satisfying [20.1.20], [20.1.22], and [20.1.23]
involves exactly the same calculations as did finding matrices \320\226,si, and R satisfying

[20.1.3] through [20.1.5]. For example,[20.1.19]allows us to write [20.1.20] as

2 \320\247\320\233\320\252'
=

l
2

1
[20.1.25]

where the last line follows from [20.1.16]. Expression [20.1.25]is identical to
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[20.1.3] with hats placed over the variables. Similarly, substituting [20.1.21] into

[20.1.22] gives d^t^d
=

1\342\200\236,which corresponds to [20.1.4]. Equation [20.1.23]
becomes ,\321\2174'2\321\205\321\2033\302\243

= R, as in [20.1.5]. Again, we can replace k, with -k, if any
of the elements of R should turn out negative.

Thus, to calculate the sample canonical correlations, the procedure described
in Proposition 20.1 is simply applied to the sample moments (\302\243YY,\320\201\321\203\321\205,and

2xx) rather than to the population moments. In particular, the square of the ith

sample canonical correlation (rf) is given by the ith largest eigenvalue of the matrix

I '-1 J
l_

'=1 J [20.1.26]

x
J(l/7)

2
xrX;J J(l/7)

2
Mr'}-

The ith column of \320\226is given by the eigenvector associatedwith this ith eigenvalue,
normalized so that

\302\243,
= 1.

The ith column of d is given by the eigenvector associated with the eigen-
eigenvalue A,- for the matrix Exx^xy^yy^yx normalized by the condition that

For example,supposethat yr is a scalar (\320\273
=

\320\270,
= 1). Then [20.1.26] is a

scalar equal to its own eigenvalue. Hence, the sample squared canonical correlation
between the scalar y, and a set of n2 explanatory variables xr is given by

\342\200\236{T- ^.\320\245/\320\235\320\223-'2\320\266,\321\205/}-1{\320\242-\320\247\320\273,\321\203}

which is just the squared samplemultiple correlation coefficient R2.

20.2. Maximum Likelihood Estimation
We are now in a position to describe Johansen's approach A988, 1991)to full-

information maximum likelihood estimation of a system characterized by exactly
h cointegrating relations.

Let y, denote an (\320\270\321\2051) vector. The maintained hypothesis is that y, follows
a VAR(p) in levels. Recall from equation [19.1.39]that anypth-order VAR can
be written in the form

+ Ot + <\321\215\320\276\320\243(\342\200\2241\"\"\" ^\320\274

with

0

\320\223ft for t = \321\202

0 otherwise.\342\226\240{:
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Supposethat each individual variable yu is /A), although h linear combinations of
y, are stationary. We saw in equations [19.1.35] and [19.1.40] that this implies that

\302\243ocan be written in the form

\302\243o
= -BA' [20.2.2]

for \320\222an (\320\270x h) matrix and A' an (A x n) matrix. That is, under the hypothesis
of h cointegrating relations, only h separate linear combinations of the level of y,_,
(the h elements of z,_, = A'y,_i) appearin [20.2.1].

Consider a sample of T + p observations on y, denoted (y_p+1, y_p+2,
\342\200\242\342\200\242\342\200\242,

yr). If the disturbances e, are Gaussian, then the log likelihood of (yb y2, . . . ,

yr) conditional on (y_p+b y-p+2, \342\200\242\342\200\242\342\200\242, \320\243\320\276)is given by

2(n,Ei.Sa. ...
\320\233\320\240-\321\212\302\253.So)

= (- \320\223\320\270/2)logBir)
-

(\320\223/2)log|ft|

- A/2) 2 (\320\224\320\243\320\263
- SiAy.-i -

?2\320\224\320\243\320\263-2 Sp-iAy,-P + i
- \302\253-

Soy,-i)'
r-iL

x \320\237-'(\320\224\321\203,
-

SiAyf-i -
\320\2652\320\224\320\243\320\263-2\302\243p-iAyr-P+i

- \302\253-
\302\243\320\276\320\243\320\263-0\342\200\242

[20.2.3]

The goal is to chose (fl, \302\243i,5\320\263.\342\200\242\342\200\242\342\200\242. ?p-1> a> to) s0 as to maximize [20.2.3] subject
to the constraint that \302\243ocan be written in the form of [20.2.2].

We will first summarize Johansen's algorithm, and then verify that it indeed

calculates the maximum likelihood estimates.

Step 1: Calculate Auxiliary Regressions

The first step is to estimate a (p- l)th-order VAR for \320\224\321\203(;that is, regress
the scalar \320\224>>/(on a constant and all the elements of the vectors \320\224\321\203,_1; \320\224\321\203\320\263_2,. \342\200\242\342\200\242,

\320\224\320\243\320\263-p+iby OLS. Collect the i = 1, 2, . . . , n OLS regressions in vector form as

Ay, = *0 + UAjr,.! + \320\2372\320\224\321\203,_2+ \342\200\242\342\200\242\342\226\240+
\320\246,_1\320\224\321\203,_|(+1

+ fl,, [20.2.4]

where \320\237,denotes an (\320\270\321\205\320\270)matrix of OLS coefficient estimatesand ft, denotes

the (n x 1) vector of OLS residuals. We also estimate a second battery of regres-
regressions, regressing the scalar y^,-i on a constant and \320\224\321\203,_\321\214\320\224\321\203,_2.\342\200\242\342\200\242\342\226\240. \320\224\321\203\320\263-p+i
for i = 1, 2, . . . , \320\270.Write this second set of OLS regressionsas1

y,_!= \302\247+ My,-i + ft,Ay,-2 + \342\200\242\342\200\242\342\200\242+ ft,-iAy,_,+i + \342\231\246\342\200\236[20.2.5]

with v, the (\320\270\321\2051) vector of residuals from this second battery of regressions.

\342\200\242JohansenA991) described Ms procedure as calculating *, in place of *\342\200\236where *, is the OLS residual

from a regression of y,_, on a constant and \320\224\321\203,_\342\200\236\320\224\321\203,-2.\342\200\242\342\200\242\342\226\240> \320\224\321\203,-,,.\321\206.Since y,_,
=

y,_,
-

\320\224\321\203,_,
-

\320\224\321\203,_2
- \342\200\242\342\200\242\342\200\242-

\320\224\321\203,,,^.,,the residual *, is numerically identical to *, described in the text.
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Step 2: Calculate CanonicalCorrelations
Next calculate the sample variance-covariance matrices of the OLS residuals

ft, and \320\244,:

i 2 w po.2.6]

2 Mr' [20.2.7]
r- 1

A/7) 2 fl,*,' [20.2.8]
1

From these, find the eigenvalues of the matrix

with the eigenvalues ordered A\\ > A2 > \342\200\242\342\200\242\342\200\242> \320\220\342\200\236.The maximum value attained

by the log likelihood function subject to the constraint that there are h cointegrating

relations is given by

2* =
-(\320\223\320\277/2)logBir)

-
(\320\223\320\277/2)

-
(\320\223/2)log^l po.2.10]

-
(\320\223/2)2 log(l -

A,).

Step 3: Calculate Maximum Likelihood Estimates
of Parameters
If we are interested only in a likelihood ratio test of the number of cointe-

cointegratingrelations, step 2 provides all the information needed. If maximum likelihood

estimates of parameters are also desired,these can be calculated as follows. Let

ab &2, . . . , \320\260\320\273denote the (\320\270\321\2051) eigenvectors of [20.2.9] associated with the h

largest eigenvalues. These provide a basis for the space of cointegrating relations;

that is, the maximum likelihood estimate is that any cointegrating vector can be
written in the form

a = bjii + b2&2 + \342\200\242\342\200\242\342\200\242+ bh&h

for some choiceof scalars (b{, b2, \342\226\240\342\226\240\342\226\240, bh). Johansen suggested normalizing these

vectors a; so that fi/Eyv^
= 1- F\302\260rexample, if the eigenvectors a, of [20.2.9]are

calculated from a standard computer program that normalizes a,'a; = 1,Johansen's
estimate is \321\217,

= a, \342\200\242*\342\226\240
\320\233/\320\260^\320\201\321\203\320\273\320\233/-Collect the first h normalized vectors in an

(\320\270x h) matrix A:

A -
[\320\231,S2

\342\200\242\342\200\242\342\200\242
\320\260\342\200\236]. [20.2.11]

Then the MLE of \302\243ois given by

\302\2430
= tuvAA'. [20.2.12]

The MLE of \302\243,for i = 1, 2, . . . ,p - 1is

fc
= fii - JA, [20.2.13]

and the MLE of a is

& = *0 -
iJO. [20.2.14]
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The MLE of ft is
\320\263

2 [(\320\271,
-

\320\250&
-

\320\250']- [20.2.15]1-1

We now review the logic behind each of these steps in turn.

Motivation for Auxiliary Regressions
The first step involves concentrating the likelihood function.2 This means

taking ft and \302\2430as given and maximizing [20.2.3] with respect to (at, &, &, \342\226\240. . ,

\302\243p_i). This restricted maximization problem takes the form of seemingly unrelated
regressionsof the elements of the (\320\273\321\2051) vector \320\224\321\203,

-
\302\243\320\264\321\203,_l on a constant and

the explanatory variables (\320\224\321\203,_i, \320\224\321\203,_2>\342\200\242\342\226\240\342\200\242> \320\224\321\203,-\321\200+0-Since each of the \320\270regres-
regressionsin this system has the identical explanatory variables, the estimatesof (a, \302\243i,

\302\2432.\342\226\240\342\226\240\342\226\240. Cp-i) would come from OLS regressions of each of the elements of

\320\264\320\243\320\263
~

?\320\276\320\243\320\263-1on a constant and (\320\224\321\203,_1,\320\224\321\203,-2,\342\226\240\342\226\240\342\200\242. \320\224\321\203^-\321\200+\320\236-Denote the values
of (a, \302\243\342\200\236\302\2432,. . . , \302\243\321\200_0

that maximize [20.2.3] for a given value of \302\2430by

These values are characterized by the condition that the following residual vector
must have sample mean zero and be orthogonal to \320\224\321\203,_1,\320\224\321\203,_2>\342\200\242\342\200\242\342\200\242, ^Vi-p+i-

\321\203,
-

Coy,-J
-

{&*(So) + \320\232(\302\243\320\276)\320\224\321\203,-1+ \320\231(\320\234\320\233\321\203,-2
\320\223202

.

But notice that the OLS residuals fl, in [20.2.4] and $, in [20.2.5] each satisfy this

orthogonality requirement, and therefore the vector ft,
-

\302\2430\320\244,also has sample mean
zero and is orthogonal to \320\224\321\203,-1,\320\224\321\203,_2.\342\226\240\342\200\242\342\200\242, \320\224\320\243\320\263-p+i-Moreover, ft,

-
\302\243<&is of

the form of expression [20.2.16],

ft,
-

\302\243\320\233
=

(\320\224\321\203,
- *0 -

\320\223^\320\224\321\203,.!
-

\320\2372\320\224\321\203,_2 ilp-Ay.-p+i)
-

\320\241\320\276(\320\243,-1
- 6 -

ftiAyr-i
-

*W,-2 - \342\200\242\342\200\242\342\200\242-
kp-Ay,.p+1),

with

&*(W
= *o -

\320\241\320\276\320\231 [20.2.17]

t*(\302\2430)
=

\320\237,
-

\302\243A for\302\273= 1, 2, . . . , p - l. [20.2.18]
Thus, the vector in [20.2.16] is given by ft,

-
\302\243<&\342\200\242

The concentrated log likelihood function (to be denoted M) is found by

replacing (a, fc, \302\243\302\273,...,\302\243,_J
in [20.2.3] with [&*({\342\200\236),\302\253({\342\200\236),\320\246

C\302\253)]

. \302\243f(\320\253.B(\302\243o),\342\200\242\342\200\242\342\200\242.fe-i(W. &*(\302\243o).U
=

-(\320\223\320\277/2)logBir)
- G72) log|ft| [20.2.19]

Theidea behind concentrating the likelihood function in this way is that if we can
find the values of ft and \302\2430for which M is maximized, then these same values
(along with \302\253*(\302\243\342\200\236)and &*(\302\243o))will maximize [20.2.3].

2SeeKoopmans and Hood A953,pp. 156-58)for more background on concentration of likelihood

functions.
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Continuing the concentration one step further, recall from the analysis of
[11.1.25]that the value of ft that maximizes [20.2.19](still regarding \302\2430as fixed)
is given by

\320\263

\320\233*(\302\243\320\276)
= A/7J [(ft,- tov,)(u, -

Co*,)']. [20.2.20]

As in expression [11.1.32],the value obtained for [20.2.19] when evaluated at

[20.2.20] is then

= -(Tn/2) logBir)
-

(\320\223/2)log|ft*\302\2530)|
-

(Tn/2)
= -(rn/2)logBir) -

(Tn/2) [20.2.21]

2 [(a, -
cov,)(u,

-
&,\342\231\246,)\342\226\240

-
(\320\223/2)log

Expression [20.2.21] represents the biggest value one can achieve for the log
likelihood for any given value of \302\2430-Maximizing the likelihood function thus comes

down to choosing \302\243oso as to minimize

2 [(a, - Sov,)(fl,
-

So*,)'] [20.2.22]

subject to the constraint of [20.2.2].

Motivation for CanonicalCorrelation Analysis

To see the motivation for calculating canonical correlations, consider first a

simpler problem. Suppose that by an astounding coincidence, fl, and V, were already
in canonical form,

with

R =

A/7)

A/7)

A/7)

\"\320\257,

0

0

ft,
=

\342\231\246,
=

2

2

2,-i
0
r2

0

\342\226\240n,

L

ha: =

ik; =

I.

I,

0\"
0

[20.2.23]

[20.2.24]

[20.2.25]

[20.2.26]

Suppose that for these canonical data we were asked to choose \302\243oso as to minimize

2
[w,

- Soi)(^-
&\302\243)']

[20.2.27]
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subject to the constraint that \302\243o4,could make use of only h linear combinations of
|t. If there were no restrictions on \302\2430(so that A_

=
\320\270),then expression [20.2.27]

would be minimized by OLS regressions of \321\211on \302\243,for i = 1,2,. . . , \320\270.Conditions

[20.2.24] and [20.2.25] establish that the ith regression would have an estimated
coefficient vector of

2 \302\243&'

where e( denotes the ith column of 1\342\200\236.Thus, even if all \320\270elements of |r appeared
in the regression, only the ith element |ft would have a nonzero coefficient in the

regression used to explain \321\211.The average squared residual for this regression

would be

2
M*J}

-
\320\273-\320\247 \321\202 -I

'\342\226\240\302\243)\\]A/\320\223J(\320\234*)[
J I '-1 J

(i/7) 2
\302\253i;)}{(i/7)

2 (ii'

= 1 -
/\321\203\320\265;-1\342\200\236-\320\265(-\320\263,

= 1 - r?.

Moreover,conditions [20.2.23] through [20.2.25] imply that the residual for the ith

regression, fjit
-

\320\263\302\243\320\270,would be orthogonal to the residual from the /th regression,
fjj,

-
\320\223/\302\243]\342\200\236

for i \320\244j. Thus, if {0 were unrestricted, the optimal value for the matrix

in [20.2.27] would be a diagonal matrix with A
- rj) in the row i, column i position

and zero elsewhere.
Now suppose that we are restricted to use only h linear combinations of \302\243r

as regressors. From the preceding analysis, we might guess that the best we can

do is use the h elements of \302\243rthat have the highest correlations with elements of

\321\202)\342\200\236that is, choose (|lr, |2r. \342\200\242\342\200\242\342\200\242. l/\320\274)as regressors.3 When this set of regressorsis
used to explain f)it for i s h, the average squared residual will be A

- rj), as
before.When this set of regressors is used to explain \321\202}\320\264f\302\260r' > h, all of the

regressors are orthogonal to \321\211and would receive regression coefficients of zero.

The average squared residual for the latter regression is simply (l/rjS^iji
= 1

for i = h + 1, h + 2, . . . , \320\270.Thus, if we are restricted to using only h linear
combinations of \302\243\342\200\236the optimized value of [20.2.27]will be

A/\320\223)2 [rt.
-

\320\241

=

\321\215\320\254

1

0

0

0

\320\241\320\276*

1

6)']

0

-
\320\235

0

0

0

0

1 -
rt

0

0

0

0

1

... \320\276

... \320\276

... \320\276

... \320\276

\320\276 \320\276

[20.2.28]

=
\320\237A

\"
?}).

3See Johansen A988) for a more formal demonstration of this claim.
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Of course, the actual data fl, and v, will not be in exact canonical form.
However, the previous section described how to find (\320\270\321\205\320\270)matrices \320\226and si
such that

\321\202\321\214
=

\320\226'\320\271,

i = &%-
[20.2.29]
[20.2.30]

The columns of si aregiven by the eigenvectors of the matrix in [20.2.9], normalized

by the condition si'iyysi =
In- The eigenvalues of [20.2.9] give the squares of

the canonical correlations:

A, = ff. [20.2.31]

The columnsA of \320\226correspond to the normalized eigenvectors of the matrix

^mj^uv^vv^vu\302\273though it turns out that \320\226does not actually haye
to be calculated

in order to use the following results. Assuming that \320\226and d are nonsingular,
[20.2.29]and [20.2.30] allow [20.2.22] to be written

A/D2

2

!(*')-\320\247

2
[\320\270,

-
\302\253Wr

A/D2

(i/7) 2 , - nip, -

[20.2.32]

where

-1. [20.2.33]

Recall that maximizing the concentrated log likelihood function for the actual
data [20.2.21]is equivalent to choosing \302\2430s0 as to minimize the expression in

[20.2.32] subject to the requirement that \302\2430can be written as BA' for some (\320\270
\321\205h)

matrices \320\222and A. But \302\2430can be written in this form if and only if \320\237in [20.2.33]
can be written in the form p-^' for some (\320\270x h) matrices P and y. Thus, the task

can be describedaschoosing \320\237so as to minimize [20.2.32] subject to this condition.
But this is precisely the problem solved in [20.2.28]\342\200\224the solution is to use as
regressorsthe first h elements of \302\243r.The value of [20.2.32] at the optimum is given

by

\320\237(i
-

ff)
* lip.

Moreover, the matrix \320\226satisfies

2(-1
2r-l

[20.2.34]

[20.2.35]
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Taking determinants of both sides of [20.2.35] establishes

or

Substituting this back into [20.2.34], it appears that the optimized value of [20.2.32]
is equal to

ISbdI *
\320\237(i

-
*?)\342\226\240

f-1

Comparing [20.2.32] with [20.2.21], it follows that the maximum value achieved

for the log likelihood function is given by

2* =
\321\2110)

= -(m/2)logBir)
-

(\320\223\320\277/2)
-

(\320\223/2)\320\253|\320\201\320\250|
\321\205

\320\224
A

-

r*)J,

as claimedin [20.2.10].

Motivation for Maximum Likelihood Estimates
of Parameters
We have seen that the concentrated log likelihood function [20.2.21] is max-

maximized by selecting as regressors the first h elements of 1,.^Since|, =
si'v,,

this means using A'vr as regressors,where the (\320\270\321\205h) matrix A denotes the first

h columns of the (\320\270\321\205\320\270)matrix d. Thus,

Co*,= -BA'v, [20.2.36]

for some (\320\270\321\205h) matrix B. This verifies the claim that A is the maximum likelihood

estimate of a basis for the space of cointegrating vectors.
Given that we want to choose w,

= A'v, as regressors, the value of \320\222for

which the concentrated likelihood function will be maximized is obtained from

OLS regressions of u, on w,:

\320\222= -
\320\223A/\320\223)j;

\320\262\320\220'][A/\320\223)jj
*\320\233\320\247\342\200\242 [20.2.37]

But <Vr is composed of h canonical variates, meaning that

[A/\320\223) 2
w,w;J

= I*. [20.2.38]

Moreover,

2 wi
'-1 I

[20.2.39]

Substituting [20.2.39] and [20.2.38]into [20.2.37],

and so, from [20.2.2],the maximum likelihood estimate of fo is given by

as claimed in [20.2.12].
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Expressions [20.2.17] and [20.2.18]gave the values of a and \302\243,\342\200\242that maximized
the likelihood function for any given value of \302\2430-Since the likelihood function is

maximized with respect to \302\2430by choosing \302\2430according to [20.2.12], it is maximized

with respect to a and \302\243,by substituting \302\2430into [20.2.17] and [20.2.18], as claimed

in [20.2.14] and [20.2.13]. Finally, substituting \302\243\342\200\236into [20.2.20] verifies [20.2.15].

Maximum Likelihood Estimation in the Absence

of Deterministic Time Trends
The preceding analysis assumed that a, the (\320\270\321\2051) vector of constant terms

in the VAR, was unrestricted. The value of a contributes h constant terms for the

h cointegrating relations, along with g = n \342\200\224h deterministic time trends that are

common to each of the \320\270elements of y,. In some applications it might be of interest

to allow constant terms in the cointegrating relations but to rule out deterministic

time trends for any of the variables. We saw in equation [19.1.45] that this would
require

a = B|if, [20.2.40]

where \320\222is the (\320\270x h) matrix appearing in [20.2.2] while nf is an (h x 1) vector
corresponding to the unconditional mean of z, =

A'y,. Thus, for this restricted
case,we want to estimate only the h elements of |ij rather than all \320\270elements of

a.
To maximize the likelihood function subject to the restrictions that there are

h cointegrating relations and no deterministic time trends in any of the series,
Johansen's A991) first step was to concentrate out \302\243l5\302\2432,. . . , and \302\243\321\200_\320\263(but not

at). For given a and \302\2430,this is achieved by OLS regression of (\320\224\321\203,
- a -

\320\241\320\276\320\243\320\263-i)

on (\320\224\321\203,_1,\320\224\321\203,-\320\263.\342\200\242\342\200\242\342\200\242, \320\224\320\243|-\321\200+1)-
The residuals from this regression are related to

the residuals from three separate regressions:

A) A regression of \320\224\321\203,on (\320\224\321\203,_1,\320\224\321\203,_2,. . . , \320\224\321\203,_\321\200+ 1) with no constant term,

\320\224\321\203,
=

\320\237^\321\203,.!+ \320\2372\320\224\321\203,_2+ \342\200\242\342\226\240\342\200\242+
\320\237\321\200^\320\224\321\203,.,*!+ \320\277,;[20.2.41]

B) A regression of a constant term on (\320\224\321\203,_1,\320\224\321\203,_2,\342\200\242. \342\200\242, \320\224\320\243\320\263-p+i),

1 = w^y,-! + <*>2\320\224\320\243\320\263-2+ \342\200\242\342\200\242\342\200\242+
\320\271;_,\320\224\321\203,_\321\200+1+*,; [20.2.42]

C) A regression of y,_! on (\320\224\321\203,_1,\320\224\321\203,-2.\342\200\242\342\200\242\342\200\242, \320\224\321\203,-\320\240.\321\206)with no constant term,

\320\243,-1
= My,-! + \320\2312\320\224\321\203,-2+ \342\200\242\342\200\242\342\200\242+ \320\245\321\200-1\320\224\321\203,-\321\200+1

+ v,. [20.2.43]

The concentrated log likelihood function is then

\320\233(\320\237,a, fo) = -(Tn/2) logBir) -
(\320\223/2)log|ft|

r
\342\200\224

A/2) 2 [(\320\271\302\273~\320\260*\320\263
~

\320\241\320\276^\320\236'\320\233'\320\247^\320\263
~

\320\260^1
~

to^r)]-

Further concentrating out \320\233results in

*(a, Co)
= -(rn/2)logBir) -

(Tn/2) [20.2.44]

\302\243 f 1-
G72) log 2j 0-/T)](u,

- aw, -
t,ov,)(u,

- aw, -
\302\243\342\200\236*,)'|

r\342\200\2241 ^

Imposing the constraints a =
\320\222\321\206?and {0 = ~BA', the magnitude in [20.2.44]
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can be written

jf(\302\253.Co)
=

-(\320\223\320\277/2)logBir)
-

(Tn/2)

- G72) log A/7\320\226 + BA'w.Xu, + BA'*,)'}
[20.2.45]

where

* 4*1(\320\237+1)\320\2451L Vr J

A' =[-|tf A']. [20.2.46]
A x (n+ 1)

But setting Co
= -BA' in [20.2.21] producesan expression of exactly the same

form as [20.2.45], with A in [20.2.21] replaced by A and v, replaced by w,. Thus,
the restricted log likelihood is maximized simply by replacing v, in the analysis of

[20.2.21] with w,.

To summarize, construct

2r-l

and find the eigenvalues of the (n + 1) x (n + 1)matrix

S^riwuSuuSuw, [20.2.47]

ordered At > A2 > \342\200\242\342\200\242\342\200\242> \320\220\342\200\236+1. The maximum value achieved for the log likelihood
function subject to the constraint that there are h cointegrating relations and no
deterministic time trends is

kh =
-(\320\223\320\277/2)logBir)

-
(\320\223\320\277/2)

-
(\320\223/2)1\320\276\321\221|\320\201\321\210|[20.2.48]

1 l\302\260g(l
- A,).

Let alt a2, . . . , an+1 denote the eigenvectors of [20.2.47] normalized by

a-Sywyaj = 1. Then the maximum likelihood estimate of A is given by the matrix

[\302\247!.a2
\342\200\242\342\200\242\342\200\242

aA]. The maximum likelihood estimate of BA' is

BA' =
-\320\201\321\211\321\203\320\220\320\220'. [20.2.49]

RecaU from [20.2.46] that

BA' = [-BK BA'] [20.2.50]=
[-\302\253 -U

Thus, [20.2.49] implies that the maximum likelihood estimatesof a and \302\2430are

given by

[\320\260\321\203
= SuwAA'.

The MLE of \302\243,is

j, =
\320\237;

-
ori\302\273;

-
Co8/ for i = 1, 2, . . . ,p - 1,
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while the MLE of ft is
\320\263

~i [(u,
- aw, -

Cov,)(u,- &w,
-

20.3. Hypothesis Testing
We saw in the previous chapter that tests of the null hypothesis of no cointegration
typically involve nonstandard asymptotic distributions, while tests about the value
of the cointegrating vector under the maintained hypothesis that cointegration is
present will have asymptotic x1 distributions, provided that suitable allowance is
made for the serial correlation in the data. These results generalize to FIML

analysis. The asymptotic distribution of a test of the number of cointegrating re-
relations is nonstandard, but tests about the cointegrating vector are often x2-

Testing the Null Hypothesis of h Cointegrating Relations

Suppose that an (\320\270\321\2051) vector y, can be characterized by a VAR(p) in levels,
which we write in the form of [20.2.1]:

\320\224\321\203,
=

\320\254\320\224\321\203,-!+ &Ay,-2 + \342\200\242\342\200\242\342\200\242+
\320\241\321\200-1\320\224\321\203,-\321\200+ 1 + \302\253+ \302\243\320\276\320\243\320\263-1+\320\265,.[20.3.1]

Under the null hypothesis Ho that there are exactly h cointegrating relations among
the elements of yr, this VAR is restricted by the requirement that \302\2430can be written
in the form \302\2430

= -BA', for \320\222an (\320\270\321\205h) matrix and A' an (A x \320\270)matrix.

Another way of describing this restriction is that only h linear combinations of the

levels of yr_! can be used in the regressions in [20.3.1]. The largest value that can
be achieved for the log likelihood function under this constraint was given by

[20.2.10]:

\320\224\320\276*
=

-(\320\223\320\277/2)logBir)
-

(\320\223\320\277/2)
-

(\320\223/2)log^l
\320\267

-
(\320\223/2)2 log(l

-
X,).

Consider the alternative hypothesis HA that there are \320\270cointegrating rela-

relations, where \320\270is the number of elementsof y,. This amounts to the claim that

every linear combination of yr is stationary, in which case y,_! would appear in

[20.3.1] without constraints and no restrictions are imposed on \302\2430-The value for
the log likelihood function in the absence of constraints is given by

2* = -
(\320\223\320\270/2)logBir)

-
(\320\223\320\270/2)

-
(\320\223/2)log|iw|

[20.3.3]
-

(\320\223/2)2 log(l -
A,).

A likelihood ratio test of Ho against HA can be based on

2\\
~ %S =

-0\320\22372) 2 log(l
-

A,).
l-h+l

If the hypothesis involved just /@) variables, we would expect twice the log like-
likelihood ratio,

2(\320\2245
-

\320\224\320\227)
= -\320\223\302\243log(l

-
A,), [20.3.4]

/-A+1
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to be asymptotically distributed as x2- In tne case \302\260fHo, however, the hypothesis
involves the coefficient on y,_1; which, from the Stock-Watson common trends

representation, depends on the value of g = (n -
h) separate random walks. Let

W(r) be g-dimensional standard Brownian motion. Suppose that the true value of
the constant term a in [20.3.1] is zero, meaning that there is no intercept in any
of the cointegrating relations and no deterministic time trend in any of the elements
of y,. Supposefurther that no constant term is included in the auxiliary regressions
[20.2.4]and [20.2.5] that were used to construct u, and vr. Johansen A988) showed
that under these conditions the asymptotic distribution of the statistic in [20.3.4]
is the same as that of the trace of the following matrix:

)'J.
W(r) rfW(r)'

j [\302\243
W(r)W(r)'

rfrj [\302\243
W(r)

rfW(r)'J.
[20.3.5]

Percentiles for the trace of the matrix in [20.3.5] are reported in the case 1 portion
of Table B.10.These are based on Monte Carlo simulations.

If the number of cointegrating relations (A) is 1 less than the number of
variables (\320\270),then g = 1 and [20.3.5] describes the following scalar:

{
W(r) dW(r)\\

Q =

7r \320\223= ~7r \320\223'

[20-3-61

where the second equality follows from [18.1.15]. Expression [20.3.6]will be rec-

recognized as the square of the statistic [17.4.12] that described the asymptotic dis-

distribution of the Dickey-Fuller test based on the OLS t statistic. For example, if

we are considering an autoregression involving a single variable (\320\270
=

1), the null

hypothesis of no cointegrating relations (A
= 0) amounts to the claim that f0

= 0

in [20.3.1] or that \320\224\321\203,follows an AR(p - 1)process.Thus, Johansen's procedure

provides an alternative approach to testing for unit roots in univariate series, an
idea explored further in Exercise 20.4.

Another approach would be to test the null hypothesis of h cointegrating
relations against the alternative of h + 1 cointegrating relations. Twice the log

likelihood ratio for this case is given by

2B*
- 20*) = -riog(l -

A/I+1). [20.3.7]

Again, under the assumption that the true value of a = 0 and that no constant
term is included in [20.2.4] or [20.2.5], the asymptotic distribution of the statistic
in [20.3.7] is the same as that of the largest eigenvalue of the matrix Q defined in

[20.3.5]. Monte Carlo estimates of this distribution are reported in the case 1 section
of Table B.ll.

Note that if g = 1, then \320\270= h + 1. In this case the statistics [20.3.4]and

[20.3.7] are identical. For this reason, the first row in Table B.10 is the sameas
the first row of Table B.ll.

Typically, the cointegrating relations could include nonzero intercepts, in
which case we would want to include constants in the auxiliary regressions [20.2.4]
and [20.2.5]. As one might guess from the analysis in Chapter 18, the asymptotic
distribution in this case depends on whether or not any of the series exhibit de-
deterministic time trends. Suppose that the true value of a is such that there are no
deterministic trends in any of the series, so that the true a satisfies a =

\320\222\321\206*as

in [20.2.40]. Assuming that no restrictions are imposed on the constant term in the
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estimation of the auxiliary regressions [20.2.4] and [20.2.5], then the asymptotic
distribution of [20.3.4]is given in the case 2 section of Table B.IO,while the

asymptotic distribution of [20.3.7]is given in the case 2 panel of Table B.ll. By

contrast, if any of the variables exhibit deterministic time trends (one or more
elements of a -

\320\222\321\206*are nonzero), then the asymptotic distribution of [20.3.4] is
that of the variable in the case 3 section of Table B.10,while the asymptotic
distribution of [20.3.7]is given in the case 3 section of TableB.ll.

When g
= 1 and \320\260\320\244B|Ajf, the single random walk that is common to y, is

dominated by a deterministic time trend. In this situation, Johansen and Juselius

A990, p. 180)noted that the case 3 analog of [20.3.6]has a*2(l) distribution, for
reasons similar to those noted by West A988) and discussed in Chapter 18. The
modest differences between the first row of the case 3 part of TableB.10or B.ll

and the first row of Table B.2 are presumably due to sampling error implicit in

the Monte Carlo procedureused to generate the values in Tables B.10 and B.ll.

Application to Exchange Rate Data

Consider for illustration the monthly data for Italy and the United States

plotted in Figure 19.2. The systems of equations in [20.2.4] and [20.2.5] were

estimated by OLS for y, = (p,, s,,p,*)',where p, is 100 times the log of the U.S.
price level, s, is 100 times the log of the dollar-lira exchange rate, and p* is 100
times the log of the Italian price level. The regressions were estimated over t =

1974:2 through 1989:10 (so that the number of observations used for estimation

was T = 189); p = 12lags were assumed for the VAR in levels.

The sample variance-covariance matrices for the residuals u, and v, were

calculated from [20.2.6] through [20.2.8] to be
\"

0.0435114 -0.0316283 0.0154297\"

-0.0316283 4.68650 0.0319877
0.0154297 0.0319877 0.179927

'
427.366 -370.699 805.8121

-370.699 424.083 -709.036

805.812 -709.036 1525.45 .

'-0.484857 0.498758 -0.837701\"

-1.81401 -2.95927 -2.46896

.-1.80836 1.46897 -3.58991.

The eigenvalues of the matrix in [20.2.9] are then4

A\\
= 0.1105

A2
= 0.05603

A3 = 0.03039

with

riog(l
-

A\\)
= -22.12

riog(l
-

AJ
= -10.90

riog(l
-

A3)
= -5.83.

^Calculations were based on more significant digits than reported, and so the reader may find slight

discrepancies in trying to reproduce these results from the figures reported.
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The likelihood ratio test of the null hypothesis of h = 0 cointegrating relations

against the alternative of h \342\200\2243 cointegrating relations is then calculated from

[20.3.4] to be
-

20*)
= 22.12 + 10.90 + 5.83= 38.85. [20.3.8]

Here the number of unit roots under the null hypothesis is g = \320\270- h = 3. Given

the evidence of deterministic time trends, the magnitude in [20.3.8] is to be com-

compared with the case 3 section of TableB.10.Since 38.85 > 29.5, the null hypothesis
of no cointegration is rejected at the 5% level. Similarly, the likelihood ratio test
[20.3.7]of the null hypothesis of no cointegrating relations (A

= 0) against the
alternative of a single cointegrating relation (A

= 1) is given by 22.12. Comparing
this with the case 3 section of Table B.ll, we see that 22.12 > 20.8, so that the

null hypothesis of no cointegration is also rejected by this test.

This differs from the conclusion of the Phillips-Ouliaris test for no cointe-

cointegration between these series, on the basis of which the null hypothesis of no

cointegration for these variables was found to be acceptedin Chapter 19.

Searching for evidenceof a possible second cointegrating relation, consider
the likelihood ratio test of the null hypothesis of h = 1 cointegrating relation

against the alternative of h = 3 cointegrating relations:

2{%\\
-

\302\243$)
= 10.90 + 5.83 = 16.73.

For this test, g = 2. Since16.73> 15.2,the null hypothesis of a single cointegrating

relation is rejected at the 5% level.Thelikelihood*ratio test of the null hypothesis
of h = 1 cointegrating relation against the alternative of h = 2 relations is 10.90
< 14.0;hence, the two tests offer conflicting evidence as to the presenceof a second
cointegrating relation.

The eigenvector &i of the matrix in [20.2.9] associated with Ab normalized

so that \320\260^\320\201\321\203\321\203\320\231!
= 1, is given by

a| = [-0.7579 0.02801 0.4220]. [20.3.9]

It is natural to renormalize this by taking the first element to be unity:

a[ = [1.00 -0.04 -0.56].
This is virtually identical to the estimate of the cointegrating vectorbasedon OLS

from [19.2.49].

Likelihood Ratio TestsAbout the Cointegrating Vector

Consider a system of \320\270variables that is assumed (under both the null and
the alternative) to be characterized by h cointegrating relations. We might then

want to test a restriction on these cointegrating vectors, such as that only q of the

variables are involved in the cointegrating relations. For example, we might be

interested in whether the middle coefficient in [20.3.9] is zero, that is, in whether
the cointegrating relation involves solely the U.S. and Italian price levels. For this

example h = 1, q = 2, and \320\270= 3. In general it must be the case that h s, q s n-

Since h linear combinations of the q variables included in the cointegrating relations
are stationary, if q = h, then all q of the included variables would have to be
Stationary in levels. If q =

\320\270,then the null hypothesis placesno restrictions on the

cointegrating relations.
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Consider the general restriction that there is a known (q x \320\270)matrix D' such
that the cointegrating relations involve only D'y,. For the preceding example,

D' \320\2331
\302\260

\302\2601

|_o \320\276lj
[20.3.10]

Hence, the error-correction term in [20.3.1] will take the form

\320\241\320\276\320\243,-1
= -BA'D'y,.!,

where \320\222is now an (\320\270\321\205h) matrix and A' is an (h x q) matrix. Maximum likelihood

estimation proceeds exactly as in the previous section, where v, in [20.2.5] is re-
replaced by the OLS residuals from regressions of D'y,_! on a constant and \320\224\321\203,_!,

\320\233\320\243(-2>\342\226\240\342\200\242\342\200\242. Ay<-P+i- This is equivalent to replacing 2w in [20.2.6] and 2\320\270\321\203

in [20.2.8] with

2VV
= D'ZwD [20.3.11]

2\320\270\321\203
=

2\320\270\321\2030. [20.3.12]

Let A,- denote the rth largest eigenvalue of

\302\261^\302\261w\302\261^\302\261w. [20.3.13]

The maximized value for the restricted log likelihood is then

A

20*
= -GW/2) logBir) -

GW/2)
-

G72) \\o^tw\\
-

G72) 2 log(l -
A,).

A likelihood ratio test of the null hypothesis that the h cointegrating relations only
involve D'y, against the alternative hypothesis that the h cointegrating relations

could involve any elements of y, would then be

2B*A -
20*)

= -\320\2232 log(l -
A,) + \320\2232 log(l \"

A,). [20.3.14]

In this case, the null hypothesis involves only coefficients on /@) variables

(the error-correction terms z, =
A'y,), and standard asymptotic distribution theory

turns out to apply. Johansen A988, 1991)showed that the likelihood ratio statistic

[20.3.14] has an asymptotic x2 distribution with h-(n - q) degreesof freedom.

For illustration, consider the restriction represented by [20.3.10] that the
exchange rate has a coefficient of zero in the cointegrating vector [20.3.9]. From
[20.3.11]and [20.3.12], we calculate

- _ \320\223427.366
805.812\"]w ~

1.805.812 1525.45J

\320\223-0.484857 -0.8377011

-1.81401 -2.46896

-1.80836 -3.58991

The eigenvalues for the matrix in [20.3.13] are then

kx = 0.1059 A2
= 0.04681,

with

riog(l -
A\\)

= -21.15 riog(l
-

A2)
= -9.06.
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The likelihood ratio statistic [20.3.14] is

2B%
-

20*)
= 22.12 - 21.15
= 0.97.

The degrees of freedom for this statistic are

h-(n - q) = l-C -
2)

= 1;

the null hypothesis imposes a single restriction on the cointegrating vector. The
5% critical value for a *2A) variable is seen from Table B.2 to be 3.84. Since
0.97 < 3.84,the null hypothesis that the exchange rate does not appear in the

cointegrating relation is accepted.Therestricted cointegrating vector (normalized
with the coefficient on the U.S. price level to be unity) is

Si = [1.00 0.00 -0.54].
As a second example, consider the hypothesis that originally suggested interest

in a possible cointegrating relation between these three variables. This was the

hypothesis that the real exchange rate is stationary, or that the cointegrating vector
is proportional to A,

\342\200\224
1, -1)'. For this hypothesis, D' =

A,
\342\200\224

1, -1) and

\302\261w
= 88.5977

'-0.145914

tvv = 3.61422
[ 0.312582,

m

In this case, the matrix [20.3.13] is the scalar 0.0424498,and so \320\220\320\263
= 0.0424498

and riog(l -
A\\)

= -8.20. Thus, the likelihood ratio test of the null hypothesis
that the cointegrating vector is proportional to A,

\342\200\224
1, -1)' is

2B*A -
20*)

= 22.12 - 8.20
= 13.92.

In this case, the degrees of freedomare

h-(n
- q) = 1C - 1)= 2.

The 5% critical value for a x2B) variable is 5.99. Since 13.92 > 5.99, the null

hypothesis that the cointegrating vector is proportional to A, -1, -1)' is rejected.

Other Hypothesis Tests

A number of other hypotheses can be tested in this framework. For example,
Johansen A991) showed that the null hypothesis that there are no deterministic
time trends in any of the series can be testedby taking twice the difference between

[20.2.10] and [20.2.48]. Under the null hypothesis, this likelihood ratio statistic is

asymptotically x2 with g = n - h degrees of freedom. Johansen also discussed
construction of Wald-type tests of hypotheses involving the cointegrating vectors.

Not all hypothesis tests about the coefficients in Johansen's framework are
asymptotically x2. Consider an error-correction VAR of the form of [20.2.1]where

\302\2430
= -BA'. Suppose we are interested in the null hypothesis that the last n3

elements of y, fail to Granger-cause the first \320\270\320\263elements of y,. Toda and Phillips

(forthcoming) showed that a Wald test of this null hypothesis can have a nonstand-

ard distribution. See Mosconi and Giannini A992) for further discussion.
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Comparison Between FIML and Other Approaches
Johansen's FIML estimation represents the short-run dynamics of a system

in terms of a vector autoregression in differences with the error-correction vector
z,_! added.Short-run dynamics can also be modeled with what are sometimes
called nonparametric methods, such as the Bartlett window used to construct the

fully modified Phillips-Hansen A990) estimator in equation [19.3.53]. Related non-

parametric estimators have been proposedby Phillips A990, 1991a), Park A992),
and Park and Ogaki A991). Park A990)establishedthe asymptotic equivalence of

the parametric and nonparametric approaches, and Phillips A991a) discussed the
sense in which any FIML estimator is asymptotically efficient. Johansen A992)
provided a further discussion of the relation between limited-information and full-

information estimation strategies.
In practice, the parametric and nonparametric approaches differ not just in

their treatment of short-run dynamics but also in the normalizations employed.
The fact that Johansen's method seeks to estimate the space of cointegrating re-

relations rather than a particular set of coefficients can be both an asset and a liability.

It is an asset if the researcher has no prior information about which variables appear
in the cointegrating relations and is concerned about inadvertently normalizing

eu = 1 when the true value of an = 0. On the other hand, Phillips A991b) has

stressed that if the researcher wants to make structural interpretations of the sep-
separate cointegrating relations, this logically requires imposing further restrictions on
the matrix A'.

For example, let r, denote the nominal interest rate on 3-month corporate

debt, i, the nominal interest rate on 3-month government debt, and it, the 3-month
inflation rate. Suppose that these three variables appear to be /A) and exhibit two

cointegrating relations. A natural view is that these cointegrating relations represent
two stabilizing relations. The first reflects forces that keep the risk premium sta-
stationary, so that

r, =
Mfi + ri\302\253\302\253+ *?\342\200\236 [20.3.15]

with z*, ~ /@). A second force is the Fisher effect, which tends to keep the real
interest rate stationary:

\302\2531
= /*& + -hi. + *\302\243, [20.3.16]

with z|, ~ /@). The system of [20.3.15] and [20.3.16] will be recognized as an

example of Phillips's A991a) triangular representation [19.1.20]for the vector y, =

(/\342\200\242\342\200\236it,, \320\263',)'.Thus, in this example theoretical considerations suggest a natural or-

ordering of variables for which the normalization used by Phillips would be of par-
particular interest for structural inference\342\200\224the coefficients /u.^ and y, tell us about

the risk premium, and the coefficients uti and y2 tell us about the Fisher effect.

20.4. Overview of Unit Roots\342\200\224To Difference

or Not to Difference?
The preceding chapters have explored a number of issues in the statistical analysis

of unit roots. This section attempts to summarize what all this means in practice.

Consider a vector of variables y, whose dynamics we would like to describe

and some of whose elements may be nonstationary. For concreteness,let us assume

that the goal is to characterize these dynamics in terms of a vector autoregression.
One option is to ignore the nonstationarity altogether and simply estimate

the VAR in levels, relying on standard t and F distributions for testing any hy-
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potheses.This strategy has the following features to recommend it. A) The pa-
parameters that describe the system's dynamics are estimated consistently. B) Even

if the true model is a VAR in differences, certain functions of the parameters and

hypothesis tests basedon a VAR in levels have the same asymptotic distribution

as would estimates based on differenced data. C) A Bayesian motivation can be

given for the usual t or F distributions for test statistics even when the classical
asymptotic theory for these statistics is nonstandard.

A second option is routinely to difference any apparently nonstationary var-

variables before estimating the VAR. If the true process is a VAR in differences, then

differencing should improve the small-sample performance of all of the estimates
and eliminate altogether the nonstandad asymptotic distributions associated with

certain hypothesis tests. The drawback to this approach is that the true process
may not be a VAR in differences. Some of the series may in fact have been
stationary, or perhaps some linear combinations of the series are stationary, as in

a cointegrated VAR. In such circumstances a VAR in differenced form is misspe-
cified.

Yet a third approach is to investigate carefully the nature of the nonstation-

arity, testing each series individually for unit roots and then testing for possible
cointegration among the series. Once the nature of the nonstationarity is under-

understood, a stationary representation for the system can be estimated. For example,

suppose that in a four-variable system we determine that the first variable yu is

stationary while the other variables (\321\203\321\212,y3l, and y4l) are each individually /A).

Suppose we, further conclude that y2l, y3l, and yM are characterized by a single
cointegrating relation. For y2, =

(\321\203\321\212,\320\243\320\267,,\320\243\320\274)',tbis implies a vector error-correction
representation of the form *

UJ Lav &>JUy2,-J Leg\302\273

where the D x 3) matrix
[\321\204\\

is restricted to be of the form ba' where b is D x 1)
and a' is A x 3). Such a system can then be estimated by adapting the methods
described in. Section 20.2, and most hypothesis tests on this system should be

asymptotically x2-
The disadvantage of the third approach is that, despite the care one exercises,

the restrictions imposed may still be invalid\342\200\224the investigator may have accepted
a null hypothesis even though it is false, or rejected a null hypothesis that is actually

true. Moreover, alternative tests for unit roots and cointegration can produce
conflicting results, and the investigator may be unsure as to which should be fol-

followed.

Experts differ in the adviceoffered for applied work. One practical solution

is to employ parts of all three approaches. This eclectic strategy would begin by

estimating the VAR in levels without restrictions. The next step is to make a quick

assessment as to which series are likely nonstationary. This assessment could be
based on graphs of the data, prior information about the series and their likely

cointegrating relations, or any of the more formal tests discussedin Chapter 17.

Any nonstationary seriescan then be differenced or expressed in error-correction

form and a stationary VAR could then be estimated.For example, to estimate a
VAR that includes the log of income (y,) and the log of consumption (c,), these

two variables might be included in a stationary VAR as Ay, and (c, -
y,). If the

VAR for the data in levels form yields similar inferences to those for the VAR in
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stationary form, then the researcher might be satisfied that the results were not
governed by the assumptions made about unit roots. If the answers differ, then
some attempt to reconcile the results should be made. Careful efforts along the

lines of the third strategy describedin this section might convince the investigator
that the stationary formulation was misspecified, or alternatively that the levels
results can be explained by the appropriate asymptotic theory. A nice example of
how asymptotic theory could be used to reconcile conflicting findings was provided
by Stock and Watson A989). Alternatively, Christiano and Ljungqvist A988) pro-
proposed simulating data from the estimated levelsmodel, and seeing whether incor-
incorrectly fitting such simulated data with the stationary specification would spuriously

produce the results found when the stationary specification was fitted to the actual

data. Similarly, data could be simulated from the stationary model to see if it could
account for the finding of the levels specification. If we find that a single specifi-
specificationcan account for both the levelsand the stationary results, then our confidence
in that specification increases.

APPENDIX 20.A. Proof of Chapter 20 Proposition

\320\257Proof of Proposition 20.1.
(a) First we show that A, < 1 for i = 1, 2, . . . , n,. Any eigenvalue A of [20.1.8]

satisfies

pYY^-YX^xxSjjY
\342\200\224

AInJ
= 0.

Since 2YY is positive definite, this will be true if and only if

|AZYY
-

2\321\202\320\2602,\321\214!2\321\205\321\203|
= \320\236. [20.A.I]

But from the triangular factorization of 2 in equation [4.5.26], the matrix

Jw
- Svx^Sxr [20.A.2]

is positive definite. Hence, the determinant in [20.A.I] could not be zero at A = 1. Note
further that

A2YY
-

2\321\202\320\2602^2\320\245\302\245
=

(A
-

1)ZYY + [2YY -
2YX2ii2XY]. [20.A.3]

If A > 1, then the right side of expression [20.A.3]would be the sum of two positive definite
matrices and so would be positive definite. The left side of [20.A.3]would then be positive
definite, implying that the determinant in [20.A.1] could not be zero for A > 1. Hence,
A a 1 is not consistent with [20.A.I].

To see that \320\220,\320\2630, notice that if A were less than zero, then A2YY would be a negative
number times a positive definite matrix so that AS^ -

2vx2xx2xv would also be a negative
number times a positive definite matrix. Hence, the determinant in [20.A.1] could not be
zero for any value of A < 0.

Parallel arguments establish that 0 s
/x.; < 1 for/ = 1, 2, . . . , n2-

(b) Let k, be an eigenvector associated with a nonzero eigenvalue A, of [20.1.8]:

, = A,.k,, [20.A.4]
Premultiplying both sides of [20.A.4] by 2XY results in

[S^SfvSvxSillPxvk,] =
\\,[ZXyk,]. [20.A.5]

But Pxyk,] cannot be zero, for if [Sxyk,] did equal zero, then the left side of [20.A.4]
would be zero, implying that A,

= 0. Thus, [20.A.5] implies that A, is also an eigenvalue of
the matrix [ZxvZyVZyxZ\302\273!] associated with the eigenvector[Sxvk,]. Recall further that

eigenvalues are unchanged by transposition of a matrix:

which is the matrix [20.1.12]. This provesthat if A, is a nonzero eigenvalue of [20.1.8], then
it is also an eigenvalue of [20.1.12].Exactly parallel calculations show that if /x.,- is a nonzero
eigenvalue of [20.1.12], then it is also an eigenvalue of [20.1.8].

Appendix 20. A. Proof of Chapter 20 Proposition 653



(c) Premultiply [20.1.10]by \320\272;'2\321\203\321\203:

\320\272;2\342\200\2362\321\205,\320\2632:\321\205\320\243\320\272,
= A.k/Swk,. [20.A.6]

Similarly, replace (with/in [20.1.10]:

Z^Z^Z^Z^k, =
\320\220,\320\272\342\200\236 [20.\320\220.7]

and premultiply by k,'2YV;

k/Z^Z^Zx^ =
\320\220\320\224!2\342\200\236\320\272;. [20.\320\220.8]

Subtracting [20.A.8] from [20.A.6], we see that

0 =
(A,-

-
\\,)\320\272\321\200\342\200\236\320\272,. [20.\320\220.9]

If ( \320\244j, then \320\220,\320\244A, and [20.A.9] establishesthat k;ZYYk,
= 0 for I \320\244j. For i = /, we

normalized k/S^k, = 1 in [20.1.11]. Thus we have established condition [20.1.3] for the
case of distinct eigenvalues.

Virtually identical calculations show that [20.1.13] and [20.1.14] imply [20.1.4].
(d) Transpose [20.1.13] and postmultiply by ZXYkj:

Zi-Z^k,
= AA'Zxvk,. [20.A. 10]

Similarly, premultiply [20.A.7] by a/ZXY:

Subtracting [20.A.11] from [20.A.10] results in

0 =
(A,.

-
A,)a;ZXYk;.

This shows that a,'ZXYky
= 0 for \320\220,\320\244Ay, as required by [20.1.5].

To find the value of a,'ZXYk; for i = j, premultiply [20.1.13] by a,'2xx, making use

of [20.1.14]:

a;ZXYZY1JZYXa,
=

A,. [20.A.12]

Let us suppose for illustration that n, is the smaller of n, and n2; that is, n = n,.5Then the

matrix of eigenvectors \320\226is (n x n) and nonsingular. In this case, [20.1.3]implies that

or, taking inverses,

\320\260\320\264
= \320\226\320\245. [20. A. 13]

Substituting [20.A.13] into [20.A.12], we find that

\320\260;2\320\245\302\245\320\255(\320\241\320\255(\320\241'2\321\202\320\260\320\260,
=

\320\220,. [20.\320\220.14]

Now,

a;Zxy9C =
aJZxvtk, k,

\342\200\242\342\200\242\342\200\242
kj

= [a;2XYk, a,'2XYk2
\342\200\242\342\200\242\342\200\242a^k, \342\226\240\342\200\242\342\200\242

\320\260;2\321\205\321\203\320\272\342\200\236][20.\320\220.15]

= [0 0 \342\200\242\342\200\242\342\200\242
\320\260;2\321\215\321\202\320\272,

\342\200\242\342\200\242\342\226\240
0].

Substituting [20.A.15] into [20.A.14], it follows that

(a;2XYk,J =
A,.

Thus, the <th canonical correlation,

\320\263,
\321\210

\320\260/2\321\215\321\202\320\272,.,

is given by the square root of the eigenvalue A,-, as claimed:

r? = A,. \342\226\240

'In the converse case when \320\273=
\320\2772,a parallel argument can be constructed using the fact that

WS^SijiSxYk, = A,,

654 Chapter 20 \\ Maximum Likelihood Analysis of Cointegrated Systems



Chapter 20 Exercises

20.1. In this problem you are asked to verify the claim in the text that the first canonical
variates \321\202|1\320\263and flr represent the linear combinations of y, and x, with maximum possible
correlation. Consider the following maximization problem:

max \302\243(k;y,x,'ai)
\320\236\321\207.\321\207)

subject to

\302\243(kiy,y,'k.)
= 1

E(a;x,x,'ai) = 1-
Show that the maximum value achieved for this problem is given by the square root of the
largest eigenvalue of the matrix 2^2\320\245\321\2032\321\203\321\2032\321\203\320\245.and that a1 is the associated eigenvector
normalized as stated. Show that k, is the normalized eigenvectorof J,^J,YX1^J,XV, as-
associated with this same eigenvalue.

20.2. It was claimed in the text that the maximized log likelihood function under the null
hypothesis of ft cointegrating relations was given by [20.3.2]. What is the nature of the
restriction on the VAR in [20.3.1] when ft = 0? Show that the value of [20.3.2] for this case
is the same as the log likelihood for a VAR(p

- 1) process fitted to the differenced data
Ay,-

20.3. It was claimed in the text that the maximized log likelihood function under the
alternative hypothesis of n cointegrating relations was given by [20.3.3]. Thiscaseinvolves

regressing \320\224\321\203,on a constant, y,_,, and \320\224\321\203,_,,\320\224\321\203,_2 \320\224\321\203,-\320\240+|without .restric-
.restrictions.Let |, denote the residuals from this unrestricted regression, with 2GG =

{\320\230\320\242\321\203\320\246.\321\205\302\247,\302\247;.Equation [11.1.32] would then assert that the maximized log likelihood
function should be given by

2J =
-(\320\223\320\273/2)1\320\276\321\221B\321\202\320\263)

-
(\320\223/2)log|iGG|

- GW2).
Show that this number is the sameas that given by formula [20.3.3].
20.4. Consider applying Johansen's likelihood ratio test to univariate data (n = 1). Show

that the test of the null hypothesis that y, is nonstationary (ft
= 0) against the alternative

that y, is stationary (ft
= 1) can be written

where &l is the average squared residual from a regression of \320\224\321\203,on a constant and \320\224>,_,,

\320\224\321\203,_2,. . . , \320\224\321\203,_,,+1while &\\ is the average squared residual when >,_, is added as an

explanatory variable to this regression.
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21

Time Series Models

of Heteroskedasticity

21.1.Autoregressive Conditional

Heteroskedasticity (ARCH)

An autoregressive processof order p (denoted AR(p)) for an observed variable

y, takes the form

\320\243,
= \321\201+ \321\204.\321\203,.,+ \321\2042\321\203,_2+ \342\200\242\342\200\242\342\200\242+

\321\204\321\200\321\203,_\321\200
+ \320\270\342\200\236[21.1.1]

where \320\270,is white noise:

E(u,) = 0 [21.1.2]
a2 for t = \321\202

P113]0 otherwise.

The processis covariance-stationary provided that the roots of

1 -
<kz

- 02z2 - \342\200\242\342\200\242\342\200\242-
0pz\"

= 0

are outside the unit circle. The optimal linear forecast of the level of y, for an

AR(p) process is

,-\320\270\320\2431-\320\263,\342\226\240\342\226\240\342\226\240)
= c+ \321\204\320\274^+ \321\2042\321\203,_2+ \342\200\242\342\200\242\342\200\242+ \321\204\321\200\321\203,.\321\200,[21.1.4]

where \320\201(\321\203,\\\321\203,_1,\321\203,_2,. . .) denotes the linear projection of y, on a constant and
(.\320\243<-1>\320\2431-2,\342\226\240\342\226\240\342\200\242)\342\200\242While the conditional mean of y, changes over time according
to [21.1.4], provided that the process is covariance-stationary, the unconditional

mean of y, is constant:

E(y.) = c/(l -
\321\204,

-
\321\2042 \321\204\321\200).

Sometimes we might be interested in forecasting not only the level of the
series y, but also its variance. For example,Figure 21.1 plots the federal funds

rate, which is an interest rate charged on overnight loans from one bank to another.
This interest rate has been much more volatile at some times than at others. Changes
in the variance are quite important for understanding financial markets, since
investors require higher expected returns as compensation for holding riskier assets.
A variance that changes over time also has implications for the validity and effi-

efficiency of statistical inference about the parameters (\321\201,\321\204\320\270$2, . . . , \321\204\321\200)
that

describe the dynamics of the level of y,.
Although [21.1.3]implies that the unconditional variance of u, is the constant

(\320\2632,the conditional variance of u, could change over time. One approach is to
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FIGURE 21.1 U.S. federal funds rate (monthly averages quoted at an annual

rate), 1955-89.

describe the square of u, as itself following an AR(m) process:

a2u}_2 w,, [21.1.5]

where w, is a new white noise process:

E(w.) = 0
\320\223\320\2602for t = \321\202

E(w,wT)
=

\\
[0 otherwise.

Since u, is the error in forecasting yn expression [21.1.5] implies that the linear
projection of the squared error of a forecastofy, on the previous m squared forecast
errors is given by

A white noise processu, satisfying [21.1.5] is described as an autoregressive con-

conditional heteroskedastic process of order m, denoted \320\270,
~

ARCH(m). This class of
processeswas introduced by Engle A982).1

Since u, is random and u2 cannot be negative, this can be a sensible repre-
representation only if [21.1.6] is positive and [21.1.5] is nonnegative for all realizations

of {u,}. This can be ensured if w, is bounded from below by
- f with \302\243> 0 and if

at
2: 0 for/ = 1,2,. . . ,m.In order for \320\274?to be covariance-stationary, we further

require that the roots of

1 -
\302\253iZ

- a2z2 - \342\226\240\342\226\240\342\226\240- amzm = 0

\342\226\240Anice survey of \320\233\320\257\320\241\320\257-relatedmodels was provided by Bollerslev, Chou, and Kroner A992).
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lie outside the unit circle. If the a;- are all nonnegative, this is equivalent to the

requirement that

\302\253i+ a2 + \342\226\240\342\226\240\342\226\240+ am < 1. [21.1.7]
When these conditions are satisfied, the unconditional variance of u, is given by

cr2 = E{u?) = 0A - e, - a, ara). [21.1.8]

Let uf+s\\, denote an s-period-ahead linear forecast:

Uhs\\,
= &W+sW, \320\230?-1,. . .).

This can be calculated as in [4.2.27] by iterating on

(*?+,\342\200\236
-

cr2)
=

ei(e?+/_1|t
-

cr2) +
\320\2602(\320\271,2+/.2|,

-
cr2)

+ \342\200\242\342\200\242\342\200\242+ am(uhi-mU
~ cr2)

for/ = 1,2, . . . ,swhere

\320\2702,,
= m2 for \321\202< t.

The s-period-ahead forecast
\320\271,2+.,|,converges in probability to cr2 as s-\302\273\302\260\302\260,assuming

that w, has finite variance and that [21.1.7] is satisfied.
It is often convenient to use an alternative representation for an ARCH(m)

processthat imposes slightly stronger assumptions about the serial dependence of
u,. Supposethat

u,
= y/K,-v,, [21.1.9]

where {v,} is an i.i.d. sequencewith zero mean and unit variance:

E(v.) = 0 \302\243(\320\263>2)
= 1.

If h, evolves according to

h,
=

\320\241+ \302\253!\302\253?_!+ \320\2602\320\2742_2+ \342\200\242\342\226\240\342\200\242+ amu)_m, [21.1.10]

then [21.1.9] implies that

\302\243(\320\270?|\320\270,_1(\320\270,_2,...) =
\302\243+ajM,2.! + \320\2602\320\2742_2+ \342\200\242\342\200\242\342\200\242

+.amu,2_m. [21.1.11]

Hence, if u, is generated by [21.1.9] and [21.1.10], then \321\211follows an ARCH(m)
process in which the linear projection [21.1.6]is also the conditional expectation.

Notice further that when [21.1.9] and [21.1.10] are substituted into [21.1.5],
the result is

h,-vf =
h, + w,.

Hence, under the specification in [21.1.9], the innovation w, in the AR(m) rep-
representation for m,2 in [21.1.5] can be expressedas

w,
= h,-(vl

- 1).
\"

[21.1.12]

Note from [21.1.12] that although the unconditional variance of w, was assumed

to be constant,

E(w?)
= A2, [21.1.13]

the conditional variance of w, changes over time.
The unconditional variance of w, reflects the fourth moment of u,, and this

fourth moment does not exist for all stationary ARCH models.Onecan see this

by squaring [21.1.12] and calculating the unconditional expectation of both sides:

E(w?)
= E(hf)-E(v} - IJ. [21.1.14]
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Taking the ARCHA) specification for illustration, we find with a little manipulation

of the formulas for the mean and variance of an ARA) process that

\302\243(*?)
=

= E{(a\\-uU) +
= ablVaiiuf-J + [E(uU)f]+ larf-EW-J + \302\2432[21.1.15]

1 - a2
+

A
-

a^2\"

Substituting [21.1.15] and [21.1.13] into [21.1.14], we conclude that A2 (the un-
unconditional variance of wt) must satisfy

Even when laj < 1, equation [21.1.16] may not have any real solution for
A. For example,if v,

~ N@, 1), then E(vj
- IJ = 2 and [21.1.16] requires that

A -
3a2)A2 2^

-
<x\\

This equation has no real solution for A whenever a\\ > \\. Thus, if \320\270,
~

ARCHA)
with the innovations v, in [21.1.9] coming from a Gaussian distribution, then the
second moment of w, (or the fourth moment of u,) does not exist unless a\\ < i

Maximum Likelihood Estimation with Gaussian vt

Suppose that we are interested in estimating the parameters of a regression

model with ARCH disturbances. Let the regression equation be

y, = x,'p + u,. [21.1.17]
Here x, denotes a vector of predetermined explanatory variables, which could
include lagged values of y. The disturbance term u, is assumed to satisfy [21.1.9]
and [21.1.10]. It is convenient to condition on the first m observations (t =
- m + 1, -m + 2 0)and to use observations t = 1,2 Tforestimation.

Let \023/,denote the vector of observations obtained through date t:

*f =
(\320\243\302\273-Vr-l. \342\200\242\342\200\242\342\200\242. \320\243l,\320\243\320\276,\342\226\240\342\226\240\342\200\242. \320\243-\321\202+\320\252X,'. X/'-l Xi, Xi, . . . , X'_m + 1)'-

If v, ~ i.i.d. N@, 1)with v, independent of both x, and \342\200\242?/,_u then the conditional
distribution of y, is Gaussian with mean x,'P and variance h,:

^ (^) [2L1.18]

where

\320\232
= {

+ \302\253\320\233\320\243,-\321\202
-

\321\205,'-\342\200\236\320\240J [21.1-19]

-
[*,(\320\240)]'\320\262
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for

8 = ((, au a2 am)'
fc(P)]' - [1.(\320\243.-1

- x,'-!?J, (y,.2 - x,'_2pJ,. . . , [y,_m
-

x,'_mpJ].

Collect the unknown parameters to be estimated in an (a x 1) vector 9:

e-(p\\8')'.
The sample log likelihood conditional on the first m observations is then

2
r-1

= -G72) logB7r)
- A/2) 2 log(A.) [21.1.20]

(y,
- x;pJ/A,.

\302\273-l

For a given numerical value for the parameter vector 9, the sequence of conditional
variances can be calculatedfrom [21.1.19] and used to evaluate the log likelihood
function [21.1.20]. This can then be maximized numerically using the methods
described in Section 5.7. The derivative of the log of the conditional likelihood of

the tth observation with respect to the parameter vector 9, known as the fth score,
is shown in Appendix 21. A to be given by

t\\y)
(oX 1)

[21.1.21]

The likelihood function can be maximized using the method of scoring as in Engle

A982, p. 997) or using the Berndt, Hall, Hall, and Hausman A974) algorithm as
inBollerslevA986,p.317).Alternatively, the gradient of the log likelihood function

can be calculated analytically from the sum of the scores,

V<\302\243(9)
= 2 j,(8),

or numerically by numerical differentiation of the log likelihood [21.1.20]. The
analytically or numerically evaluated gradient could then be used with any of the

numerical optimization proceduresdescribedin Section 5.7.

Imposing the stationarity condition (Sjl^y < 1) and the nonnegativity con-
condition (a.j

> 0 for all /) can be difficult in practice. Typically, either the value of

m is very small or else some ad hoc structure is imposed on the sequence {af}fl. j

as in Engle A982, equation C8)).

Maximum Likelihood Estimation with Non-Gaussian vt

The preceding formulation of the likelihood function assumed that v, has a

Gaussian distribution. However, the unconditional distribution of many financial

time series seems to have fatter tails than allowed by the Gaussian family. Some
of this can be explained by the presence of ARCH; that is, even if v, in [21.1.9]
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has a Gaussian distribution, the unconditional distribution of u, is non-Gaussian

with heavier tails than a Gaussian distribution (see Milhej, 1985,or Bollerslev,
1986,p. 313).Even so, there is a fair amount of evidence that the conditional

distribution of u, is often non-Gaussian as well.
The same basic approach can be used with non-Gaussian distributions. For

example, BollerslevA987) proposed that v, in [21.1.9] might be drawn from a t

distribution with v degrees of freedom, where v is regarded as a parameter to be

estimated by maximum likelihood. If u, has a t distribution with v degrees of

freedom and scale parameter Mn then its density is given by

'
[ M,v\\

'

where \320\223(\342\226\240)is the gamma function describedin the discussion following equation
[12.1.18].If v > 2, then v, has mean zero and variance2

\302\243(\320\270?)
= M,vl(v

- 2).

Hence,a t variable with v degrees of freedom and variance h, is obtained by taking
the scaleparameter M, to be

M, =
h,{v

- 2I v,

for which the density [21.1.22] becomes

This density can be used in place of the Gaussian specification [21.1.18] along with
the same specification of the conditional mean and conditional variance used in

[21.1.17] and [21.1.19]. The sample log likelihood conditional on the first m ob-
observations then becomes

(- -
2)\"\342\204\242}

\"

(.\320\251I
\320\256\320\233*,)Pl-1.24]

where

h,= C+ \302\253i(*-i
- x,'-!pJ + \320\276\320\263(\321\203,-\320\263

~
x,'_2pJ + \342\200\242\342\200\242\342\200\242+ am{y,_m

- x,'_mpJ
=

fc(P)]'\302\253.

The log likelihood [21.1.24] is then maximized numerically with respect to v, p,
and 8 subject to the constraint v > 2.

The same approach can be used with other distributions for v,. Other distri-

distributions that have been employed with ARCH-rehted models include a Normal-
Poissonmixture distribution (Jorion, 1988), power exponential distribution (Baillie
and Bollerslev, 1989),Normal-lognormal mixture (Hsieh, 1989), generalized ex-
exponential distribution (Nelson, 1991), and serially dependent mixture of Normals

(Cai, forthcoming) or t variables (Hamilton and Susmel, forthcoming).

2See, for example, DeGroot A970, p. 42).
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Quasi-Maximum Likelihood Estimation

Even if the assumption that v, is i.i.d. N@, 1)is invalid, we saw in [21.1.6]
that the ARCH specification can still offer a reasonable model on which to base a

linear forecast of the squared value of v,. As shown in Weiss A984,1986), Bollerslev
and Wooldridge A992), and Glosten, Jagannathan, and Runkle A989), maximi-
maximizationof the Gaussian log likelihood function [21.1.20] can provide consistent

estimates of the parameters f, au a2, . . . , am of this linear representation even
when the distribution of u, is non-Gaussian, provided that v, in [21.1.9] satisfies

and

\302\243(\320\263>,|\321\205\342\200\236<&,_!)
= 0

\302\243(\320\263;,2|\321\205\342\200\236<&,_,)
= 1.

However, the standard errors have to be adjusted. Let 9r be the estimate that
maximizes the Gaussian log likelihood [21.1.20], and let 9 be the true value that

characterizes the linear representations [21.1.9], [21.1.17], and [21.1.19].Then even
when v, is actually non-Gaussian, under certain regularity conditions

Vf(9T - 9)-4 N@, D^SD1),

where

S =

for s,(9) the score vector as calculated in [21.1.21], and where

[21.1.25]

where

%
=

(\320\243\320\272\320\243,-1>\342\226\240\342\226\240\342\226\240,\320\243\320\270\320\243\320\276,-\342\226\240\342\226\240,\320\243-\321\202+\320\270x/.x,'.!, . . . ,x[,x'o,. . . , \321\205'_,\320\270+ 1)'.

The second equality in [21.1.25] is established in Appendix 21.A. The matrix S
can be consistently estimated by

6 _ T-i V
/-1

where s,(9r) indicates the vector given in [21.1.21] evaluated at UT.Similarly, the

matrix D can be consistently estimated by
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Standard errors for dT that are robust to misspecification of the family of densities
can thus be obtained from the square root of diagonal elements of

Recall that if the model is correctly specifiedso that the data were really

generated by a Gaussian model, then S = D, and this simplifies to the usual

asymptotic variance matrix for maximum likelihood estimation.

Estimation by Generalized Method of Moments

The ARCH regression model of [21.1.17] and [21.1.19] can be characterized

by the assumptions that the residual in the regression equation is uncorrelated with

the explanatory variables,

E[(y, - x,'p)x,]= 0,
and that the implicit error in forecasting the squared residual is uncorrelated with

lagged squared residuals,

E[(uf -
h,)z,]

= 0.

As noted by Bates and White A988), Mark A988), Ferson A989), Simon A989),
or Rich, Raymond, and Butler A991), this means that the parameters of an ARCH

model could be estimated by generalized method of moments,3 choosing 9 =
(P', 8')' so &s to minimize

where

\"-1 2 (\321\203,
- x;p)x,

g(e;
{(\320\243,

~
\321\205,'\321\200J

-
[z,(p)]'8}z,(P)

The matrix \302\247r,standard errors for parameter estimates, and tests of the model can
be constructed using the methods described in Chapter 14. Any other variables

believed to be uncorrelated with u, or with (uf -
h,) could be used as additional

instruments.

Testing for ARCH

Fortunately, it is simple to test whether the residuals u, from a regression
model exhibit time-varying heteroskedasticity without actually having to estimate

the ARCH parameters.Engle A982, p. 1000) derived the following test based on
the Lagrange multiplier principle. First the regression of [21.1.17] is estimated by

OLS for observations t = -m + 1, -m + 2, . . . , T and the OLS sample

residuals \320\271,are saved. Next, u? is regressedon a constant and m of its own lagged
values:

\320\271?
=

(\320\223+ ^u?., + a2uj.2 + \342\226\240\342\226\240\342\226\240+ \320\260\321\202\320\271*_\321\202+ \320\265\342\200\236[21.1.26]

fort = 1,2,. . . , T.The sample size \320\223times the uncentered \320\233j| from the regression

3As noted in Section 14.4, maximum likelihood estimation can itself be viewed as estimation by
GMM in which the orthogonality condition is that the expected score is zero.
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of [21.1.26] then converges in distribution to a x2 variable with m degrees of freedom
under the null hypothesis that u, is actually i.i.d. N@, a2).

Recalling that the ARCH(m) specification can be regarded as an AR(m)

process for u2, another approach developed by Bollerslev A988) is to use the Box-
Jenkins methods described in Section 4.8 to analyze the autocorrelations of u2.
Other tests for ARCH are described in Bollerslev, Chou, and Kroner A992,p. 8).

21.2. Extensions

Generalized Autoregressive Conditional

Heteroskedasticity (GARCH)

Equations [21.1.9] and [21.1.10] described an ARCH(m) process (\320\274,)char-

characterized by

u, = Vh~,-vt,

where v, is i.i.d. with zero mean and unit variance and where h, evolvesaccording

to

h, =
\320\241+ <*!\"?-! + <*2\320\2742_2+

\342\200\242\342\200\242\342\200\242+ amu2.m.

More generally, we can imagine a process for which the conditional variance de-

depends on an infinite number of lags of M2_,-,

h,
=

\302\243+ n(L)u2, [21.2.1]

where

A natural idea is to parameterize ir(L) as the ratio of two finite-order polynomials:

ff(L)
\320\223\320\223\320\225\320\251

'
1 - SlH-

S2L2 B,L\"
[2L2-21

where for now we assume that the roots of 1 \342\200\224
S(z)

= 0 are outside the unit

circle. If [21.2.1] is multiplied by 1 - S(L), the result is

[1
- S(L)]h,= [1 - 8(l)]f+ a(L)u2

or

h, = \320\272+ 5\320\233..! + \320\227\320\263\320\233.-\320\263+ \342\226\240\342\226\240\342\226\240+ 5\320\224_\320\223 [21.2.3]
+ \302\253iM,2-!+ \320\2602\"<2-2+

\342\226\240\342\226\240\342\226\240+ \320\260\342\200\236\320\2742_\321\202

for \320\272\320\262
[1

- 5: -
\302\2472

- \342\226\240\342\226\240\342\226\240- 5r]f. Expression [21.2.3]is the generalized au-

autoregressive conditional heteroskedasticity model, denoted \320\270,
~ GARCH{r, m),

proposed by Bollerslev A986).
One's first guess from expressions [21.2.2] and [21.2.3] might be that S(L)

describes the \"autoregressive\" terms for the variance while a(L) captures the

\"moving average\" terms. However, this is not the case. The easiest way to see

why is to add u2 to both sides of [21.2.3]and rewrite the resulting expression as

h,+ u2 = K- \302\253!(\302\253?_!
-

\320\233,_0
-

52(\320\274?_2
-

\320\233,_2)

-
Sr(w?_r

-
\320\233,_\320\263)+ 81\320\230?_!+ 52\320\274?_2+

\342\200\242\342\200\242\342\200\242

+ 5\320\263\320\2742-\320\263+ <*i\"?-i + <*2\"?-2 + \342\226\240\342\200\242\342\200\242
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or

uj = \320\272+ (Si + a1)uj_1 + E2 + <*2)\320\2742_2+
\342\226\240\342\200\242\342\200\242

[2\\.2A\\
+ (8P + ap)uj_p + w,- SiW^i

-
52>v,_2 Srw,_r,

where w, = uj
\342\200\224

h, and p = max{w, r}.We have further defined S;-= 0 for / > r
and

ctj
= 0 for; > m. Notice that h, is the forecast of uj based on its own lagged

values and thus w, =
uj

\342\200\224
h, is the error associatedwith this forecast. Thus, w, is

a white noise process that is fundamental for uj. Expression [21.2.4] will then be

recognized as an ARMA(p, r) process for uj, in which the /th autoregressive
coefficient is the sum of

S;- plus af while the yth moving average coefficient is the

negative of 5,. If u, is described by a GARCH(r, m) process, then uj follows an

ARMA(p, r) process,where p is the larger of r and m.

The nonnegativity requirement is satisfied if \320\272> 0 and a; > 0, S;== 0 for

/ = 1, 2, . . . ,p. From our analysis of ARM A processes,it then follows that u1,

is covariance-stationary provided that w, has finite variance and that the roots of

1 - (Sj+ ajz
-

(\302\2472+ a2)z2
- \342\226\240\342\226\240\342\226\240-

(8p
+ ap)z\"

= 0

are outside the unit circle. Given the nonnegativity restriction, this means that

\320\274?is covariance-stationary if

(81 + \302\253\320\236+ (S2 + a2) + \342\226\240\342\226\240\342\200\242+ (8p + ap) < 1.

Assuming that this condition holds, the unconditional mean of uj is

E(uj),= or* = k/[1
-

(\320\262,+ \320\2621)
-

(\320\262,+ \320\260\320\263) (8, +
\320\260\321\200)\\.

Nelson and Cao A992) noted that the conditions at \320\2630 and 5, \320\2630 are sufficient
but not necessary to ensure nonnegativity of A,. For example, for a GARCHA, 2)
process, the tt{L) operator implied by [21.2.2] is given by

8\\L2 + 8\\L3 + \342\226\240\342\226\240
-)(aiL + a2L2)

+ a2)L2 + \320\227^\320\227\320\273

The ttj coefficients are all nonnegative provided that 0 \342\226\240&8L < 1, a^ \320\2630, and

(S^! + 02) \320\2630. Hence, a2 could be negative as long as -a2 is less than S^.
The forecast of uj+s based on uj, uj. i,. . . , denoted uj+s\\,, can be calculated

as in [4.2.45] by iterating on

\342\226\240\342\200\242\342\200\242+ (8p +
\320\262\321\200)(\320\271?+,_\321\200[,-a2)- 8SA,

- SJ+i*,_i
~ o-2= \\ Sr*,+,_r fors= 1,2,. . . ,r

(\302\253i+
\302\253i)W+,-n,

-
cr2) + (S2 + a2)(u,2+,.2|,

-
a2)

+ \342\200\242\342\200\242\342\200\242+ (Sp +
\320\262\321\200)(\320\271?+,_\321\200[,

-
cr2) fors = r + 1,r + 2,. . . ,

\320\271%
= u\\ ioxr&t

#T = U2 -
U2|T_! fOT T = t,t - 1, ... ,t - \320\223+ 1.

See Baillie and Bollerslev A992) for further discussion of forecasts and mean

squared errors for GARCH processes.
Calculation of the sequence of conditional variances {h,}J'^l from [21.2.3]

requires presample values for A_p+1, . . . , h0 and u2_p+1,. . . , ujj. If we have
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observations on \321\203,and x, for t = 1, 2, . . . , T, Bollerslev A986, p. 316) suggested
setting

hj
= uj - &1 for j = -p + 1, . . . ,0,

where

**-
r-'l^-ijpJ.

The sequence{h,}^ ĉan be used to evaluate the log likelihood from the
expression given in [21.1.20]. This can then be maximized numerically with respect

to p and the parameters \320\272,Su . . . , Sr, a1; . . . , am of the GARCHprocess;for

details, see Bollerslev A986).

Integrated GARCH

Suppose that u, = y/h,-v,, where v, is i.i.d. with zero mean and unit variance

and where h, obeys the GARCH(r, m) specification

h, = \320\272+ \320\227\320\233-i+ \302\247\320\233-2+ \342\200\242' ' + 5\320\224-\320\263

We saw in [21.2.4] that this implies an ARMA process for u] where the /th au-

toregressive coefficient is given by (S;-
+ ctj). This ARMA processfor \320\274?would

have a unit root if

2 8, + 2 \302\253,\342\226\240
= I- [21-2.5]

/-i /-i

Engle and Bollerslev A986) referred to a model satisfying [21.2.5] as an integrated
GARCH process, denoted IGARCH.

If u, follows an IGARCH process, then the unconditional variance of u, is

infinite, so neither u, nor \320\270?satisfies the definition of a covariance-stationary proc-

process.However, it is still possible for u, to come from a strictly stationary process in

the sense that the unconditional density of u, is the samefor all t; see Nelson A990).

The ARCU-in-MeanSpecification

Finance theory suggests that an asset with a higher perceived risk would pay

a higher return on average.For example, let r, denote the ex post rate of return

on some asset minus the return on a. safe alternative asset. Suppose that r, is

decomposed into a component anticipated by investors at date t - 1 (denoted /a,)
and a component that was unanticipated (denoted u,):

Then the theory suggests that the mean return (/u,) would be related to the variance

of the return (A,).In general, the \320\233\320\233\320\241\320\257-\321\210-\321\202\320\265\320\260\320\277,or ARCH-M, regression model
introduced by Engle, Lilien, and Robins A987)is characterized by

y, = x,'p + Sh, + u,

u, = Vh,-v,

for v, i.i.d. with zero mean and unit variance. The effect that higher perceived

variability of u, has on the level of y, is captured by the parameter S.

21.2.Extensions 667



Exponential GARCH

As before,let u,
= y/h,-v, where v, is i.i.d. with zero mean and unit variance.

Nelson A991) proposed the following model for the evolution of the conditional

variance of u,:

log h,
= { + 2 nr{\\v,4\\

-
E\\v,4\\ + Kv,4}. [21.2.6]

Nelson's model is sometimes referred to as exponential GARCH, or EGARCH. If

ttj
> 0, Nelson's model implies that a deviation of |i>,_;-| from its expected value

causes the variance of u, to be larger than otherwise, an effect similar to the idea
behind the GARCH specification.

The N parameter allows this effect to be asymmetric. If N = 0, then a positive
surprise (i>,_;-

> 0) has the same effect on volatility as a negative surprise of the

same magnitude. If -1 < N < 0, a positive surprise increasesvolatility less than

a negative surprise. If N < -1, a positive surprise actually reduces volatility while
a negative surprise increases volatility. A number of researchershave found evi-

evidence of asymmetry in stock price behavior\342\200\224negative surprises seem to increase
volatility more than positive surprises.4 Sincea lower stock price reduces the value

of equity relative to corporatedebt, a sharp decline in stock prices increasescor-
corporate leverage and could thus increasethe risk of holding stocks. For this reason,

the apparent finding that N < 0 is sometimes describedas the leverage effect.
One of,-the key advantages of Nelson's specification is that since [21.2.6]

describes the log of A,, the variance itself (A,)will be positive regardless of whether

the
iTj

coefficients are positive. Thus, in contrast to the GARCH model, no re-

restrictions need to be imposed on [21.2.6] for estimation. This makes numerical

optimization simpler and allows a more flexible class of possible dynamic models
for the variance. Nelson A991, p. 351)showed that [21.2.6] implies that log A,, A,,

and u, are all strictly stationary provided that 2\"_:\321\202\321\202?< \302\253.

A natural parameterization is to model it(L) as the ratio of two finite-order

polynomials as in the GARCH{r,m) specification:

log h, = \320\272+ S1 log A,_! + S2 log A,_2 + \342\200\242\342\200\242\342\200\242

+ SrlogA,_r + e^lv^il -
E\\v,.i\\ + Xv^J [21.2.7]

+ \302\2532{|v,_2|
- E\\v,.2\\ + Hv,.J + \342\200\242\342\200\242\342\200\242

+ am{\\v,.m\\
-

E\\v,.m\\ + Hv,-J.

The EGARCH modelcan beestimated by maximum likelihood by specifying
a density for v,. Nelson proposed using the generalized error distribution, normal-

normalizedto have zero mean and unit variance:

IK\302\273,)
~

\320\235\320\265\320\263\320\265\320\223(\342\200\242)is the gamma function, A is a constant given by

\"See Pagan and Schwert A990), Engle and Ng A991), and the studies cited in Bollerslev, Chou,
and Kroner A992, p. 24).
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and v is a positive parameter governing the thickness of the tails. For v = 2, the
constant A = 1 and expression [21.2.8] is just the standard Normal density. If

v < 2, the density has thicker tails than the Normal, whereas for v > 2 it has

thinner tails. The expectedabsolute value of a variable drawn from this distribution

A-2\"TB/,)

For the standard Normal case (v = 2), this becomes

E\\v,\\ = V2hr.

As an illustration of how this model might be used, consider Nelson's analysis

of stock return data. For r, the daily return on stocksminus the daily interest rate
on Treasury bills, Nelson estimated a regression modelof the form

r,
= a + br,_L + Sht + \321\211.

The residual u, was modeledas \\/ht-v,, where v, is i.i.d. with density [21.2.8] and
where h, evolves according to

log A,
-

\302\243
=

S^logh,^
-

\302\243_!>

+ \320\262,{\320\232_,|
-

E\\v,^\\ + Hv,,,} [21.2.9]
+ <*2{k-2|

-
\302\243\320\272-2|+ Ni;,.^.

Nelson allowed f,, the unconditional mean of log A,, to be a function of time:

\302\243
=

(\320\223+ log(l + PN,),

where N, denotes the number of nontrading days between dates t - 1 and t and

f and p are parameters to be estimated by maximum likelihood. The sample log
likelihood is then

X =
T{\\og(vlk)

-
A +

-
A/2) 2 \\{r,

- a -
\320\254\320\263,.\320\263

-
Sh,)l{K- V7g|\302\273

- A/2) 2el el
The sequence {A,}>r-i ls obtained by iterating on [21.2.7] with

v,= (r,
- a -

br,_x
- Sh,)/Vh,

and with presample values of log h, set to their unconditional expectations \302\243,.

Other Nonlinear ARCH Specifications

Asymmetric consequences of positive and negative innovations can also be

captured with a simple modification of the linear GARCH framework. Glosten,
Jagannathan, and Runkle A989) proposed modeling u,

= \\fh,-v,, where i>,is i.i.d.

with zero mean and unit variance and

h,= \320\272+ \320\227\320\233-i+ \302\253i\302\253?-i+ X\302\253?-i\342\200\242/,-!\342\226\240 [21.2.10]

Here, /,_! = 1 if \320\274(_:\320\2630 and /,_i = 0 if m,_j < 0. Again, if the leverage effect

holds, we expect to find N < 0. The nonnegativity condition is satisfied provided
that S: == 0 and a: + N > 0.

A variety of other nonlinear functional forms relating h, to {m,_i, m,_2, \342\200\242\342\200\242\342\200\242}

have been proposed. Geweke A986),Pantula A986), and Milhtfj A987) suggested
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a specification in which the log of h, depends linearly on past logs of the squared

residuals. Higgins and Bera A992)proposeda power transformation of the form

h,
=

[\302\243\302\260+ \320\2621(\320\270?_,)\302\273+ a2{uUf + \342\226\240\342\226\240\342\226\240+ \320\251\321\217(\320\270?-\302\273)'\320\223,

with f > 0, S > 0, and \320\260,-\320\2600 for j = 1, 2 m. Gourieroux and Monfort

A992) used a Markov chain to model the conditional variance as a general stepwise
function of past realizations.

Multivariate GARCH Models
The preceding ideas can also be extended to an (\320\273\321\2051) vector y,. Consider

a system of \320\273regression equations of the form

\321\203,
= \320\237'\342\200\242

x, + u,,
(nxl) (nx*)(*xl) (nxl)

where x, is a vector of explanatory variables and u, is a vector of white noise

residuals. Let H, denote the (\320\273\321\205\320\273)conditional variance-covariance matrix of the

residuals:

H, =
\320\225(\320\270,\320\270;|\320\243\320\263-1,y,_2, . . . , \321\205\342\200\236\321\205,_\342\200\236. . .).

Engle and Kroner A993) proposedthe following vector generalization of a
GARCH(r,m) specification:

H, = \320\232+ AA.iAl + \320\2242\320\235,.2\320\2242+ \342\200\242\342\200\242\342\200\242+ \320\224\320\223\320\235,_\320\223\320\224;+ AiU^u^Ai

+ A2u,_2u;_2A2+ \342\200\242\342\200\242\342\200\242+ Amu,_mu,'_mA^.

\320\235\320\265\320\263\320\265\320\232,\320\224,,and A, for s = 1,2,... denote (\320\273\321\205\320\273)matrices of parameters. An
advantage of this parameterization is that H, is guaranteed to be positive definite

as long as \320\232is positive definite, which can be ensured numerically by parameterizing
\320\232as PP', where P is a lower triangular matrix.

In practice, for reasonably sized \320\273it is necessary to restrict the specification
for H, further to obtain a numerically tractable formulation. One useful special
case restricts \320\224,and A, to be diagonal matrices for s = 1, 2 In such a model,
the conditional covariance between uu and

ujt depends only on past values of

\">./-*\342\226\240\"/,/-*>
and n\302\260ton the products or squares of other residuals.

Another popular approach introduced by Bollerslev A990) assumesthat the

conditional correlations among the elements of u, are constant over time. Let

hff denote the row /, column i element of H,. Thus, hjp represents the conditional
variance of the /th element of u,:

hf =
E(ul\\y,_u y,_2, . . . , x,, x,_1; . . .).

This conditional variance might be modeledwith a univariate GARCHA,1) process
driven by the lagged innovation in variable i:

We might postulate \320\273such GARCH specifications (i = 1,2,. . . , \320\273),one for each
element of u,. The conditional covariance between ult and ujt, or the row i, column

j elementof H,, is then taken to be a constant correlation pVl
times the conditional

standard deviations of uit and ujt:

hf =
E(u,,Uji\\y,-i, \320\243,-2,\342\200\242\342\226\240\342\200\242, xt. x,-i. \342\200\242\342\200\242\342\226\240)

=
pifVhff-Vh\302\256.

Maximum likelihood estimation of this specification turns out to be quite tractable;
see Bollerslev A990) for details.
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Other multivariate models include a formulation for vech(H,) proposed by
Bollerslev, Engle, and Wooldridge A988) and the factor ARCH specifications of
Diebold and Nerlove A989)and Engle, Ng, and Rothschild A990).

Nonparametric Estimates

Pagan and Hong A990) explored a nonparametric kernel estimate of the

expected value of uf. The estimate is basedon an average value of those u2T whose

preceding values of uT_1; uT_2,. . . , uT_m were \"close\" to the values that preceded
?

\320\232
= S

The weights {\320\274\321\202A)}\320\242_1\321\202\321\2041are a set of (T - 1)numbers that sum to unity. If the

values of \320\270\321\202_\320\270\320\270\321\202-2,\342\200\242\342\200\242\342\200\242, \320\270\321\202-\321\210that preceded uT were similar to the values u,_lt

u,_2> . . . , u,_m that preceded u,, then u\\ is viewed as giving useful information

about h, =
E{uJ\\ut_u u,_2, \342\200\242\342\200\242\342\200\242, \320\251-m)-In this case, the weight wT{t) would be

large. If the values that preceded uT are quite different from those that preceded
\320\270,,then uj is viewed as giving little information about h, and so wT(t) is small. One
popular specification for the weight wT(t)is to use a Gaussian kernel:

m

kt@
=

\320\237Bn)-v2\\r1 \320\265\321\205\321\200[-(\320\270\321\202_,
-

\302\253,-/J/BA/)].

The positive parameter A, is known as the bandwidth. The bandwidth calibrates

the distance between uT_;
and

u,_t\342\200\224thesmaller is A;, the closer
uT_j must be to

u,_j before giving the value of \320\270?much weight in estimating A,. To ensure that the
weights wT(t) sum to unity, we take

The key difficulty with constructing this estimate is in choosing the bandwidth

parameter Ay.
One approach is known as cross-validation. To illustrate this ap-

approach, suppose that the same bandwidth is selected for each lag (A; = A for / =

1, 2, . . . , m). Then the nonparametric estimate of h, is implicitly a function of
the bandwidth parameter imposed, and accordingly could be denoted A,(A). We

might then choose A so as to minimize

Semiparametric Estimates

Other approachesto describing the conditional variance of u, include general
series expansions for the function h, =

A(m,_i, u,_2, . . .) as in Pagan and Schwert

A990,p. 278) or for the density/(v,) itself as in Gallant and Tauchen A989)and

Gallant, Hsieh, and Tauchen A989).Engle and Gonzalez-Rivera A991) combined
a parametric specification for h, with a nonparametric estimate of the density of v,
in [21.1.9].
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Comparison of Alternative Models

of Stock Market Volatility

A number of approaches have been suggested for comparing alternative ARCH
specifications. One appealing measure is to see how well different models of het-
eroskedasticity forecast the value of u?. Pagan and Schwert A990) fitted a number
of different models to monthly U.S. stock returns from 1834 to 1925. They found

that the semiparametric and nonparametric methods did a good job in sample,

though the parametric models yielded superior out-of-sample forecasts. Nelson's
EGARCH specification was one of the best in overall performance from this com-

comparison. Pagan and Schwert concluded that some benefits emerge from using par-
parametric and nonparametric methods together.

Another approach is to calculate various specification tests of the fitted model.
Testscanbe constructed from the Lagrange mutiplier principle as in Engle, Lilien,
and Robins A987)or Higgins and Bera A992), on moment tests and analysis of

outliers as in Nelson A991), or on the information matrix equality as in Bera and

Zuo A991). Related robust diagnostics were developed by Bollerslev and Woold-

ridge A992).Other diagnostics are illustrated in Hsieh A989).Engle and Ng A991)
suggested some particularly simple tests of the functional form of h, related to

Lagrange multiplier tests, from which they concluded that Nelson's EGARCH

specification or Glosten, Jagannathan, and Runkle's modification of GARCH de-
described in [21.2.10] best describes the asymmetry in the conditional volatility of

Japanese stock returns.
Engle and Mustafa A992) proposed another approach to assessing the use-

usefulness of a given specification of the conditional variance based on the observed

prices for security options. These financial instruments give an investor the right
to buy or sell the security at some date in the future at a price agreed upon today.
The value of such an option increases with the perceived variability of the security.
If the term for which the option applies is sufficiently short that stock prices can
be approximated by Brownian motion with constant variance, a well-known formula

developed by Black and Scholes A973) relates the price of the option to investors'

perception of the variance of the stock price. The observed option prices can then
be used to construct the market's implicit perception of ht, which can be compared
with the specification implied by a given time series model. The results of such

comparisons are quite favorable to simple GARCH and EGARCH specifications.
Studies by Day and Lewis A992) and Lamoureux and Lastrapes A993) suggest

that GARCHA,1) or EGARCHA,1) modelscan improve on the market's implicit

assessment of hr Related evidence in support of the GARCHA, 1) formulation

was provided by Engle, Hong, Kane, and Noh A991) and West, Edison, and Cho

A993).

APPENDIX 21. A. Derivation of SelectedEquations for Chapter 21

This appendix provides the details behind several of the assertionsin the text.

\342\226\240Derivation of [21.1.21]. Observe that

alog/(y,|x.,(S,.1;8) = _ l a log h,
ae 2 ae [21.A.1]

1 fi \320\264(\321\203,-\321\205;\321\200)\320\263(\321\203,-\321\205;\321\200)\320\263\320\260/./|

2[h, ae \321\211 aej
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But

and

y, -
\321\205/\321\200)\320\263_ \320\223-2\321\205,\302\253,]

ae L \320\276J
[21.A.2]

dh,

ae ae

+ 2 (aa/ae)-uf_,- + 2 o,--Cuf_,/ae)

\320\276\"

1

0

;\320\276.

2

+

\320\263,

0

0

\320\270?-,

. 0 .

0)

+ \342\200\242\342\226\240\342\226\240+

0

0

0

[21.\320\220.\320\227]

Substituting [21.A.2] and [21.A.3] into [21.A.1] produces

a log/\320\253\321\205,,\302\253,_,;9) = _ fl_ _ ut\\

ae {2h, 2/i?J ^ \320\236) L \320\236J'

as claimed.

Derivation of [21.1.25]. Expression [21.A.I] can be written

log/i, 1 \320\260\320\270?

from which

,(e) _ l a log h, fI \320\260\320\270?_ \320\270?\320\260\320\271,1l
f\302\253f_ \320\233a2 log h,

e' ~2 ae {\320\273,\320\260\320\262'\320\273?\320\260\320\262'/2 [\320\273, J \321\215\320\262\320\260\320\262'

as,(e)

ae

1 \320\260\320\263\320\272?\320\260\320\270?l \321\215/i,

2/i, aeae'
+

\320\265\320\2652/i?aer'

[21.\320\220.4]

From expression [21.A.2],

\320\260\320\265\320\260\320\262
I_= [-2x,]a\302\253,
e' L \302\260J \320\260\320\262'

(\022x,x; o]

L \320\276
\302\273J'

Substituting this and [21.A.2] into [21.A.4] results in

_ _1_ [2x,x; \320\236] \320\223-2\321\205,\302\253,1J_ ?h,
2h, I 0

*>J L
\302\260J 2\320\233?\320\260\320\262''

[21.\320\220.5]

Recall that conditional on x, and on %,_,, the magnitudes h, and x, are nonstochastic
and

\302\243(\302\253,|x,,*,.1)
= 0

\302\243(\302\253?|\321\205\342\200\236*,_,)
=

\320\233,.
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Thus, taking expectations of [21.A.5] conditional on x, and \320\247/,.,results in

W \320\276]
\320\276oj

, -2\320\260;\321\213,_,\321\205,'-;

_ 1_ \320\223\321\205,\321\205,'
\320\236]

\320\277,[\320\276 Oj'

where the last equality follows from [21.A.3].

Chapter 21 References

Baillie, Richard \320\242.,and Tim Bollerslev. 1989.\"The Message in Daily Exchange Rates: A

Conditional Variance Tale.\" Journal of Business and Economic Statistics 7:297-305.
and . 1992, \"Prediction in Dynamic Models with Time-DependentConditional

Variances.\" Journal of Econometrics 52:91-113.
Bates, Charles, and Halbert White. 1988.\"Efficient Instrumental Variables Estimation of
Systemsof Implicit Heterogeneous Nonlinear Dynamic Equations with Nonspherical Er-
Errors,\" in William A. Barnett, Ernst R. Berndt, and Halbert White, eds., Dynamic Econ-

Econometric Modeling. Cambridge, England: CambridgeUniversity Press.

Bera, Anil K., and X. Zuo. 1991. \"Specification Test for a Linear RegressionModel with

ARCH Process.\" University of Illinois at Champaign-Urbana. Mimeo.

Beradt, E. K.,B.H.Hall, R. E. Hall, and J. A. Hausman. 1974.\"Estimation and Inference
in Nonlinear Structural Models.\" Annals of Economic and SocialMeasurement 3:653-65.

Black, Fischer, and Myron Scholes. 1973. \"The Pricing of Options and Corporate Liabili-
Liabilities.\"Journal of Political Economy 81:637-54.
Bollerslev, Tim. 1986. \"Generalized AutoregressiveConditional Heteroskedasticity.\" Jour-
Journalof Econometrics 31:307-27.

. 1987.\"A Conditionally Heteroskedastic Time SeriesModel for Speculative Prices
and Rates of Return.\" Review of Economics and Statistics 69:542-47.

. 1988. \"On the CorrelationStructure for the Generalized AutoregressiveConditional

Heteroskedastic Process.\" Journal of Time Series Analysis 9:121-31.
. 1990.\"Modelling the Coherence in Short-Run Nominal Exchange Rates: A Mul-

tivariate Generalized ARCH Model.\" Review of Economics and Statistics 72:498-505.
, Ray Y. Chou, and Kenneth F. Kroner. 1992.\"ARCH Modeling in Finance: A

Review of the Theory and Empirical Evidence.\" Journal of Econometrics 52:5-59.

, Robert F. Engle,and Jeffrey M. Wooldridge. 1988.\"A Capital Asset Pricing Mode]
with Time Varying Covariances.\" Journal of Political Economy 96:116-31.

and Jeffrey M. Wooldridge. 1992. \"Quasi-Maximum Likelihood Estimation and Infer-

Inferencein Dynamic Models with Time Varying Covariances.\" EconometricReviews 11:143\342\200\224

72.

Cai, Jun. Forthcoming. \"A Markov Model of Unconditional Variance in ARCH.\" Journal
of Business and Economic Statistics.

Day, Theodore E., and Craig M. Lewis.1992.\"Stock Market Volatility and the Information

Content of Stock Index Options.\" Journal of Econometrics 52:267-87.

DeGroot, Morris H. 1970.Optimal Statistical Decisions. New York: McGraw-Hill.

Diebold, Francis X., and Mark Nerlove. 1989. \"The Dynamics of Exchange Rate Volatility:
A Multivariate Latent Factor ARCH Model.\" Journal of Applied Econometrics4:1-21.
Engle, Robert F. 1982. \"Autoregressive Conditional Heteroscedasticity with Estimates of
the Variance of United Kingdom Inflation.\" Econometrica 50:987-1007.

and Tim Bollerslev. 1986. \"Modelling the Persistence of Conditional Variances.\"
Econometric Reviews 5:1-50.

674 Chapter 21 \\ Time Series Models of Heteroskedasticity



and Gloria Gonzalez-Rivera. 1991.\"Semiparametric ARCH Models.\" Journal of
Business and Economic Statistics 9:345-59.

, Ted Hong, Alex Kane, and Jaesun Noh. 1991.\"Arbitration Valuation of Variance
ForecastsUsing Simulated Options Markets.\" Advancesin Futures and Options Research
forthcoming.

and Kenneth F. Kroner. 1993.\"Multivariate Simultaneous Generalized ARCH.\"
UCSD.Mimeo.

, David M. Lilien, and Russell P. Robins. 1987. \"Estimating Time Varying Risk
Premia in the Term Structure: The ARCH-M Model.\" Econometrica55:391-407.

and Chowdhury Mustafa. 1992. \"Implied ARCH Models from Options Prices.\"
Journal of Econometrics 52:289-311.

and Victor K. Ng. 1991. \"Measuring and Testing the Impact of News on Volatility.\"
University of California, San Diego. Mimeo.

, Victor K. Ng, and Michael Rothschild. 1990. \"Asset Pricing with a FACTOR-
ARCH Covariance Structure: Empirical Estimates for Treasury Bills.\" Journal of Econo-
Econometrics45:213-37.

Ferson, Wayne E. 1989.\"Changes in Expected Security Returns, Risk, and the Level of
Interest Rates.\" Journal of Finance 44:1191-1218.
Gallant, A. Ronald, David A. Hsieh, and George Tauchen. 1989.\"On Fitting a Recalcitrant
Series:The Pound/Dollar Exchange Rate 1974-83.\"Duke University. Mimeo.

and George Tauchen. 1989.\"Semi Non-Parametric Estimation of Conditionally
Constrained Heterogeneous Processes:Asset Pricing Applications.\" Econometrica 57:1091-
1120.
Geweke, John. 1986. \"Modeling the Persistenceof Conditional Variances: A Comment.\"
EconometricReviews 5:57-61.

Glosten, Lawrence R., Ravi Jagannathan, and David Runkle. 1989.\"Relationship between
the Expected Value and the Volatility of the Nominal Excess Return on Stocks.\"North-

Northwestern University. Mimeo.

Gourieroux, Christian, and Alain Monfort. 1992. \"Qualitative ThresholdARCH Models.\"
Journal of Econometrics 52:159-99.
Hamilton, James D., and Raul Susmel.Forthcoming. \"Autoregressive Conditional Het-
eroskedasticityand Changes in Regime.\" Journal of Econometrics.

Higgins.M-. L.,and A. K. Bera.1992.\"A Class of Nonlinear ARCH Models.\" International
Economic Review 33:137-58.
Hsieh, David A. 1989. \"Modeling Heteroscedasticityin Daily Foreign-Exchange Rates.\"
Journal of Business and Economic Statistics 7:307\342\200\22417.

Jorion, Philippe. 1988. \"On Jump Processes in the Foreign Exchange and Stock Markets.\"
Review of Financial Studies 1:427-45.
Lainoureux, Christopher G., and William D. Lastrapes. 1993. \"Forecasting Stock Return

Variance: Toward an Understanding of StochasticImplied Volatilities.\" Review of Financial
Studies 5:293-326.
Mark, Nelson. 1988. \"Time Varying Betas and Risk Premia in the Pricing of Forward Foreign

Exchange Contracts.\" Journal of Financial Economics 22:335-54.

Milh0j, Anders. 1985.\"The Moment Structure of ARCH Processes.\"Scandinavian Journal

of Statistics 12:281-92.
. 1987.\"A Multiplicative Parameterization of ARCH Models.\" Department of Sta-

Statistics, University of Copenhagen. Mimeo.
Nelson, Daniel B. 1990. \"Stationarity and Persistence in the GARCHA,1) Model.\" Econ-

Econometric Theory 6:318-34.

. 1991. \"Conditional Heteroskedasticity in Asset Returns:A New Approach.\" Econ-
Econometrica 59:347-70.

and Charles Q. Cao.1992.\"Inequality Constraints in the Univariate GARCH Model.\"
Journal of Business and Economic Statistics 10:229-35.
Pagan, Adrian R., and Y. S. Hong. 1990. \"Non-Parametric Estimation and the Risk Pre-
Premium,\" in W. Barnett, J. Powell, and G. Tauchen, eds., Semiparametric and Nonparametric
Methods in Econometrics and Statistics. Cambridge,England: Cambridge University Press.

Pagan, Adrian R., and G. William Schwert. 1990. \"Alternative Modelsfor Conditional

Stock Volatility.\" Journal of Econometrics 45:267-90.

Chapter 21 References 675



Pagan, Adrian R., and Aman Ullah. 1988. \"The Econometric Analysis of Models with Risk
Terms.\"Journal of Applied Econometrics 3:87-105.
Pantula, Sastry G. 1986. \"Modeling the Persistenceof Conditional Variances: A Comment.\"

Econometric Reviews 5:71-74.
Rich, Robert W., Jennie Raymond, and J. S. Butler. 1991. \"Generalized Instrumental
Variables Estimation of Autoregressive Conditional Heteroskedastic Models.\" Economics
Letters35:179-85.
Simon, David P. 1989. \"Expectations and Risk in the TreasuryBill Market: An Instrumental
Variables Approach.\" Journal of Financial and Quantitative Analysis 24:357-66.

Weiss, Andrew A. 1984. \"ARMA Models with ARCH Errors.\" Journal of Time Series

Analysis 5:129-43.
. 1986.\"Asymptotic Theory for ARCH Models:Estimation and Testing.\" Econo-

EconometricTheory 2:107-31.

West, Kenneth D., Hali J. Edison, and Dongchul Cho. 1993. \"A Utility Based Comparison
of Some Models of Foreign Exchange Volatility.\" Journal of International Economics,
forthcoming.

676 Chapter 21 \\ Time Series Models of Heteroskedastidty



22

Modeling Time Series

with Changes in Regime

22.1.Introduction

Many variables undergo episodes in which the behavior of the series seems to

change quite dramatically. A striking example is provided by Figure 22.1, which

is taken from Rogers's A992)study of the volume of dollar-denominated accounts

held in Mexican banks. The Mexican government adopted various measures in

\342\204\226to try to discourage the use of such accounts, and the effects are quite dramatic

in a plot of the series.

Similar dramatic breaks will be seen if one follows almost any macroeconomic

or financial time series for a sufficiently long period. Such apparent changes in the
time series process can result from events such as wars, financial panics, or sig-
significant changes in government policies.

How should we model a change in the process followed by a particular time
series? For the data plotted in Figure 22.1, one simple idea would be that the
constant term for the autoregression changed in 1982. For data prior to 1982 we

might use a model such as
\320\243,

~
Mi =

\320\244(\320\243,-1
~

Mi) + en [22.1.1]
while data after 1982 might be described by

y,-fh =
\320\244(\320\243,-1

~
\320\234\320\263)+ \320\265\342\200\236 [22.1.2]

where \320\2462< Mi-
The specification in [22.1.1] and [22.1.2] seems a plausible description of the

data in Figure 22.1, but it is not altogether satisfactory as a time series model. For

example, how are we to forecast a series that is described by [22.1.1] and [22.1.2]?
If the process has changed in the past, clearly it could also change again in the

future, and this prospect should be taken into account in forming a forecast. More-
Moreover, the change in regime surely should not be regarded as the outcome of a

perfectly foreseeable, deterministic event. Rather, the change in regime is itself a
random variable. A complete time series model would therefore include a descrip-
descriptionof the probability law governing the change from /xi to \320\274?-

These observations suggest that we might consider the process to be influenced

by an unobserved random variable sf, which will be calledthe state or regime that
the process was in at date /. If sf = 1, then the process is in regime 1, while
s* = 2 means that the process is in regime 2. Equations [22.1.1] and [22.1.2] can

then equivalently be written as

y, - /x,.= <Ky,-i
-

/V.) + \320\265\342\200\236 [22.1.3]

where \321\206,.indicates /Xi when sf = 1 and indicates \320\234\320\263when j* = 2.
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FIGURE 22.i Log of the ratio of the peso value of dollar-denominated bank
accounts in Mexico to the peso value of peso-denominated bank accounts in Mexico,

monthly, 1978-85. (Rogers, 1992).

We then need a description of the time series process for the unobserved

variable sf. Since s* takes on only discrete values (in this case, s* is either 1 or

2), this will be a slightly different time series model from those for continuous-

valued random variables consideredelsewherein this book.

The simplest time series model for a discrete-valued random variable is a

Markov chain. The theory of Markov chains is reviewed in Section 22.2. In Section
22.4 this theory will be combined with a conventional time series model such as

an autoregression that is assumed to characterize any given regime. Prior to doing
so, however, it will be helpful to consider a specialcaseof such processes, namely,
that for which \321\204

= 0 in [22.1.3] and sf is an i.i.d. discrete-valued random variable.

Such a specification describes y, as a simple mixture of different distributions, the

statistical theory for which is reviewed in Section 22.3.

22.2. Markov Chains

Lets,be a random variable that can assumeonly an integer value {1,2,..., N}.
Suppose that the probability that st equals someparticular value / depends on the

past only through the most recent value s,_j:

P{s, = /k,-i = i, s,-2 = *,...} =
P{s,

=
/]*,_!

= j} = Plj. [22.2.1]
Such a process is described as an N-state Markov chain with transition probabilities

{Pij}i,j-ia n- The transition probability \321\200\321\206gives the probability that state j will

be followed by state j. Note that
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It is often convenient to collect the transition probabilities in an (N x N)
matrix P known as the transition matrix:

P =

Pn P21
\342\200\242\342\226\240\342\200\242

Pn

Pa P22
' \342\200\242\342\200\242

Pnz

_P\\N P2N Pnn_

[22.2.3]

The row/, column i element of P is the transition probability \321\200\321\205!;for example, the
row 2, column 1 element gives the probability that state 1 will be followed by
state 2.

Representing a Markov Chain with a Vector Autoregression

A useful representation for a Markov chain is obtained by letting \302\243,denote

a random (N x 1) vector whose /th element is equal to unity if s, = j and whose

yth element equals zero otherwise. Thus, when s, = 1, the vector \302\243,is equal to the
first column of 1N (the N x N identity matrix); when s, \342\200\2242, the vector \302\243,is the

second column of 1N; and so on:

f(l, 0, 0 0)'
@, 1,0,..., 0)'

when s, = 1
when s, = 2

1@,0,0, . . . , 1)' when st = N.

If s, - i, then the jth element of \302\243,+1is a random variable that takes on the

value unity with probability ptj and takes on the value zero otherwise. Such a

random variable has expectation ptj. Thus, the conditional expectation of %,+ x given

s,
= i is given by

Pn

Pa

PtN

[22.2.4]

This vector is simply the ith column of the matrix P in [22.2.3]. Moreover,when

s, = i, the vector \302\243,corresponds to the ith column of tN, in which case the vector
in [22.2.4] could be described as Pi-,.Hence, expression [22.2.4] implies that

and indeed, from the Markov property [22.2.1], it follows further that

\321\202+\320\233\320\254\320\233-\320\270\342\200\242\342\200\242\342\200\242)
=

\320\237, [22.2.5]

Result [22.2.5] implies that it is possible to expressa Markov chain in the
form

fc+i
=

\320\237,+ v,+ 1, [22.2.6]
where

\342\226\274r+i
= fc+i

- -E(fc+ilfc.fc-i. \342\226\240\342\226\240\342\226\240)\342\200\242 [22-2.7]

Expression [22.2.6] has the form of a first-order vector autoregression for \302\243,;note

that [22.2.7] implies that the innovation v, is a martingale difference sequence.

Although the vector vr can take on only a finite set of values, on average v, is zero.
Moreover,the value of v, is impossible to forecast on the basis of previous states

of the process.
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Forecasts for a Markov Chain

Expression [22.2.6] implies that

fc+\302\253
= vr+m + Pvr+m_, + P2v,+m_2 + \342\226\240\342\200\242\342\200\242+ P\342\200\224'v.+i + P%, [22.2.8]

where Pm indicates the transition matrix multiplied by itself m times. It follows

from [22.2.8] that m-period-ahead forecastsfor a Markov chain can be calculated

from

\302\243(fc+mlfc,fc-i. \342\226\240\342\200\242\342\200\242)
= P%- [22.2.9]

Again, since the /th element of %,+m will be unity if st+m
= j and zero otherwise,

the yth element of the (N x 1) vector\302\243(i-r+m|ij,, \302\243r_i,.. .) indicates the probability

that sr+m takes on the value /, conditional on the state of the system at date t. For

example, if the process is in state i at date t, then [22.2.9] asserts that

P{sl+m =l\\s, =
iY

P{s,+m = 2\\s, = i} =
Pm-e,-, [22.2.10]

_P{st+m
= N\\s,- i}_

where e, denotes the ith column of lN. Expression [22.2.10] indicates that the m-

period-ahead'transition probabilities for a Markov chain can be calculatedby mul-

multiplying the matrix P by itself m times. Specifically, the probability that an obser-
observation from regime i will be followed m periods later by an observation from regime
j, P{s,+m

=
j\\sr

=
\320\263},is given by the row7, column i element of the matrix Pm.

Reducible Markov Chains
For a two-state Markov chain, the transition matrix is

[22.2.11]

Suppose that pn
= 1, so that the matrix P is upper triangular. Then, once the

processenters state 1, there is no possibility of ever returning to state 2. In such
a case we would say that state 1 is an absorbing state and that the Markov chain

is reducible.

More generally, an iV-state Markov chain is said to be reducible if there exists
a way to label the states (that is, a way to choosewhich state to call state 1, which

to call state 2, and so on) such that the transition matrix can be written in the form

P='O C]
DJ'

where \320\222denotes a (K x K) matrix for some 1 < \320\232< N. If P is upper block-

triangular, then so is Pm for any m. Hence, once such a process enters a state j
such that / ^ K, there is no possibility of ever returning to one of the states
\320\232+ 1, \320\232+ 2 N.

A Markov chain that is not reducihle is said to be irreducible. For example,
a two-state chain is irreducible if pn < 1 and P22 < 1-
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Ergodic Markov Chains

Equation [22.2.2] requires that every column of P sum to unity, or

P'l = 1, [22.2.12]
where 1 denotes an (N x 1) vectorof Is. Expression [22.2.12] implies that unity

is an eigenvalue of the matrix P' and that 1 is the associated eigenvector. Since a
matrix and its transpose share the same eigenvalues, it follows that unity is an

eigenvalue of the transition matrix P for any Markov chain.

Consider an N-state irreducible Markov chain with transition matrix P. Sup-
Suppose that one of the eigenvalues of P is unity and that all other eigenvalues of

P are inside the unit circle. Then the Markov chain is said to be ergodic.The

(N x 1) vector of ergodic probabilities for an ergodic chain is denoted \321\202\320\263.This

vector \321\202\320\263is defined as the eigenvector of P associatedwith the unit eigenvalue;
that is, the vector of ergodicprobabilities \321\202\320\263satisfies

\320\240\321\202\320\263= \321\202\320\263. [22.2.13]

The eigenvector \321\202\320\263is normalized so that its elements sum to unity (\320\223\321\202\320\263
= 1). It

can be shown that if P is the transition matrix for an ergodic Markov chain, then

lim Pm = \320\242\320\223-1'. [22.2.14]

We establish [22.2.14] here for the case when all the eigenvalues of P are
distinct; a related argument based on the Jordan decomposition that is valid for

ergodic chains with repeated eigenvalues is developed in Cox and Miller A965,
pp. 120-23). For the case of distinct eigenvalues, we know from [A.4.24] that P
can always be written in the form

P =
\320\242\320\233\320\242-1, [22.2.15]

where T is an (N x N) matrix whose columns are the eigenvectors of P while \320\233

is a diagonal matrix whose diagonal contains the corresponding eigenvalues of P.
It follows as in [1.2.19] that

pm _ TAT\021. [22.2.16]

Since the A, 1) element of \320\233is unity and all other elements of \320\233are inside the
unit circle, Am converges to a matrix with unity in the A, 1) position and zeros

elsewhere. Hence,
lim Pm = xy', [22.2.17]

where x is the first column of T and y' is the first row of T\021.

The first column of T is the eigenvector of P corresponding to the unit ei-

eigenvalue, which eigenvector was denoted \321\202\320\263in [22.2.13]:

x = \321\202\320\263. [22.2.18]

Moreover, the first row of T\021, when expressed as a column vector, corresponds
to the eigenvector of P' associated with the unit eigenvalue, which eigenvector was

seen to be proportional to the vector 1 in [22.2.12]:

\321\203
= a-1. [22.2.19]

To verify [22.2.19], note from [22.2.15] that the matrix of eigenvectors T of the

matrix P is characterized by

PT = \320\242\320\233. [22.2.20]
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Transposing [22.2.15] results in

P' =
(\320\242-'\320\243\320\233\320\223,

and postmultiplying by (T\021)'yields

P'CT\021)'
= (T-')'A. [22.2.21]

Comparing [22.2.21]with [22.2.20] confirms that the columns of (\320\242\021)'correspond

to eigenvectors of P'. In particular, then, the first column of (T\021)' is proportional
to the eigenvector of P' associatedwith the unit eigenvalue, which eigenvector was

seen to be given by 1 in equation [22.2.12].Since\321\203was defined as the first column
of (T-1)', this establishes the claim made in equation [22.2.19].

Substituting [22.2.18] and [22.2.19] into [22.2.17], it follows that

lim Pm = \321\202\320\263-\320\260\320\223.
m\342\200\224*x

Since Pm can be interpreted as a matrix of transition probabilities, each column
must sum to unity. Thus, since the vector of ergodic probabilities \321\202\320\263was normalized

by the condition that \320\223\321\202\320\263= 1, it follows that the normalizing constant a must be

unity, establishing the claim made in [22.2.14].

Result [22.2.14] implies that the long-run forecast for an ergodic Markov

chain is independent of the current state, since,from [22.2.9],

where the final equality follows from the observation that 1'g, = 1 regardless of
the value of &. The long-run forecast of \302\243,+mis given by the vector of ergodic
probabilities \321\202\320\263regardless of the current value of i-,.

The vector of ergodic probabilities can also be viewed as indicating the un-

unconditional probability of each of the N different states. To see this, suppose that

we had used the symbol \321\217\321\203to indicate the unconditional probability P{s,
= /}.

Then the vector \321\202\320\263= (it,, n2, . . . , nN)' could be described as the unconditional

expectation of &:

[22.2.22]

If one takes unconditional expectations of [22.2.6],the result is

Assuming stationarity and using the definition [22.2.22], this becomes

\320\242\320\223= P \320\242\320\223,

which is identical to equation [22.2.13] characterizing \321\202\320\263as the eigenvector of P
associatedwith the unit eigenvalue. For an ergodic Markov chain, this eigenvector
is unique, and so the vector of ergodicprobabilities \321\202\320\263can be interpreted as the

vector of unconditional probabilities.
An ergodic Markov chain is a covariance-stationary process. Yet [22.2.6] takes

the form of a VAR with a unit root, since one of the eigenvalues of P is unity.

This VAR is stationary despite the unit root because the variance-covariancematrix

of v, is singular. In particular, since l'|, = 1 for all t and since l'P = 1', equation

[22.2.6] implies that l'v, = 0 for all t. Thus, from [22.2.19],the first element of
the (N x 1) vector T^v, is always zero, meaning that from [22.2.16]the unit

eigenvalue in Pmvr always has a coefficient of zero.
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Further Discussion of Two-State Markov Chains

The eigenvalues of the transition matrix P for any N-state Markov chain are
found from the solutions to |P -

\\1N\\
= 0. For the two-state Markov chain, the

eigenvalues satisfy

0
Pii

- A 1 - P22
1 ~

Pn P22
~ A

= (Pn -
A)(p22

-
A)

-
A

- pn)(l -
P22)

= P11P22
- (Pn + \320\2402\320\263)\320\220+ A2 - 1 + pn + P22

-

= A2 - (pn + P22M
- 1 + Pn + p22

= (A
- 1)(A + 1 -

pn
-

P22).

Thus, the eigenvalues for a two-state chain are given by A!
= 1 and A2

= \342\200\2241 +

Pn + P22- The second eigenvalue, A2, will be inside the unit circle as long as 0 <
Pn + P22 < 2. We saw earlier that this chain is irreducible as long as pn < 1
and P22 < 1- Thus, a two-state Markov chain is ergodic provided that pn < 1,
P22 < 1, and pn + P22 > 0.

The eigenvectorassociatedwith A! for the two-state chain turns out to be

-
\320\24022\320\243\320\2462.

- Pn ~
P22)

~
\320\240\320\270\320\243B

~
Pn

~ P22)

(the reader is invited to confirm this and the claims that follow in Exercise 22.1).
Thus, the unconditional probability that the processwill be in regime 1 at any given
date is given by

Pis, = 1}
~

P22

2 ~
Pn

-
P22

The unconditional probability that the process will be in regime 2, the second

element of \321\202\320\263,is readily seen to be 1 minus this magnitude. The eigenvector as-
associated with A2 is

Thus, from [22.2.16],the matrix of m-period-ahead transition probabilities for an

ergodic two-state Markov chain is given by

pm \342\200\224

~
P22

2 - Pn -
P22

1 ~ Pn

-1

1

1 01
0 A?J

1 1

-A - Pn) 1 ~
P22

.2
- Pn -

P22 2 - pn -
P22.

2 - Pn -
P22

A
-

\321\200\320\263\320\263)+ Kfjl
-

\321\200\342\200\236)A
- P22) ~

A?(l
-

p^)
2 ~ Pn -

P22

-
pn) ~ A?(l -
2 ~

Pn
~

P22

B - Pn -
P22)

- pn) + A?(l -
P22)

2 - pn -
p-22
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Thus, for example if the process is currently in state 1, the probability that m

periods later it will be in state 2 is given by

{l+m 2|\342\200\236i} ^\320\2471 -
Pn

~
Pn.

where A2
=

\342\200\224l+pn+ p^.
A two-state Markov chain can also be represented by a simple scalar ARA)

process,as follows. Let \302\243lrdenote the first element of the vector &; that is, \302\243\342\200\236is

a random variable that is equal to unity when st = 1 and equal to zero otherwise.
For the two-state chain, the second elementof \302\243,is then 1 - f,,. Hence,[22.2.6]
can be written

[22223]
\320\223

*u;.
1 = \320\223Pn 1 \"fell\" &, 1

L1-
fw+ij L1

~ Pn P22 JL1\"^']

The first row of [22.2.23] states that

(u+i
= A -

P22) + (-1 + Pn + \320\24022\320\2471,+ vu+1. [22.2.24]

Expression [22.2.24]will be recognized as an AR(l) processwith constant term

A -
P22) and autoregressive coefficient equal to (-1 + pn + p22). Note that this

autoregressive coefficient turns out to be the second eigenvalue A2 of P calculated
previously. When pu + p^ > 1, the process is likely to persist in its current state
and the variable \302\243lrwould be positively serially correlated, whereas when pn +
p22<1,the process is more likely to switch out of a state than stay in it, producing

negative serial correlation. Recall further from equation [3.4.3] that the mean of
a first-order autoregression is given by c/(l

-
\321\204).Hence, the representation [22.2.24]

implies that

=
1 -

P22

2 ~ Pn ~ P22'

which reproduces the earlier calculation of the value for the ergodic probabil-

probability\321\211.

Calculating Ergodic Probabilities

for an N-state Markov Chain
For a general ergodic .N-stateprocess,the vector of unconditional probabilities

represents a vector \321\202\320\263with the properties that \320\240\321\202\320\263= \321\202\320\263and \320\223\321\202\320\263= 1, where 1
denotes an (N x 1) vector of Is. We thus seek a vector \321\202\320\263satisfying

\320\220\321\202\320\263=
\320\265\342\200\236+1. [22.2.25]

where eN+1 denotes the (N + l)th column of 1N+1 and where

A =
{N+l)xN

Such a solution can be found by premultiplying [22.2.25] by (A'A)\"^':

\321\202\320\263= (A'A^A'e^. [22.2.26]

In other words, \321\202\320\263is the (N + l)th column of the matrix (A'A)\"^'.
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Periodic Markov Chains
If a Markov chain is irreducible, then there is one and only one eigenvalue

equal to unity. However, there may be more than one eigenvalue on the unit circle,

meaning that not all irreducible Markov chains are ergodic.For example, consider
a two-state Markov chain in which pn = p^ = 0:

0 1
1 0

The eigenvalues of this transition matrix are A!
= 1 and A2

= -1, both of which

are on the unit circle. Thus, the matrix Pm does not converge to any fixed limit of
the form \321\202\320\263-\320\223for this case. Instead, if the process is in state 1 at date t, then

it is certain to be there again for dates t + 2, t + 4, t + 6, . . . , with no ten-

tendency to converge asm-\302\273\302\273.Such a Markov chain is said to be periodicwith

period 2.

In general, it is possible to show that for any irreducible N-state Markov
chain, all the eigenvalues of the transition matrix will be on or inside the unit circle.

If there are \320\232eigenvalues strictly on the unit circle with \320\232> 1, then the chain is

said to be periodic with period K. Such chains have the property that the states
can be classifiedinto \320\232distinct classes, such that if the state at date t is from class
a, then the state at date t + 1 is certain to be from class a + 1 (where class a + 1
for a = \320\232is interpreted to be class1).Thus, there is a zero probability of returning

to the original state s,, and indeed zero probability of returning to any member of
the original class a, except at horizons that are integer multiples of the period (such
as dates t + K, t + 2K, t + 3K, and so on). For further discussion of periodic
Markov chains, see Cox and Miller A965).

22.3. Statistical Analysis of i.i.d. Mixture Distributions

In Section 22.4, we will consider autoregressive processes in which the parameters
of the autoregression can change as the result of a regime-shift variable. The regime
itself will be described as the outcome of an unobserved Markov chain. Before

analyzing such processes, it is instructive first to considera specialcaseof these

processes known as i.i.d. mixture distributions.

Let the regime that a given process is in at date tbe indexed by an unobserved

random variable s,, where there are N possible regimes(s, = 1,2, . . . , or N).

When the process is in regime 1, the observed variable y, is presumed to have been

drawn from a N(jiu a-f) distribution. If the process is in regime 2, then y, is drawn

from a NA*2, of) distribution, and so on. Hence, the density of y, conditional on
the random variable s, taking on the value j is

^f1}
[22-\320\267\320\273\320\267

for \320\243
= 1, 2, . . . , N. Here 9 is a vector of population parameters that includes

The unobserved regime {s,}is presumed to have been generated by some

probability distribution, for which the unconditional probability that s, takes on
the value j is denoted

ttj-.

p{Sl = j; e} =
irj for;

= 1, 2, . . . , N. [22.3.2]
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The probabilities iru . . . , nN are also included in 9; that is, 9 is given by

9 = (/x1; . . . , \321\206\342\200\236,o\\, . . . , o%, \321\211,. . . , ttn)'.

Recall that for any events A and B, the conditional probability of A given \320\222

is defined as

and B}
\321\200{\320\262}

,

assuming that the probability that event \320\222occurs is not zero. This expression implies
that the joint probability of A and \320\222occurring together can be calculated as

P{A and B} = P{A\\B}-P{B}.

For example,if we were interested in the probability of the joint event that s,
= j

and that y, falls within some interval [c, d\\, this could be found by integrating

\321\200(\321\203\342\200\236', = j;e) =
f(y,\\s,

= i\\ V-Pis, =
\320\243;9} [22.3.3]

over all values of y, between \321\201and d. Expression [22.3.3] will be called the joint
density-distribution function of y, and s,. From [22.3.1] and [22.3.2], this
function is given by

The unconditional density of y, can be found by summing [22.3.4] over all

possible values for j:

/(y\302\253;\302\273)
= 2 \321\200(\321\203\342\200\236*. =

/;\302\273)

+

[22.3.5

\321\202\320\2632

2crJ, J

Since the regime s, is unobserved, expression [22.3.5] is the relevant density de-

describing the actually observed data y,. If the regime variable s, is distributed i.i.d.

across different dates t, then the log likelihood for the observed data can be cal-
calculated from [22.3.5] as

\320\255\320\224
= 2log/(y,;9). [22.3.6]

The maximum likelihood estimate of 9 is obtained by maximizing [22.3.6] subject
to the constraints that it, + n2 + \342\226\240\342\200\242\342\200\242+ nN = 1 and \321\211

^ 0 for/ = 1, 2, . . . ,
N. This can be achieved using the numerical methods described in Section 5.7, or

using the EM algorithm developed later in this section.

Functions of the form of [22.3.5] can be used to represent a broad classof

different densities. Figure 22.2 gives an example for N = 2. The joint density-

distribution p(yt, s, = 1;9) is i?!times a N^, of) density, while p(yt, st = 2; 9)
is n2 times \320\260\320\251^, of) density. The unconditional density for the observed variable
fiyii \320\262)is the sum of these two magnitudes.
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FIGURE 22.2 Density of mixture of two Gaussian distributions with y,\\s, =

1 ~
\320\233\320\223@,1), y,\\s, = 2 ~

\320\233\320\223D,1), and P{s, = 1}= 0.8.

A mixture of two Gaussian variables need not have the bimodal appearance

of Figure 22.2. Gaussian mixtures can also produce a unimodal density, allowing
skew or kurtosis different from that of a single Gaussian variable, as in Figure
22.3.

Inference About the Unobserved Regime

Once one has obtained estimates of 9, it is possible to make an inference

about which regime was more likely to have been responsible for producing the

FIGURE 22.3 Density of mixture of two Gaussian distributions with y,\\s, =

1 ~
\320\233\320\223(\320\236,1), y,\\s, = 2 ~

\320\233\320\223B,8), and P{st = 1} = 0.6.
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date t observation of y,. Again, from the definition of a conditional probability, it

follows that

Given knowledge of the population parameters 9, it would be possible to use

[22.3.1]and [22.3.5] to calculate the magnitude in [22.3.7] for each observation y,

in the sample. This number represents the probability, given the observed data,
that the unobserved regime responsible for observation t was regime j. For example,

for the mixture represented in Figure 22.2, if an observation y, were equal to zero,
one couldbe virtually certain that the observation had come from a N(Q, 1) dis-
distribution rather than a ND, 1) distribution, so that P{s, = l|y,; \320\262}for that date
would be near unity. If instead y, were around 2.3, it is equally likely that the
observation might have come from either regime,so that P{st

= l\\y,; 9} for such

an observation would be closeto 0.5.

Maximum Likelihood Estimates and the EM Algorithm

It is instructive to characterize analytically the maximum likelihood estimates
of the population parameter 9. Appendix 22.A demonstrates that the maximum
likelihood estimate 6 representsa solution to the following system of nonlinear

equations:

L.
fory = 1(2, N [22.3.8]

2 P{s, =
j\\y,; 6}

l

2(\320\273 b){, j\\y,;}

&f
= \321\211

? for) = 1, 2, . . . , N [22.3.9]

Pis, =
j\\y,; 6}

r-1
\320\263

P{s, = /|y,; 6} for/ = 1,2, . . . ,N. [22.3.10]

Suppose we were virtually certain which observations came from regime /
and which did not, so that P{s,

=
j\\y,\\ 9} equaled unity for those observations that

came from regime / and equaled zero for those observations that came from other

regimes. Then the estimate of the mean for regime/ in [22.3.8] would simply be

the average value of y, for those observations known to have come from regime/.
In the more general case where P{s,

= j\\y,; 9} is between 0 and 1 for some
observations, the estimate /i;- is a weighted average of all the observations in the
sample,where the weight for observation y, is proportional to the probability that

date f\"s observation was generated by regime /. The more likely an observation is
to have come from regime /, the bigger the weight given that observation in esti-

estimating (\320\233/.Similarly, arj is a weighted average of the squared deviations of y, from

(Lj, while v-j
is essentially the fraction of observations that appear to have come

from regime /.
Because equations [22.3.8]to [22.3.10]are nonlinear, it is not possible to

solve them analytically for 9 as a function of {ylt y2, . . . , \320\243\321\202}-However, these

equations do suggest an appealing iterative algorithm for finding the maximum
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likelihood estimate. Starting from an arbitrary initial guess for the value of 9,
denoted \320\262@),one could calculate P{s, =

j\\yt; \320\262@)}from [22.3.7]. One could then

calculate the magnitudes on the right sides of [22.3.8] through [22.3.10]with \320\262@)

in place of \320\262.The left sides of [22.3.8]through [22.3.10] would then produce a
new estimate \320\262A)This estimate \320\262A)could be used to reevaluate P{s,

=
j\\yt\\ \320\262A)}

and recalculate the expressions on the right sides of [22.3.8]through [22.3.10]. The

left sides of [22.3.8]through [22.3.10] then can produce a new estimate \320\262B).One

continues iterating in this fashion until the change between 8(m+\321\207and 6(m) is smaller
than some specified convergence criterion.

This algorithm turns out to be a specialcaseof the EM principle developed
by Dempster, Laird, and Rubin A977). One can show that each iteration on this

algorithm increases the value of the likelihood function. Clearly, if the iterations

reach a point such that \320\262(|\320\277)=
\320\262(\321\202+1),the algorithm has found the maximum

likelihood estimate 9.

Further Discussion

The mixture density [22.3.5] has the property that a global maximum of the

log likelihood [22.3.6]doesnot exist. A singularity arises whenever one of the
distributions is imputed to have a mean exactly equal to one of the observations

ip-i =
\320\243\\,say) with no variance (a\\

-* 0). At such a point the log likelihood
becomes infinite.

Such singularities do not pose a major problem in practice, since numerical

maximization procedures typically converge to a reasonablelocalmaximum rather

than a singularity. The largest local maximum with
o-j

> 0 for all / is describedas
the maximum likelihood estimate. Kiefer A978)showed that there exists a bounded
local maximum of [22.3.6] that yields a consistent, asymptotically Gaussian estimate

of \320\262for which standard errors can be constructed using the usual formulas such as

expression [5.8.3]. Hence, if a numerical maximization algorithm becomesstuck

at a singularity, one satisfactory solution is simply to ignore the singularity and try

again with different starting values.
Another approach is to maximize a slightly different objective function such

as

2F) = 2(9) - 2 (V2) log(o?)
- 2 tyBo?)

s '\" '\" [22.3-11]- 2 Cjim,
-

ix,J/Baj),

where \302\243\302\243(9)is the log likelihood function described in [22.3.6]. If a; =
cy,

then

expression [22.3.11] is the form the log likelihood would take if, in addition to the

data, the analyst had
as

observations from regime / whose sample mean was rri] and

whose sample variance was fy/a,. Thus, m;- represents the analyst's prior expectation

of the value of /x,,
and 6,/a,- represents the analyst's prior expectation of the value

of of. Theparameters a; and c; represent the strength of these priors, measured
in terms of the confidence one would have if the priors were basedon at or ct direct
observations of data known to have come from regime j. See Hamilton A991) for

further discussion of this approach.

Nice surveys of i.i.d. mixture distributions have been provided by Everitt and

Hand A981) and Titterington, Smith, and Makov A985).
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22.4. Time Series Models of Changes in Regime

Description of the Process

We now return to the objective of developing a model that allows a given

variable to follow a different time series processover different subsamples. As an

illustration, considera first-order autoregression in which both the constant term

and the autoregressive coefficient might be different for different subsamples:

\320\243,
=

\321\201\342\200\236+ \320\244..\320\243,-!+ e,, [22.4.1]

where e, ~ i.i.d.N@, a2). The proposal will be to model the regime s, as the

outcome of an unobserved N-state Markov chain with s, independent of eT for all
t and \321\202.

Why might a Markov chain be a useful description of the process generating

changes in regime? One's first thought could be that a change in regime such as

that in Figure 22.1 is a permanent event. Such a permanent regime change could
be modeledwith a two-state Markov chain in which state 2 is an absorbing state.

The advantage of using a Markov chain over a deterministic specification for such
a process is that it allows one to generate meaningful forecasts prior to the change

that take into account the possibility of the change from regime 1 to regime 2.
We might also want a time series model of changes in regime to account for

unusual short-lived events such as World War II. Again, it is possible to choose
parameters for a Markov chain such that, given 100 years of data, it is quite likely

that we would have observed a single episode of regime 2 lasting for about 5 years.
A Markov chain specification, of course, implies that given another 100 years we

could well see another such event. One might argue that this is a sensible property
to build into a model. The essenceof the scientific method is the presumption that

the future will in some sense be like the past.
While the Markov chain can describe such examplesof changesin regime, a

further advantage is its flexibility. There seems some value in specifying a prob-

probability law consistent with a broad range of different outcomes, and choosing

particular parameters within that class on the basis of the data alone.
In any case, the approach describedhere readily generalizes to processes in

which the probability that sr
= j depends not only on the value of st_i but also on

a vector of other observed variables\342\200\224see Filardo A992) and Diebold, Lee, and

Weinbach (forthcoming).
The general model investigated in this section is as follows. Let y, be an

(n x 1)vectorofobservedendogenousvariables and x, a (A; x 1) vector of observed
exogenousvariables. Let %, =

(y,\\ y,'_, y'_m, x't, x',_u . . . , x'_m)' be a

vector containing all observations obtained through date t. If the process is governed
by regime s, = / at date t, then the conditional density of y, is assumed to be given

by

/(\320\243,\320\272
= /. *\302\273%-\320\271a), [22.4.2]

where a is a vectorof parameters characterizing the conditional density. If there

are N different regimes, then there are N different densities representedby [22.4.2]

for/ = 1,2,. . . ,N. These densities will be collected in an (N x 1)vectordenoted
\321\202\320\237\320\263-

For the example of [22.4.1],y, is a scalar (n = 1), the exogenous variables

consist only of a constant term (xr
= 1), and the unknown parameters in a consist

of clt . . . , cN, <j>lt . . . , \321\204\321\213,and a2. With N = 2 regimes the two densities
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represented by [22.4.2] are

It is assumed in [22.4.2] that the conditional density depends only on the
current regime s, and not on past regimes:

f(y,\\*t,%-i,s,=j;a.)
[22.4.3]

though this is not really restrictive. Consider, for example, the specification in

[22.1.3], where the conditional density of yt depends on both sf and j*_! and where

sf is described by a two-state Markov chain. One can define a new variable s, that

characterizes the regime for date t in a way consistent with [22.4.2] as follows:

s, = 1 if sf = 1 andsf-i = 1

s,= 2 \\isf =2andjr*_,
= 1

s, = 3 if sf = 1 ands*_! = 2

s,= 4 if sf = 2ands*_i = 2.

If p*- denotes P{sr* = j\\sf-x = i}, then s, follows a four-state Markov chain with

transition matrix

Pb

Pa
0
0

0
0

\320\240\320\263\\

P22

Pu

Ph
0

0

0
0

pi\\

Ph.

Hence, [22.1.3] could be representedas a special case of this framework with

N = 4, a = (fi,, /x2, \321\204,\320\276-2)'and with [22.4.2] representing the four densities

\342\200\242exp

\320\243.-,.^<
=

2;\302\253)
=

It is assumed that s, evolves according to a Markov chain that is independent
of past observations on yr or current or past xr:

\320\263><-2
=

*,-\342\200\242\342\200\242,*,,%-i}
= Pi*, -/k-i Pi,- [22.4.4]

For generalizations of this assumption, see Lam A990), Durland and McCurdy

A992), Filardo A992), and Diebold, Lee, and Weinbach (forthcoming).
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Optimal Inference About Regimesand Evaluation

of the Likelihood Function

The population parameters that describe a time series governed by [22.4.2]
and [22.4.4] consist of a and the various transition probabilities pif. Collect these

parameters in a vector 9. One important objective will be to estimate the value of

9 based on observation of %r. Let us nevertheless put this objective on hold for

the moment and supposethat the value of 9 is somehow known with certainty to
the analyst. Even if we know the value of 9, we will not know which regime the

process was in at every date in the sample. Instead the best we can do is to form

a probabilistic inference that is a generalization of [22.3.7]. In the i.i.d. case,the

analyst's inference about the value of s, depends only on the value of yt. In the

more general class of time series models described here the inference typically

depends on all the observations available.
Let P{s,= j\\4),; 9} denote the analyst's inference about the value of s,based

on data obtained through date t and based on knowledge of the population pa-
parameters 9. This inference takes the form of a conditional probability that the

analyst assigns to the possibility that the rth observation was generated by regime

j. Collect these conditional probabilities P{s, = /|%,; 9} for j
= 1, 2, . . . , N

in an (N x 1) vectordenoted |r|r.
One could also imagine forming forecasts of how likely the process is to be

in regime j in period t + 1 given observations obtained through date t. Collect
these forecasts in an (N X 1) vector \302\243r+i|r,which is a vector whose yth element

represents P{4,+ 1
= j\\%;9}.

The optimal inference and forecast for each date t in the sample can be found

by iterating on the following pair of equations:

I (ii,-.on.) [224 j

i+i|,-P-t|,- [22.4.6]

Here i], represents the (N x 1)vectorwhose yth element is the conditional density
in [22.4.2], P represents the (N x N) transition matrix defined in [22.2.3], 1
representsan (N x 1) vector of Is, and the symbol \320\236denotes element-by-element

multiplication. Given a starting value I^q and an assumed value for the population
parameter vector9, one can iterateon [22.4.5] and [22.4.6]for t = 1, 2, . . . , T

to calculate the values of |,|, and |r+i|, for each date t in the sample. The log
likelihood function \302\243\302\243(9)for the observed data 4)Tevaluated at the value of 9 that

was used to perform the iterations can also be calculated as a by-product of this

algorithm from

2(9) = 2 log/(y,k,%,_i;9), [22.4.7]
r-l

where

/(\321\203\320\263|\321\205\342\200\236\320\247/,.1;9)
=

1'(|\321\204-1\320\236\321\2021\320\263). [22.4.8]

We now explain why this algorithm works.

Derivation of Equations [22.4.5]Through [22.4.8]

To see the basis for the algorithm just described, note that we have assumed
that xr is exogenous, by which we mean that xr contains no information about s,
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beyond that contained in c8/t_1. Hence, the yth element of ktu-i could also be
described as P{s,= j\\x,, ^,-\320\2719}. The/th element of i\\, is/(y,|s,

= j, xr, %,_!; \320\262).

The yth element of the (N x 1) vector (kt\\,-i \320\236\321\202\\,)is the product of these two

magnitudes, which product can be interpreted as the conditional joint density-

distribution of yr and s,:

Hs, = j\\*,,%-ub} \321\205/(\320\243,\320\272,=\320\243,\321\205\342\200\236<!!/,_,; 6) [22.4.9]
= p(y,,s,=j\\*t,%-i;Q)-

Thedensity of the observed vector y, conditioned on past observables is the sum

of the N magnitudes in [22.4.9] for \321\203
= 1, 2, . . . , N. This sum can be written in

vector notation as

as claimed in [22.4.8]. If the joint density-distribution in [22.4.9] is divided by the

density of yr in [22.4.8], the result is the conditional distribution of s,:

= P{st=j\\%;Q}.

Hence, from [22.4.8],

Pis, =
j\\%; \320\262}

=
\320\240(\320\243'^\320\223\320\243\320\272'*':';\320\265).

[22.4.10]

But recall from [22.4.9]that the numerator in the expression on the right side of
[22.4.10]is theyth element of theAvector (k,\\,-i \320\236\321\202\320\277,),while the left side of [22.4.10]
is theyth element of the vector |r|r. Thus, collecting the equations in [22.4.10] for

\320\243
= 1, 2, . . . , N into an (N x 1) vectorproduces

as claimed in [22.4.5].
To see the basis for [22.4.6], take expectations of [22.2.6] conditional on

E(yt+l\\%). [22.4.11]

Note that vr+1 is a martingale difference sequence with respect to 1!/\342\200\236so that

[22.4.11] becomes

as claimedin [22.4.6].

Starting the Algorithm

Given a starting value
\\X\\Q,

one can use [22.4.5] and [22.4.6] to calculate

|r|, for any t. Several options are available for choosing the starting value. One
approach is to set |,|0 equal to the vector of unconditional probabilities \321\202\320\263described

in equation [22.2.26]. Another option is to set

\302\243.|o
= P, [22.4.12]
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where p is a fixed (N x 1) vector of nonnegative constants summing to unity, such

as p = N'1 \342\200\2421. Alternatively, p could be estimated by maximum likelihood along
with 9 subject to the constraint that l'p = 1 and p; > 0 for)

= 1, 2, . . . , N.

Forecasts and SmoothedInferences for the Regime

Generalizing the earlier notation, let |,|T represent the (N x 1) vector whose

/th element is P{st =
j\\4)T; %}. For t > \321\202,this represents a forecast about the regime

for some future period, whereas for t < \321\202it represents the smoothed inference

about the regime the processwas in at date t based on data obtained through some
later date \321\202.

The optimal m-period-ahead forecast of g,+m can be found by taking expec-
expectations of both sides of [22.2.8]conditional on information available at date t:

or

\320\254+\302\253|,
=

P\"-fc|\302\253 [22-4\320\233\320\227]

where \302\243,|,
is calculated from [22.4.5].

Smoothedinferencescan becalculated using an algorithm developed by Kim

A993). In vector form, this algorithm can be written as

fc|r=i|,6>fr'-[\302\243+i|r( + )i+i|J}. [22.4.14]

where the sign (-r) denotes element-by-elementdivision. The smoothed proba-
probabilities |,|\320\223are found by iterating on [22.4.14]backward for t = T - 1, T - 2,
. . . , 1. This iteration is started with |\320\223|\320\223,which is obtained from [22.4.5]for

t = T. This algorithm is valid only when s, follows a first-order Markov chain as
in [22.4.4], when the conditional density [22.4.2] depends on st, s,^lt . . . only

through the current state s,, and when x,, the vector of explanatory variables other

than the lagged values of y, is strictly exogenous, meaning that x, is independent

of sr for all t and t. Thebasis for Kim's algorithm is explained in Appendix 22. A
at the end of the chapter.

Forecasts for the Observed Variables

From the conditional density [22.4.2] it is straightforward to forecast y,+1
conditional on knowing I!/,, x,+1,andi,+1. For example,for the AR(l) specification
\320\243\320\270-i

=
<^,+1

+
\320\244,,^\320\243,

+ e,+i, such a forecast is given by

\302\243(y,+il*H-i
= h \302\253,;\302\273)

=
\321\201,

+
\321\204,\321\203,. [22.4.15]

There are N different conditional forecasts associated with the N possible values
for sl+1. Note that the unconditional forecast based on actual observable variables

is related to these conditional forecasts by

=
J y,+1-/(y,+i|x,+1,%,; \320\262)dyl+1

=
J \320\243\320\275-i

j
\320\201p(y,+u s,+i = /k+i, %,; \320\262)

|
dyl+1
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=
J y,+i Is l/(y\302\253+il*\302\273+i

=
\320\233*+\342\200\236*\302\253;\342\200\242\342\204\226*!

=
/|\321\205(+\342\200\236\302\253,;

e}]|
rfy,+1

= 2 ffo+i = /k+1,%;\302\273} y,+i-/(y,+ikr+1
= /, x,+1, %-, 9) dyt+1

/-i \342\226\240*

= 2 \320\237*(+1
=

/|\302\253,;\320\262}\302\243(\321\2031+1|*,+1
=

\320\233x,+1, %,; 9).
\320\243-1

Thus, the forecast appropriate for the /th regime is simply multiplied by the prob-
probability that the process will be in the /th regime, and the resulting N dif-
different products are added together. For example,if the j = 1,2, . . . , N forecasts
in [22.4.15] are collected in a A x N) vector h/, then

Note that although the Markov chain itself admits the linear representation

[22.2.6], the optimal forecast of y,+i is a nonlinear function of observables, since
the inference

{=,|,
in [22.4.5] depends nonlinearly on %,. Although one may use

a linear model to form forecasts within a given regime, if an observation seems

unlikely to have been generated by the same regime as preceding observations,

the appearance of the outlier causes the analyst to switch to a new rule for forming

future linear forecasts.
The Markov chain is clearly well suited for forming multiperiod forecasts as

well. See Hamilton A989, 1993b, 1993c)for further discussion.

Maximum Likelihood Estimation of Parameters
In the iteration on [22.4.5] and [22.4.6], the parameter vector 9 was taken

to be a fixed, known vector. Once the iteration has been completed for t = 1,2,
. . . , T for a given fixed 9, the value of the log likelihood implied by that value
of 9 is then known from [22.4.7]. The value of 9 that maximizes the log likelihood

can be found numerically using the methods describedin Section 5.7.

If the transition probabilities are restricted only by the conditions that ptj
s 0

and (pn + pa + \" \" ' + Pin) = 1 f\302\260rall i and /', and if the initial probability
\\\321\2060

is taken to be a fixed value p unrelated to the other parameters, then it is

shown in Hamilton A990)that the maximum likelihood estimates for the transition

probabilities satisfy

\321\202

2 Pis, =/,\302\253,-,
= i|^T-; 6}

Pa
=

\302\243=2-7 -\342\200\242 [72\320\220.\320\251

2 Pis-\320\263
=

\342\204\226\321\202;6}
1-2

where 6 denotes the full vector of maximum likelihood estimates.Thus, the esti-

estimated transition probability ptj
is essentially the number of times state i seemsto

have been followed by state j divided by the number of times the process was in
state i. Thesecounts are estimated on the basis of the smoothed probabilities.

If the vector of initial probabilities p is regarded as a separate vector of

parameters constrained only by I'p = 1 and p a 0, the maximum likelihood estimate
of p turns out to be the smoothed inference about the initial state:

P =
\302\253\320\270\320\263- [22-4-17]
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The maximum likelihood estimate of the vector a that governs the conditional

density [22.4.2]is characterizedby

[22.4.18]

Here t\\, is the (N x 1)vectorobtained by vertically stacking the densities in [22.4.2]
for / = 1,2, ... ,N and (\320\255log t\\,)/da' is the (N x k) matrix of derivatives of the

logs of these densities, where \320\272represents the number of parameters in a. For

example, consider a Markov-switching regression model of the form

y,
=

z,'P,, + et, [22.4.19]
where e,

~ i.i.d. N@, cr2) and where z, is a vector of explanatory variables that

could include lagged values of y. The coefficient vector for this regression is p,
when the process is in regime 1, p2 when the processis in regime 2, and so on.
For this example, the vector ij, would be

and for a ='(Pi. P2, \342\200\242\342\200\242\342\200\242, P/v, o-2)', condition [22.4.18]becomes

s, =/|%r; \302\247}
= 0 for/= 1,2, . ...\320\233\320\223[22.4.20]

= \320\223\021 2 (\320\243,
\"

\302\253tf/
/1

[22.4.21]

Equation [22.4.20]describes$,- as satisfying a weighted OLS orthogonality con-

condition where each observation is weighted by the probability that it came from

regime /. In particular, the estimate 0,- can be found from an OLS regression of
Ui) on

P/ =
[2 [*\302\253(/)]ft(/)]'] [2

where

UJ) =
\320\243.' fa

=

r; \320\262}.

[22-4.22]

[22.4.23]

The estimate of cr2 in [22.4.21] is just A/\320\223)times the combined sum of the squared

residuals from these N different regressions.

Again, this suggests an appealing algorithm for finding maximum likelihood
estimates. For the case when p is fixed a priori, given an initial guess for the

parameter vector 6@> one could evaluate [22.4.16], [22.4.22],and [22.4.21] to

generate a new estimate 9A). One then iterates in the same fashion described in

equations [22.3.8] through [22.3.10] to calculate \320\262B),\320\262C>,.... Ibis again turns
out to be an application of the EM algorithm. Alternatively, if p is to be estimated
by maximum likelihood, equation [22.4.17] would be added to the equations that

are reevaluated with each iteration. See Hamilton A990)for details.
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Illustration: The Behavior of U.S.RealGNP
As an illustration of this method, consider the data on U.S. real GNP growth

analyzed in Hamilton A989).Thesedata are plotted in the bottom panel of Figure
22.4. The following switching model was fitted to these data by maximum likeli-
likelihood:

\320\243,
~

[22.4.24]

with e, ~ i.i.d.N@, a-2) and with s* presumed to follow a two-state Markov chain
with transition probabilities pj. Maximum likelihood estimates of parameters are
reported in Table 22.1. In the regime representedby $,* = 1, the average growth

rate is ^ = 1.2% per quarter, while when s* = 2, the average growth rate is
^ = -0.4%.Each regime is highly persistent. The probability that expansion will
be followed by another quarter of expansion is p*x = 0.9, so that this regime will

persist on average for 1/A - Pn) = 10quarters. The probability that a contraction
will be followed by contraction is \321\200|\320\263

= 0.75, which episodes will typically persist
for 1/A -

P22)
= 4 quarters.

52 55 58 61 67 70 73 76 79 82

(a) Probability that economy is in contraction state, or P{sf =
2\\yt,y,_u . . . ,

\320\243-4,\320\262}plotted as a function of t.

-2.1
52 55 58 61 61 67 70 73 79 82

(b) Quarterly rate of growth of U.S. real GNP, 1952-84.

FIGURE 22.4 Output growth and recessionprobabilities.
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TABLE 22.1
Maximum Likelihood Estimates of Parameters for Markov-Switching Model

of U.S. GNP (Standard Errors in Parentheses)

/*! = 1.16 fa = -0.36 pf,
= 0.90 pi, = 0.75 &2 = 0.59

@.07) @.26) @.04) @.10) @.10)

\321\204\\
= 0.01 \321\204\\

= -0.06 \321\2043
= -0.25 \321\2044

= -0.21
@.12) @.14) @.11) @.11)

In order to write [22.4.24] in a form where yt depends only on the current

value of the regime, a variable s, was defined that takes on one of 32 different

values representing the 32 possiblecombinations for s,*, s*_,, . . . , i*_4.For ex-
example, st

= 1 when s*, sj_,, . . . , and i*_4 all equal 1, s, = 2 when s* = 2 and
\342\226\240s?_i

= \342\200\242\342\200\242\342\200\242= i?_4 = 1, and so on. The vector |,|, calculated from [22.4.5] is thus
a C2 x 1) vector that contains the probabilities of each of these 32 joint events

conditional on data observedthrough date t.

The inference about the value of s* for a single date t is obtained by summing

together the relevant joint probabilities. For example, the inference

P\342\204\226
= 21?,, \321\203,.!,. . . ,y_4;\302\247}

2 2 2 2

= E E E E PM = 2.***-l
=

\302\2531.**-2
=

\302\2532.\302\253\320\223-\320\227
=

\302\2533.\302\253\320\223-4
=

\302\25341\320\243\302\273
;, = i i2=i i3-l /4-1

y,-i, \342\226\240...\320\243-4; \302\273} [22.4.25]

is obtained by iterating on [22.4.5] and [22.4.6]with \320\262equal to the maximum
likelihood estimate 9. Onethen sums together the elements in the even-numbered

rows of |,|, to obtain P{s* =
2\\yt, y,_,, . . . , y~4; \320\262}.

A probabilistic inference in the form of [22.4.25] can be calculatedfor each

date (in the sample.The resulting series is plotted as a function of (in panel (a)
of Figure 22.4. The vertical lines in the figure indicate the dates at which economic

recessions were determined to begin and end according to the National Bureau of
EconomicResearch.These determinations are made informally on the basis of a
large number of time series and are usually made some time after the event.

Although these business cycle dates were not used in any way to estimate param-
parametersor form inferences about s*, it is interesting that the traditional business cycle
dates correspond fairly closely to the expansion and contraction phases as described
by the model in [22.4.24].

Determining the Number of States

One of the most important hypotheses that one would want to test for such
models concerns the number of different regimes N that characterize the data.

Unfortunately, this hypothesis cannot be tested using the usual likelihood ratio
test. Oneof the regularity conditions for the likelihood ratio test to have an asymp-
asymptoticx2 distribution is that the information matrix $ be nonsingular. This condition

fails to hold if the analyst tries to fit an iV-state model when the true process has
N - 1states, since under the null hypothesis the parameters that describe the Mh

state are unidentified. Tests that get around the problems with the regularity con-
conditions have been proposed by Davies A977), Hansen A993), Andrews and Plo-

berger A992), and Stinchcombe and White A993). Another approach is to take
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the (N -
l)-state model as the null and conduct a variety of tests of the validity

of that specification as one way of seeing whether an N-state model is needed;
Hamilton A993a) proposed a number of such tests. Studies that illustrate the use
of such tests include Engel and Hamilton A990), Hansen A992), and Goodwin

A993).

APPENDIX 22. A. Derivation of SelectedEquations for Chapter 22

\320\274Derivation of [22.3.8] throngh [22.3.10]. The maximum likelihood estimates are obtained
by forming the Lagrangean

/(\320\262)
= 2F) + \320\233A

-
\321\202\320\263,

-
7\320\2632

- \342\200\242\342\200\242\342\200\242-
\321\202\321\202\320\273,) [22.\320\220.1]

and setting the derivative with respect to \320\262equal to zero. From [22.3.6],the derivative of
the log likelihood is given by

2=^ = 2 \342\200\224\342\200\224\321\202\321\205
\320\277\342\204\242'. [22.\320\220.2]

Observe from [22.3.5] that

\320\264\321\207\320\263,Vina, [ 2<rf J [22.A.3]

while

and

\342\200\224T~l\342\200\224
= 1 -x \302\260T2+ 4

'
\\ x \321\200(\320\243\320\277\342\226\240S/

-
\320\243!\320\262)' [22.\320\220.5]

d<Tj [_ 2 LUj J

Thus, [22.A.2] becomes

\320\22577^\320\233\320\273\320\272-/;\320\262) [22.\320\220.6]

Recalling [22.3.7], the derivatives in [22.A.6] through [22.A.8]can be written

?=vi?fc = ;ke) [22.A.9]

[22.A.10]

Setting the derivative of the Lagrangean in [22.A.I] with respect to ft/ equal to zero
means setting [22.A.10] equal to zero, from which

E y.-Hs, =
j\\yt; 6} =

M/ S P{\302\253,
=

\320\2431\320\233!\320\262}.
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Equation [22.3.8] follows immediately from this condition. Similarly, the first-ordercon-
conditions for maximization with respect to or} are found by setting [22 .A.11] equal to zero:

\302\243{-<?} + {y. - *J}P{s, =
j\\y,; \320\262}= o,

from which [22.3.9]follows. Finally, from [22.A.9], the derivative of [22.A.I] with respect
to ti) is given by

from which

\302\243P{s, = j\\y,; 6} =
\320\220\321\202\320\263,. [22.\320\220.12]

Summing [22.A.12] over; = 1, 2, . . . , N produces

\302\243[P{s,
= l\\y,; 6} + \342\200\242\342\200\242\342\200\242+ P{s, =

N\\y,; \320\262}]
=

\320\220(\321\202\320\263,+ \321\202\320\2632+ \342\226\240\342\226\240\342\200\242+ nN)

implying that T = A. Replacing A with Tin [22.A.12] produces[22.3.10].\342\226\240

\342\226\240Derivation of [22.4.14]. Recall first that under the maintained assumptions, the regime
s, depends on'past observations ty^t only through the value of $,_,. Similarly, s, depends
on future observations only through the value of sl+i:

P{s,= j\\sl+l
= (, \302\253r;\320\262}= P{s, = y|*l+, = I, %; \320\262}. [22.\320\220.13]

The validity of [22. A. 13] is formally established as follows (the implicit dependence
on \320\262will be suppressed to simplify the notation). Observe that

P{s, =
j\\s,+x

= i, <5/,+ ,}

= P{s, =
j\\sl+l

= i, y,+I, x,+I> 41}

= \320\240(\320\243>+1's>
\"

i\\si + \\
= '. \321\205'^\321\214%)

[22.\320\220.14]

which simplifies to

P{s,= /k+t = ', *,+ 1} = % =
j\\s,*i

= ', x,+I, \320\260\320\264, [22.\320\220.15]

provided that

f(y,*iU, = j, sl+i
= i, x,+1, *,) = /(y,+ ,|j,+, = /, x,+I, *,), [22.A.16]

which is indeed the case, since the specification assumes that y,+ 1 depends on {sl+u
s,, . . .}only through the current value s,+l. Since x is exogenous,[22.A.15]further imphes
that

Pis, -
j\\s,+l

= /, \302\253l+J
= % = /|*l+1 = /, %}\342\226\240 [22.A.17]

By similar reasoning,it must be the case that

P{s, = /k+t =
\302\253,*,+2}

= P{s, =
j\\sl+i

= /, y,+2, x,+2, <5/,+I}

_ \320\240(\320\243>+2.s, = j\\st+l = /, x,+2,'S/^i)
/Cy#+al*,+i

= /.x,+2, *,+ ,)

_ /(\320\243.+ lk =
\320\243.\320\224.\320\247-1

=
\302\253'.X>1-2. *8<,+ l)-ffe

= /k+l = \302\253'.X.+ 2. *8<n.l}

/(\320\243\320\263+\320\267|*,+ 1
\" '. X, + j, *, + 1)
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which simplifies to

P{s, = /k+i = /, *,+2} = P{s, =
j\\sl+l

= /, x,+2, <5/,+ 1},

provided that

In this case, [22.A.19] is establishedfrom the fact that

\320\233\320\243/+ 2\320\240/
=

\320\243.Sl+l - '> X/ + 2i \342\204\242l+l)

~
2j 1/\\\320\243\320\270-2\320\240/+2

~ *\302\273st \342\200\224y, sr+i \342\200\224i, xf+2, 4//+1)

~ 2j 1/(\320\243/+ 2\320\240/+ 2
~ ^> ^/ + t

~ ') X/ + 2) \342\204\242/+l)
k-l

XP<v \342\200\224If \\v \342\200\224/ v Oil ll

Again, exogeneity of x means that [22. A. 18] can be written

where the last equality follows from [22.A.17].
Proceeding inductively, the same argument can be used to establish that

r\\*t J\\st + l '\302\273\342\204\242r+m/r\\sl \320\243\320\240\320\263+t') <*tj

for m = 1, 2, . . . , from which [22.A. 13] follows.
Note next that

[22.A.18]

[22.A.19]

[22.A.20]

Pil-P{s,
=

j\\<H,

It is therefore the case that

[22.A.21]

where the second equality follows from [22.A. 13]and the third follows from [22.A.20].
The smoothed inference for date t is the sum of [22.A.21] over 1 = 1, 2, . . . , N:

P{s, -
\342\204\226\320\220

=
\302\243Pis, = h s,+i = \302\253

[22.A.22]
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where the A x N) vector p] denotes the /th row of the matrix P' and the sign (+) indicates

element-by-element division. When the equations represented by [22.A.22] for/ = 1, 2,
. . . , N are collected in an (N x 1)vector, the result is

il7. =
\302\243,\342\200\236\320\276

{p'(i+,i7-(+)\302\243+.\342\200\236)},

as claimed. \342\226\240

Chapter 22 Exercise

22.1. Let s, be described by an ergodic two-state Markov chain with transition matrix P
given by [22.2.11]. Verify that the matrix of eigenvectors of this matrix is given by

\320\240\320\277\320\243B
- Pu -

p2J) 1

with inverse

_ \320\223A
-

--\320\223 1
|_-A

- p,,)/B -
pn

- pa) A - Pa)/B-
pn

-
p22)]

\342\226\240T
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A

Mathematical Review

This book assumes some familiarity with elementary trigonometry, complex num-

numbers, calculus, matrix algebra, and probability. Introductions to the first three topics
by Chiang A974) or Thomas A972)are adequate; Marsden A974) treated these
issues in more depth. No matrix algebra is required beyond the level of standard

econometrics texts such as Theil A971) or Johnston A984); for more detailed
treatments, see O'Nan A976), Strang A976),and Magnus and Neudecker A988).
The conceptsof probability and statistics from standard econometrics texts are also
sufficient for getting through this book;for more complete introductions, see Lind-
gren A976) \320\276\321\202Hoel, Port, and Stone A971).

This appendix reviews the necessary mathematical concepts and results. The

reader familiar with these topics is invited to skip this material, or consult sub-

subheadings for desired coverage.

A.I. Trigonometry

Definitions
Figure A.I displays a circle with unit radius centered at the origin in (*, y)-

space. Let (*0, y0) denote some point on this unit circle, and consider the angle \320\262

between this point and the *-axis. The sine of \320\262is defined as the ^-coordinateof
the point, and the cosine is the ^-coordinate:

sin(O) =
y0 [A.I.I]

cos@) = xo. [A.1.2]
This text always measures angles in radians. The radian measure of the angle

\320\262is defined as the distance traveled counterclockwise along the unit circle starting

at the *-axis before reaching (x0, y0). The circumference of a circlewith unit radius

is 2\321\202\320\263.A rotation one-quarter of the way around the unit circle would therefore

correspond to radian measure of \320\262= iBir) = \321\202\320\263/2.An angle whose radian measure
is \321\202\320\263/2is more commonly described as a right angle or a 90\302\260angle. A 45\302\260angle has

radian measure of \321\202\320\263/4,\320\260180\302\260angle has radian measure of \321\202\320\263,and so on.

Polar Coordinates

Considera smaller triangle\342\200\224say, the triangle with vertex (*,, yj shown in

Figure A.I\342\200\224that shares the same angle \320\262as the original triangle with vertex
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FIGURE A.I Trigonometric functions as distances in (x, y)-space.

(*o> \320\243\320\276).The ratio of any two sidesof such a smaller triangle will be the same as
that for the larger triangle:

\320\2431/\320\2411
=

\321\2030\320\237 [\320\220.1.3]

*,/c,
=

\321\2050\320\237. [A. 1.4]

Comparing [A.1.3] with [A.1.1], the y-coordinate of any point such as (xu y{) in

(*, >;)-space may be expressedas

yi
=

cvsinO\302\273), [A. 1.5]

where ct is the distance from the origin to (*,, y{) and \320\262is the angle that the point

(*!, yi) makes with the \320\264\320\263-axis.Comparing [A.1.4] with [A.1.2], the ^-coordinate

of (Xi, yj can be expressedas

xx
= C!-cos@). [A.1.6]

Recallfurther that the magnitude cu which represents the distance from the origin
to the point (xu yj, is given by the formula

ci - VxJTyv [\320\220\320\233\320\233]

Taking a point in (x, y)-space and writing it as (c-cos@), c-sin@)) is calledde-
describing the point in terms of its polar coordinates \321\201and \320\262.

A.I. Trigonometry 705



Properties of Sine and CosineFunctions

The functions sin@) and cos@) are calledtrigonometric or sinusoidal func-
functions. Viewed as a function of \320\262,the sine function starts out at zero:

sin(O) = 0. \342\226\240

The sine function rises to 1 as \320\262increases to 7r/2 and then falls back to zero as \320\262

increases further to it; see panel (a) of Figure A.2. The function reaches its min-

minimum value of - 1 at \320\262= \320\252\321\202\321\202\320\230and then begins climbing back up.
If we travel a distance of 2\321\202\320\263radians around the unit circle, we are right back

where we started, and the function repeats itself:

sinB7r + \320\262)
- sin@).

The function would again repeat itself if we made two full revolutions around the
unit circle. Indeed for any integer/,

sinB7r/ + \320\262)
= sin@). [A. 1.8]

-2 J-

(a) sin@)

(b) cos@)

FIGURE A.2 Sine and cosine functions.
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The sine function is thus periodic and is for this reason often useful for describing
a time series that repeats itself in a particular cycle.

The cosinefunction starts out at unity and falls to zero as 0 increasesto
\320\257-/2;see panel (b) of Figure A.2. It turns out simply to be a horizontal shift of the
sine function:

[A.I.9]cos@) = sin( 0 + \342\200\224

The sine or cosine function can also be evaluated for negative values of 6,
defined as a clockwiserotation around the unit circle from the \320\264\320\263-axis.Clearly,

sin(-0) = -sin@)
cos(-0) = cos@).

For (x0, y0) a point on the unit circle, [A.1.7] implies that

1 = Vxt + yl,

or, squaring both sides and using [A.1.1] and [A.1.2],

1 = [cos@)]2 + [sin@)]2.

[A.1.10]
[A.1.11]

[A.1.12]

Using Trigonometric Functions to Represent Cycles

Supposewe construct the function g@) by first multiplying 0 by 2 and then
evaluating the sine of the product: y

g@)
= sinB0).

This doubles the frequency at which the function cycles. When 0 goes from 0 to
\321\217-,26 goes from 0 to 2\321\202\320\263,and so g@) is backto its original value (see Figure A.3).
In general, the function sin(&0)would go through \320\272cycles in the time it takes sin@)
to complete a single cycle.

We will sometimes describe the value a variable \321\203takes on at date t as a

function of sines or cosines,such as

y,
= R-cos(ait + a). [A.1.13]

2 \342\226\240\342\226\240

1.5 \342\200\242\342\200\242

1 \342\200\242\342\226\240

0.5 \342\226\240\342\226\240

-0.5 \342\226\240\342\226\240

-1 \342\226\240\342\200\242

-1.5 - \342\200\242

-2 \342\226\240\342\200\242

sin(fl) sinBfl)

3)\320\223/2\\

FIGURE A.3 Effect of changing frequency of a periodic function.
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The parameter R gives the amplitude of [A. 1.13]. The variable y, will attain a
maximum value of + R and a minimum value of \342\200\224R. The parameter a is the phase.
The phase determines where in the cycle y, would be at t = 0. Theparameter \321\210

governs how quickly the variable cycles, which can be summarized by either of
two measures. Theperiodis the length of time required for the process to repeat
a full cycle. The period of [A.1.13]is 2\321\202\320\263/<\320\276.For example, if w = I then \321\203repeats
itself every 2\321\202\321\202periods, whereas if w = 2 the process repeats itself every it periods.
The frequency summarizes how frequently the processcyclescompared with the

simple function cos(f); thus, it measures the number of cyclescompletedduring

2ir periods. The frequency of cos(f) is unity, and the frequency of [A.1.13]is \321\210.

For example, if \321\210= 2, the cycles are completedtwice as quickly as those for
cos(f). Thereis a simple relation between these two measures of the speed of
cycles\342\200\224the period is equal to 2\321\202\320\263divided by the frequency.

A.2. Complex Numbers

Definitions

Consider the following expression:

xz = I. [A.2.1]
There are two values of x that satisfy [A.2.1], namely, x = I and x = \342\200\224I.

Suppose instead that we were given the following equation:

x2 = -1. [A.2.2]

No real number satisfies [A.2.2]. However, let us consider an imaginary number

(denoted i) that does:
i2 = -1. [A.2.3]

We assumethat i can be multiplied by a real number and manipulated using standard
rules of algebra. For example,

2/ + \320\267;= 5/

and

BJ) -C0 = F)J2= -6.
This last property implies that a second solution to [A.2.2] is given by x = -i:

(-02 = (~lJ@2= -1.
Thus, [A.2.1] has two real roots (+1 and -1), whereas [A.2.2] has two imaginary
roots (i and -/).

For any real numbers a and b, we can construct the expression
a + \320\253. [A.2.4]

If b = 0, then [A.2.4] is a real number; whereas if a = 0 and b is nonzero, then

[A.2.4] is an imaginary number. A number written in the general form of [A.2.4]
is calleda complex number.

Rules for Manipulating Complex Numbers

Complex numbers are manipulated using standard rules of algebra. Two

complex numbers are added as follows:

(a, + 6,i) + (a2 + b2i) = (a, + a2) + (bx + b2)i.
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Complex numbers are multiplied this way:

(a1 + bj)-(a2 + b2i)
= bLa2i

bxa2)i.

Note that the resulting expressions are always simplified by separating the real
component (such as \\\320\260\\\320\260\320\263

-
\320\254\321\2042])from the imaginary component (such as

[\320\260\321\2042+ b^i).

Graphical Representation of Complex Numbers
A complex number (a + bi) is sometimesrepresentedgraphically in an

Argand diagram as in Figure A.4. The value of the real component (a) is plotted

on the horizontal axis, and the imaginary component (b) is plotted on the vertical
axis. The size,or modulus, of a complex number is measuredthe same way as the
distance from the origin of a real element in (x, y)-space (see equation [A.1.7]):

\\a + bi\\
= Va2 + b2- [A.2.5]

Thecomplex unit circle is the set of all complex numbers whose modulus is
1. For example, the real number + 1 is on the complex unit circle (representedby

Imaginary Axis

Real
Axis

FIGURE A.4 Argand diagram and the complex unit circle.
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the point A in Figure A.4). So are the imaginary number \342\200\224i(point B) and the
complexnumber (-0.6

- 0.8i) (point C).

We will often be interested in whether a complex number is less than 1 in

modulus, in which case the number is said to be inside the unit circle. For example,
(- 0.3 + 0.4\320\263)has modulus 0.5, so it lies inside the unit circle, whereas C + 4i),
with modulus 5, lies outside the unit circle.

Polar Coordinates

Just as a point in (x, y)-space can be representedby its distance \321\201from the

origin and its angle 0 with the *-axis,the complex number a + bi can be represented
by the distance of (a, b) from the origin (the modulus of the complex number),

R = Va2 + b2,

and by the angle 0 that the point (a, b) makeswith the real axis, characterized by

cos@)
= alR

sin@) = b/R.

Thus, the complex number a + bi is written in polar coordinate form as

[K-cos@) + i-R- sin@)] = R[cosF)+ i-sin@)]. [A.2.6]

Complex Conjugates

The complex conjugate of (a + bi) is given by (a
- bi). The numbers (a +

bi) and (a - bi) are described as a conjugate pair. Notice that adding a conjugate
pair producesa real result:

(a + bi) + (a - bi) = 2a.
The product of a conjugate pair is also real:

(a + bi)-(a-
bi)

= a2 + b2. [A.2.7]

Comparing this with [A.2.5], we see that the modulus of a complex number (a +
bi) can be thought of as the square root of the product of the number with its

complex conjugate:

|a + bi\\
= V(a + bi)(a - bi). [A.2.8]

Quadratic Equations

A quadratic equation

ax2 + px + \321\203
= 0 [A.2.9]

with a \320\2440 has two solutions:

-* +
<*\\;

^\320\256
[\320\220.2.10]

. [Ai.ll

When (/32 -
4ay) a 0, both these roots are real,whereas when (/32

- 4ay) < 0,
the roots are complex. Notice that when the roots are complexthey appear as a
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conjugate pair:

xx
= (-\302\253 + \302\253l/[2e])Dey

-

x2 = {-fil[2a\\} -
\302\253l/[2e])Dey

-

A.3. Calculus

Continuity

A function f(x) is said to be continuous at x = \321\201if /(c) is finite and if for

every s > 0 there is a 5 > 0 such that \\f(x)
-

f(c)\\ < e whenever \\x
- c\\< S.

Derivatives of SomeSimpleFunctions

The derivative of /(\342\200\242)with respect to x is defined by

df \320\270\320\257*+ \320\220)
~

/(*)\342\200\224= llm ,
ax \320\264_\302\273\320\276\320\224

provided that this limit exists.

If/(-) is linear in x, or

/(*) = a + px,

then the derivative is just the coefficient on x:

ax \320\264\342\200\224\320\276 \320\224 \320\264\342\200\224\320\276\320\224

For a quadratic function

/(*) = a:2,

the derivative is

dx 4_o \320\224

,. [\320\273:2+ 2\320\273:\320\224+ \320\2242]
- x2

\342\200\224l,m A i

4\342\200\2240 \320\224

= lim {2x + \320\224}
4\342\200\2240

= 2x,

and in general, ,.

drk
==- = kxk'\\ [A.3.1]
dx

For the trigonometric functions, it can be shown that when x is measuredin radians,

^
=

cosW [A.3.2]

^w = _sinW. [A33]
dx
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The derivative df(x)/dx is itself a function of x. Often we want to specify the

point at which the derivative should be evaluated, say, \321\201This is indicated by

df(x)

dx

For example,

dx

= 2*L_3 = 6.

Note that this notation refers to taking the derivative first and then evaluating the

derivative at a particular point such as x = 3.

Chain Rule

The chain rule states that for composite

the derivative is

For example, to evaluate

we let f(u) = uk and u(x) =

\342\226\240PL\342\200\236
inus,

d(a

*(*) =

dg(x)

dx

d(a

\342\226\240a + px.

du dx

+ px)k
dx

-
/(\302\2530

=
du\"

+ px)
dx

Then

\342\226\240
pk(a

functions such as

0),

dx'

\320\272

+ Px)k 1.

Higher-Order Derivatives

The secondderivative is defined by

d2f(x)
dx2

_ d
\\df(x)l

dx[ dx
\321\203

For example,

and

dzxk = d[foc*-']
dx2 \320\233

= k(k
-

d2 sin(^) _ d cos(\320\273:)

dx2
~

dx

[A.3.4]

[A.3.5]

In general, the /th-order derivative is the derivative of the (/ -
l)th-order

derivative.
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Geometric Series

Consider the sum

sT = 1 + \321\204+ \321\2042+ \321\2043+ \342\226\240\342\226\240\342\226\240+ \321\204\321\202. [A.3.6]

Multiplying both sides of [A.3.6] by \321\204,

\321\2045\321\202=\321\204+ \321\2042+ \321\204\320\227+ . . . + \321\204\320\242+ \321\204\320\242+\320\232 [A3 \320\233]

Subtracting [A.3.7] from [A.3.6] produces

A
-

\321\204)\320\267\321\202
= 1 -

\321\204\342\204\242. [\320\220.3.8]

For any \321\204\320\2441, both sides of [A.3.8]can be divided by A
-

\321\204).Hence, the sum
in [A.3.6] is equal to

l -
\321\204\320\244l

From [A.3.9],

lim sr

1 -
\321\204

\320\223+1 \321\204
= 1.

\\\320\244\\<\320\270

[A.3.9]

1

1 -
\321\204

and so

A + \321\204+ \321\2042+ \321\2043+ \342\226\240\342\200\242\342\200\242)
=

1 -
\321\204

\\\320\244\\<1. [\320\220.3.10]

Taylor Series Approximations

Suppose that the first through the (r + l)th derivatives of a function f(x)
exist and are continuous in a neighborhood of \321\201Taylor's theorem states that the

value off(x) at x = \321\201+ \320\224is given by

f(c + \320\224)
= f(c) +

fx
\342\200\242\320\224+ \320\263\321\202

2! \320\2332

\342\226\240\320\2243+ \342\200\224

\342\200\242\320\2642

\320\263!dxr

[A.3.11]

\342\226\240Ar+ Rr(c,x),

where r! denotes r factorial:
r\\ = r(r

-

The remainder Rr(c, x) is given by

Rr(c, x) = dr+1f
(r + 1)! dxr+1

where 8 is a number between \321\201and x. Notice that the remainder vanishes for small
\320\224:

lim &fedU = 0.
\320\224-0 \320\224
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Setting Rr(c, x) = 0 and x = \321\201+ \320\224in [A.3.11] produces an rth-order Taylor series

approximation to the function f{x) in the neighborhood of x = \321\201:

/(*)
\302\243

\342\226\240(*
-

[A.3.12]

Power Series

If the remainder Rr{c, x) in [A.3.11] converges to zero for all x as r\342\200\224*<*>, a

power series can be used to characterize the function/(*). To find a power series,
we choose a particular value \321\201around which to center the expansion, such as \321\201=

0. We then use [A.3.12]with r -\302\273\302\273.For example, consider the sine function. The

first two derivatives are given by [A.3.2] and [A.3.5], with the following higher-
order derivatives:

d3 sin(*) =
dx3

d* sinfr) .

and so on. Evaluated at x = 0, we have

^ = -sin@) = 0

^4 =-cos@)=-l

^ =
sin@)

= 0

^ =
cos@)

= 1.

Substituting into [A.3.12] with \321\201= 0 and letting r -
for the sine function:

sin(*) = x - -x3 + -x5 --X1 +

producesa power series

[A.3.13]

Similar calculations give a power series for the cosine function:

, 1 , 1 . 1 .
[A.3.14]

ExponentialFunctions

A number \321\203raised to the power \320\273:,
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is called an exponential function of x. The number \321\203is called the base of this

function, and x is called the exponent. To multiply two exponential functions that
share the same base,the exponents are added:

(\320\243\320\235\320\243)
=

\320\243(\321\205+\320\243)- [\320\220.3.15]

For example,

(r2)-(r3) = (yy)-(yyy) =
r5-

To raise an exponential function to the power k, the exponents are multiplied:

[\320\243]*
= yxk. [A.3.16]

For example,

[\321\2032?
=

[\321\2032\320\235\321\2032\320\235\321\2032]
=

\321\2036-

Exponentiation is distributive over multiplication:

(\302\253\342\200\242\302\243)*
=

(\302\253*)\342\200\242\342\204\226*)\342\200\242 [A.3.17]

Negative exponents denote reciprocals:

y~* =
A/y*).

Any number raised to the power 0 is taken to be equal to unity:

y\302\260
= 1. [A.3.18]

This convention is sensible, since if \321\203
= -\321\205in [A.3.15],

.-*)
=

\320\243\302\260

and

\320\230\320\241\320\243\")
=

-p
= 1-

77ie Number e
The base for the natural logarithms is denoted e. The number e has the

property that an exponential function with base e equals its own derivative:

^
= e*. [A.3.19]

Clearly, all the higher-order derivatives of e\" are equal to ex as well:

We sometimes use the expression \"\320\265\321\205\321\200[\320\264:]\"to represent \"e raised to the power

x\":

\320\265\321\205\321\200[\320\264:]
\320\262ex.

If u(x) denotes a separate function of x, the derivative of the compound

function \320\265\321\206(-\321\205)can be evaluated using the chain rule:

5! .*!.*.,*,* [A.3.21]
dx du dx dx
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To find a power series for the function f(x) =
e\", notice from [A.3.20] that

dP
= e*'

and so, from [A.3.18],

0LO=e\302\260=i
[\320\273-\320\267-22]

for all r. Substituting [A.3.22] into [A.3.12] with \321\201= 0 yields a power series for

the function f(x) = e\":

\320\223
^

\\ eX = 1 + * +
\302\2477

+
iJ

+
f[+1--- [A-3:23]

Setting \320\264:= 1 in [A.3.23] gives a numerical procedure for calculating the
value of e:

e = l + l+i + i + l+--- = 2.71828 ....

EulerRelations and De Moivre's Theorem

Supposewe evaluate the power series [A.3.23] at the imaginary number* =

id, where i = V\342\200\2241and \320\262is some real angle measured in radians:

J (idK (idL(iS) (id) (id) (ie)

21
I1

5!
, [A.3.24]

\320\2623 \320\2625 \\

Reflecting on [A.3.13] and [A.3.14] gives another interpretation of [A.3.24]:
eie=

cos@) + (\342\226\240\342\200\242sin@). [A.3.25]

Similarly,

= cos@) - isinF).
To raise a complex number (a + bi) to the kth power, the complex number

is written in polar coordinate form as in [A.2.6]:

a + \320\253=
i?[cos@) + (-sin@)].

Using [A.3.25], this can then be treated as an exponential function of \320\262:

a + \320\253= Reie. [A.3.27]

Now raise both sides of [A.3.27] to the fcth power, recalling [A.3.17] and [A.3.16]:

(a + bi)k = Rk-[eief= Rkem. [A.3.28]

Finally, use [A.3.25] in reverse,

rsin@A:),
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to deduce that [A.3.28] can be written

(a + \320\253)\"
= Rk[cos(ek) + i-sinFk)]. [A.3.29]

Definition of Natural Logarithm

The natural logarithm (denoted throughout the text simply by \"log\") is the
inverse of the function e*\\

log(e') e x.

Notice from [A.3.18] that e\302\260= 1 and therefore log(l) = 0.

Propertiesof Logarithms

For any x > 0, it is also the case that

x = elos<*>. [A.3.30]

From [A.3.30] and [A.3.15], we see that the log of the product of two numbers is
equal to the sum of the logs:

log(a-fe) =
logKe10**1\302\273)-^10**))]

=
log[e\"\302\260s<\">+los<*\302\273]

= log(a) + logF).

Also, use [A.3.16]to write

xa _
[glog(.v)J<.

_ gOlogM
L \342\200\242\342\200\242J

Taking logs of both sides of [A.3.31] reveals that the log of a number raised to the

a power is equal to a times the log of the number:

log(*\302\260)
= a

Derivatives of Natural Logarithms
Let u(x)

= log(;t), and write the right side of [A.3.30]as eu(-*K Differentiating

both sides of [A.3.30]using [A.3.21] reveals that

dx dx

or

d log(*)1 = x\342\200\224 .
dx \342\226\240

Thus,

d 1\320\276\320\265(*)1

%
= \320\232

dx x
[\320\220.3.32]

Logarithms and Elasticities

It is sometimesalso useful to differentiate a function f(x) with respect to the
variable log(*). To do so, write f(x) asf(u(x)), where

u(x) = exp[log(*)].
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Now use the chain rule to differentiate:

df(x) . df

dlog(x) du -\"\342\204\242<^- [A.3.33]

But from [A.3.21],

du _ __,,.\342\200\236,.\302\253dlogjx) _ \342\200\236 [A.3.34]

Substituting [A.3.34] into [A.3.33]gives

d log(;t) dx'

It follows from [A.3.32] that

d logfjx) _ 1 df [f(x + \320\224)
-

f(x)]/f(x)

dlogx f dx [(x + \320\224)
-

x]/x
'

which has the interpretation as the elasticity of/with respect to x, or the percent

change in/resulting from a 1% increasein x.

Logarithms and Percent

An approximation to the natural log function is obtained from a first-order
Taylor series around \321\201= 1:

log(l + \320\224)= log(l) +

But log(l) = 0, and

\342\200\242\320\224. [\320\220.3.35]
x-l

d log(*) 1
=1.

dx

Thus, for \320\224close to zero, an excellent approximation is provided by

log(l + \320\224)
= \320\224. [\320\220.3.36]

An implication of [A.3.36] is the following. Let r denote the net interest rate
measured as a fraction of 1; for example, r = 0.05corresponds to a 5% interest
rate. Then A + r) denotes the gross interest rate (principal plus net interest).
Equation [A.3.36] says that the log of the gross interest rate A + r) is essentially
the same number as the net interest rate (r).

Definition of Indefinite Integral

Integration (indicated by / dx) is the inverse operation from differentiation.
For example,

J x dx = x2/2, [A.3.37]
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because

~k
= x- [A.3.38]

The function xzl2 is not the only function satisfying [A.3.38]; the function

(xV2) + \320\241

also works for any constant C. The term \320\241is referred to as the constant of inte-

integration.

Some Useful Indefinite Integrals

The following integrals can be confirmed from [A.3.1], [A.3.32], [A.3.2],
[A.3.3], and [A.3.21]:

( \320\241 \320\272\320\244-1 [A.3.39]

+ \320\241 x <0
l J

J cos(*) dx = sin(*) + \320\241 [\320\220.3.41]

J sin(A:) \320\233= -cos(*) + \320\241 [\320\220.3.42]

J
e'*dx =

(l/e)-e\302\253 + \320\241.
[\320\220.3.43]

It is also straightforward to demonstrate that for constants a and b not de-

depending on x,

j [a-f(x) + b-g(x)] dx = a
j f(x) dx + b

jg(x)
dx + \320\241

Definite Integrals

Consider the continuous function f(x) plotted in Figure A.5. Define the
function A(x; a) to be the area under f(x) between a and x, viewed as a function
of x. Thus, A(b; a) would be the area between a and b. Supposewe increase b by
a small amount \320\224.This is approximately the same as adding a rectangle of height
f(b) and width \320\224to the area A (b; a):

A(b + &;a)=A(b;a) +

or

A(b + A; a)
- A(b; \320\260)

In the limit as \320\224\342\200\224\302\2730,

dA(x; a) = /F). [A.3.44]
\320\266.\321\214

Now, [A.3.44] has to hold for any value of b > a that we might have chosen,
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f(x)

FIGURE A.5 The definite integral as the area under a function,

implying that the area function A(x; a) is the inverse of differentiation:

where

A(x;a) =
F(x) + C,

dF(x)

[A.3.45]

dx

= f(x).

To find the value of C, notice that A (a; a) in [A.3.45] should be equal to zero:

A(a;a) = 0 =
F(a) + \320\241

For this to be true,

\320\241= -F(a). [A.3.46]

Evaluating [A.3.45] at x = b, the area between a and b is given by

A (b; a) = F(b) + C;
or using [A.3.46],

A(b;a) = F(b) - F(a), [A.3.47]

where F(x) satisfies dF/dx = f(x):

F(x)
=

jf(x)dx.

Equation [A.3.47] is known as the fundamental theorem of calculus.

The operation in [A.3.47] is known as calculating a definite integral:

For example, to find the area under the sine function between \320\262= 0 and
\320\262= trtl, we use [A.3.42]:
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sin(*) dx = [-cos(x)]\\x.w/2- [-cos(*)]|,_0
=

[-cosGr/2)] + [cos(O)]
= 0 + 1
= 1.

To find the area between 0 and 2\321\202\320\263,we take

I sin(x) dx = [ - cosB7r)]+ cos(O)

= -I + I
= 0.

The positive values for sin(;t) between 0 and it exactly cancel out the negative

values between it and lir.

A.4. Matrix Algebra

Definitions

An (m x n) matrix is an array of numbers ordered into m rows and n columns:

A \342\200\224a21 a22
\342\226\240\342\226\240\342\226\240

If there is only one column (n = 1), then A is described as a column vector, whereas

with only one row (m
- 1),A is called a row vector. A single number (\302\253

= 1 and

m = 1) is calleda scalar.

If the number of rows equals the number of columns {m
=

\302\253),the matrix is
said to be square. The diagonal running through (au, 022, . . . , a,,,,) in a square
matrix is called the principal diagonal. If all elements off the principal diagonal

are zero, the matrix is said to be diagonal.

A matrix is sometimes specified by describing the element in row i, column

;'\342\226\240\342\226\240

A =
[\320\260\320\270].

a21

Summation and Multiplication

Two (m x \302\253)matrices are added element by element:

bn b12
\342\226\240\342\226\240\342\226\240

bx

b21 b^ \342\226\240\342\226\240\342\226\240
bz

am\\ am->
\342\226\240\342\200\242\342\200\242

\320\260\342\200\236\342\200\2366m, b^, \342\226\240\342\200\242\342\226\240
bm

an + bn a12 + bn

a21 + b21 a-n + bn

ami + bmX an2 + bn2

A 4 \320\232

aln + bln

\320\236\321\214,+ 62n

a^, + bnn



or, more compactly,

A + \320\222=
[\320\260\342\200\236

+
\320\254\342\200\236].

(m x \320\273)(m x n)

The product of an (m x n) matrix and an (\302\253x q) matrix is an (m x q) matrix:

A x \320\222= \320\241,
(in x n) (n X q) (m X q)

where the row i, column j element of \320\241is given by 2'i=1a/kbkj. Notice that mul-

multiplication requires that the number of columns of A be the same as the number

of rows of B.
To multiply A by a scalar a, each element of A is multiplied by a:

a x A = \320\241,
AX1) (mxn) (mxn)

with

\320\241=
[\320\260\320\260\321\206].

It is easy to show that addition is commutative:

A + \320\222= \320\222+ A,

whereas multiplication is not:

AB \320\244BA.

Indeed, the pr6duct BA will not exist unless m = q, and even where it exists, AB

would be equal to BA only in rather special cases.
Both addition and multiplication are associative:

(A + \320\222)+ \320\241= A + (B + C)
(AB)C

= A(BC).

Identity Matrix

The identity matrix of order n (denoted I,,) is an (n x n) matrix with Is along
the principal diagonal and Os elsewhere:

For

and

any

also

(m X n)

In

matrix A,

\342\200\224

1

0

.0

A x

0
1

0

I,,

\342\226\240\342\226\240\342\226\2400
\342\226\240\342\226\240\342\226\2400

\342\226\240\342\226\240\342\226\2401

= A

A = A.

Powers of Matrices

For an (n x n) matrix A, the expression A2 denotes A-A. The expression
A* indicates the matrix A multiplied by itself \320\272times, with A0 interpreted as the

(n x n) identity matrix.
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Transposition

Let a,j denote the row i, column j elementof a matrix A:

A = [a,,].
The transpose of A (denoted A') is given by

For example, the transpose of

A' = [a,,].

2 4 6
3 5 7
1 2 3

2 3 1
4 5 2
6 7 3

The transpose of a row vector is a column vector.

It is easy to verify the following:

(A')' = A [A.4.1]

(A + B)' = A' + \320\222'
[\320\220.4.2]

(AB)'
= B'A'. [A.4.3]

Symmetric Matrices
A square matrix satisfying A = A' is said to be symmetric.

Trace of a Matrix

The traceof an (n x n) matrix is defined as the sum of the elements along
the principal diagonal:

trace(A)
\342\226\240

an + a22 + \342\200\242\342\200\242\342\200\242+ \320\260\342\200\236\342\200\236.

If A is an (w x n) matrix and \320\222is an (n x m) matrix, then AB is an (m x
m) matrix whose trace is

n n n m n

trace(AB) = 2 aiAi + 2 a2,6/2
+ \342\200\242\342\200\242' + 2 a\302\253Am

= E E e*A*-i-x i-l i-l k-ll-1
The product BA is an (n x n) matrix whose trace is

trace(BA)= 2 Va*i + 2 &ata*2 + ' ' ' + 2 bnkakn
= 2 E bjkakJ.

k-X k-X k-X J-X k-X

Thus,

trace(AB) = trace(BA).

If A and \320\222are both (n x n) matrices, then

trace(A + B) = trace(A) + trace(B).
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If A is an (\302\253x n) matrix and A is a scalar, then

trace(AA) = ^ Mv
= A \342\226\240

2 erv
\342\200\224

A-trace(A).
1-\320\245 i-l

Partitioned Matrices

A partitioned matrix is a matrix whose individual elements are themselves
matrices. For example,the C x 4) matrix

[au

a12 a13 \321\217^\320\233

a21 a22 a23 a24

a31 a32 \302\26033a34J

[aj a2j

could be written as

where

I a22j L\302\26023\302\26024j

ai = [a31 a32] a2 = [a33 aM].

Partitioned matrices are added or multiplied as if the individual elements were

scalars, provided that the row and column dimensions permit the appropriate matrix

operations. For example.

A3

B2
, x/i

B4

(m,
A,

(
2

(m,xn2)

B3 A4 + B4
) (

Similarly,

(m,
x 2

lX<7,) (n, X.7J

B3 B4
(\022X,;,) (n2 X <72).

A2B3 AXB2 + A2B4
?O (m,x<72)

A4B3 A3B2 + A4B4

Definition of Determinant

The determinant of a 2 x 2 matrix is given by the following scalar:

i: |A| =
ana22

- aua21. [A.4.4]

The determinant of an \320\273\321\205\320\264matrix can be defined recursively. Let A,y denote

the (\302\253
- 1) x (\320\270

\342\200\224
1) matrix formed by deleting row i and column j from A. The

determinant of A is given by

[A.4.5]

For example, the determinant of a 3 x 3 matrix is

an a12 au

a21 \320\260\320\270\320\260\320\270

031 \320\236\320\2672O33

a22 a23
a-i-> a,,

021 023

a31 a33
+ e,. a21 a22

a31 a32
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Properties of Determinants

A square matrix is said to be lower triangular if all the elements above the

principal diagonal are zero (a,7
= 0 for/ > i):

\342\200\2420
\342\226\2400

A =

an 0 0
a2l a^ 0

The detenninant of a lower triangular matrix is simply the product of the terms
along the principal diagonal:

|A| = ana^ \342\200\242\342\226\240\342\226\240
ann. [A.4.6]

That [A.4.6] holds tor n = 2 follows immediately from [A.4.4] Given that it holds

for a matrix of order n \342\200\224
1, equation [A.4.5] implies that it holds for n:

a22 0 0
a32 a33 0

\320\260\342\200\2363\321\217\342\200\2364
\342\200\242\342\200\242\342\200\242

\321\217,\321\210

0-|Aln|.

An immediate implication of [A.4.6]is that the detenninant of the identity

matrix is unity:

III = 1- [A.4.7]
Another useful fact about determinants is that if an \320\273x \320\270matrix A is mul-

multiplied by a scalar a, the effect is to multiply the determinant by a\":

\\aA\\
= a\"|A|. [A.4.8]

Again, [A.4.8]is immediately apparent for the n = 2 case from [A.4.4]:

|aA|=
aa21 aa22

(aanaa22)
- (aa12aa21)

a2(ana22 -a12a21)

Given that it holds for n \342\200\224
1, it is simple to verify for n using [A.4.5].

By contrast, if a single row of A is multiplied by the constant a (asopposed
to multiplying the entire matrix by a), then the determinant is multiplied by a. If

the row that is multiplied \320\252\321\203'\320\260is the first row, then this result is immediately

apparent from [A.4.5]. If only the ith row of A is multiplied by a, the result can

be shown by recursively applying [A.4.5] until the elements of the ith row appear
explicitly in the formula.

Suppose that some constant \321\201times the second row of a 2 x 2 matrix is added

to the first row. This operation has no effect on the determinant:

-. (\320\25712+ \320\241\320\25722)\320\25721
\320\260\320\277+ \321\201\320\26021\321\21712+ \320\265\320\265

\302\25321 \302\26022

^
&W&22

~~
^12^21*

Similarly, if some constant \321\201times the third row of a 3 x 3 matrix is added to the
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second row, the determinant will again be unchanged:

\302\25321

=

=

\302\25311

\302\25331

\302\25311

\302\25331

\302\253z

+ \302\25313

\302\253u

\302\25312

\320\260\320\263\320\263+ ca32

\302\25332

. + ca32 a-a

\302\25333

\302\25321+ c\302\25331\302\25322\">

\302\25322\302\25323

\302\25332\302\25333 \302\25331

\302\25313

\302\25333

\302\25333

hca32

32

\302\25333

\"\302\25312
\302\25321+

\302\2533

\320\273-\302\25313
\302\25321

\302\25331

ca31

1

\302\25322

\302\25332

\302\25323+ ca33

\302\25333

In general, if any row of an \320\270x \302\253matrix is multiplied by \321\201and added to another
row, the new matrix will have the same detenninant as the original. Similarly,

multiplying any column by \321\201and adding the result to another column will not
change the determinant.

This can be viewed as a special case of the following result. If A and \320\222are

both n x n matrices, then

|AB| = [A.4.9]

Adding \321\201times, the second column of a 2 x 2 matrix A to the first column can be

thought of as postmultiplying A by the following matrix:

\320\222

-[;:]\342\226\240

Since \320\222is lower triangular with Is along the principal diagonal, its determinant is

unity, and so, from [A.4.9],

|AB| = |A|.

Thus, the fact that adding a multiple of one column to another does not alter the
determinant can be viewed as an implication of [A.4.9].

If two rows of a matrix are switched, the detenninant changes signs. To switch

the ith row with the /th, multiply the ith row by -1; this changes the sign of the
detenninant. Then subtract row i from row/, add the new/ back to i, and subtract

i from / once again. These last operations complete the switch and do not affect

the determinant further. For example, let A be a D x 4) matrix written in par-
partitioned form as

A =

ai

where the A x 4) vector a,' represents the ith row of A. The detenninant when

rows 1 and 4 are switched can be calculated from

ai
a2
a3
ai

-ai
a2

a3

ai

-ai

a2
a3

ai +ai

a;
a2

a3

ai + ai

ai
a2
a3
ai
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This result permits calculation of the determinant of A in reference to any

row of an (n x n) matrix A:

[A.4.10]

To derive [A.4.10],define A* as

a,

a,'-:

Then, from [A.4.5],

|A*| =
\302\243(-

l
=

\302\243(-
l

Moreover, A* is obtained from A by (i - 1)row switches, such as switching i with

i - 1, i - 1with i-2 and 2 with 1. Hence,

|A| = (-1)'-4A*| = (-I)'\021\302\243(-1)^41^1.

as claimed in [A.4.10].

An immediate implication of [A.4.10]is that if any row of a matrix contains

all zeros, then the determinant of the matrix is zero.
It can also be shown that the transpose of a matrix has the same determinant

as the original matrix:

|A'| = |A|. [A.4.11]
This means, for example, that if the kth column of a matrix consists entirely of

zeros, then the determinant of the matrix is zero. It also implies that the determinant

of an upper triangular matrix (one for which a,7 = 0 for all j < i) is the product of

the terms on the principal diagonal.

Adjoint of a Matrix

Let A denote an (n x n) matrix, and as before let Ay,- denote the [{n
- 1) x

(n
- 1)] matrix that results from deleting row / and column i of A. The adjoint of

A is the (n
x n) matrix whose row i, column; element is given by (-1)'+/|A;,|.

Inverse of a Matrix

If the determinant of an n x n matrix A is not equal to zero, its inverse (an
n x n matrix denoted A\021) exists and is found by dividing the adjoint by the

determinant:

A\021 = [A.4.12]
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For example, for n = 2,

A matrix whose inverse exists is said to be nonsingular. A matrix whose determinant

is zero is singular and has no inverse.
When an inverse exists,

A x A\021 =
1\342\200\236. [A.4.14]

Taking determinants of both sides of [A.4.14] and using [A.4.9] and [A.4.7],

|A|-|A-4 = 1,

so

|A\024
= 1/|A|. [A.4.15]

Alternatively, taking the transpose of both sides of [A.4.14] and recalling

[A.4.3],

(A-4'A' =
1\342\200\236,

which means that (A\021)' is the inverse of A':

(A-T =
(A')\021.

For a a*nonzero scalar and A a nonsingular matrix,

Also, for A, B, and \320\241all nonsingular (n x n) matrices,

[AB]\021
= B-iA-1

and

[ABC]\021= C-'B-'A\021.

Linear Dependence
Let xb x2, . . . , xk be a set of \320\272different (n x 1) vectors.The vectors are

said to be linearly dependent if there exists a set of \320\272scalars (c1( c2, \342\226\240. . , ck), not
all of which are zero, such that

CA + c2x2+ \342\226\240\342\200\242\342\200\242+ ckxk = 0.

If no such set of nonzero numbers (cl( c2 ck) exists, then the vectors (x^
x2, . . . , xk) are said to be linearly independent.

Suppose the vectors (xl( x2 xk) are collected in an (n x k) matrix T,

written in partitioned form as

T = [xx x2 \342\200\242\342\200\242\342\200\242
xk].

If the number of vectors (k) is equal to the dimension of each vector (\302\253),then

there is a simple relation between the notion of linear dependence and the deter-
determinant of the (\302\253x n) matrix T; specifically, if (xt, x2> . . . , \321\205\342\200\236)are linearly

dependent, then |T| = 0. To see this, suppose that xx is one of the vectors that

have a nonzero value of c,. Then linear dependence means that
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Then the determinant of T is equal to

|T|
= |[-(c2/cx)x2

-
(c3/Cl)x3

- \342\200\242\342\200\242\342\200\242-
(\321\201\342\200\236/\320\2411)\321\205\342\200\236]x2 \342\200\242\342\226\240\342\200\242

Xn|

But if we add (cjcy) times the /ith column to the first column, (cB_x/cj) times the
(\302\253

- l)th column to the first column, . . . , and ta/q) times the second column
to the first column, the result is

|T| = |0 x2
\342\200\242\342\200\242\342\200\242

\321\205\342\200\236|

= 0.

The converse can also be shown to be true: if |T|
= 0, then (x1( x2, . . . ,

\321\205\342\200\236)are linearly dependent.

Eigenvalues and Eigenvectors

Suppose that an n x n matrix A, a nonzero \320\270x 1 vector x, and a scalar A

are related by

Ax = Ax. [A.4.16]

Then x is called an eigenvector of A and A the associated eigenvalue. Equation
[A.4.16]can be written

Ax -
\320\2201\342\200\236\321\205

= \320\236

(A
- AIJx = 0. [A.4.17]

Suppose that the matrix (A -
\320\2201\342\200\236)were nonsingular. Then (A -

AIn)-1 would

exist and we could premultiply [A.4.17] by (A
-

AIn)-1 to deduce that

x = 0.

Thus, if a nonzero vector x exists that satisfies [A.4.16], then it must be associated
with a value of A such that (A

- AI,,)is singular. An eigenvalue of the matrix A

is therefore a number A such that

|A
-

\320\2201\342\200\236|
= 0. [A.4.18]

Eigenvalues of Triangular Matrices
Notice that if A is upper triangular or lower triangular, then A -

\320\2201\342\200\236is as

well, and its determinant is just the product of terms along the principal diagonal:

|A -
\320\2201\342\200\236|

= (an
-

A)(O22
-

A) \342\200\242\342\200\242\342\200\242
(ann

- A).

Thus, for a triangular matrix, the eigenvalues (the values of A for which this

expression equals zero) are just the values of A along the principal diagonal.

Linear Independence of Eigenvectors
A useful result is that if the eigenvalues (A1( A2, . . . , \320\220\342\200\236)are all distinct,

then the associatedeigenvectors (x1( x2,. . . , \321\205\342\200\236)are linearly independent. To see
this for the case n = 2, considerany numbers cx and c2 such that

ctxi + \321\2012\321\205\320\267
= 0. [A.4.19]
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Premultiplying both sidesof [A.4.19]by A produces

c1Ax1 + c2Ax2
= c1A1x1 + c2A2x2

= 0. [A.4.20]

If [A.4.19] is multiplied by Ax and subtracted from [A.4.20],the result is

c2(A2
-

Ax)x2
= 0. [A.4.21]

But x2 is an eigenvector of A, and so it cannot be the zero vector. Also, A2
-

Aj

cannot be zero, since A2 \320\244\\v Equation [A.4.21] therefore implies that c2
= 0.

A parallel set of calculations show that cL
= 0. Thus, the only values of cL and c2

consistent with [A.4.19] are q = 0 and c2
= 0, which means that xt and x2 are

linearly independent. A similar argument for \320\270> 2 can be made by induction.

A Useful Decomposition

Suppose an n x n matrix A has n distinct eigenvalues (Al5 A2,

Collect these in a diagonal matrix \320\233:

A,,).

\320\233=

Ax 0

0 A2

.0 0 \342\200\242\342\200\242\342\200\242
\320\220\342\200\236

Collect the eigenvectors (x1( x2, . . . , \321\205\342\200\236)in an (n x \302\253)matrix T:

T =
[xt x2

\342\200\242\342\200\242\342\200\242
\321\205\342\200\236].

Applying the formula for multiplying partitioned matrices,

AT =
[Axx Ax2

\342\200\242\342\200\242\342\200\242
\320\220\321\205\342\200\236].

But since (xu x2, . . . , \321\205\342\200\236)are eigenvectors, equation [A.4.16] implies that

AT =
[\320\220\320\233\320\2202\321\2052

\342\200\242\342\200\242\342\200\242
\320\220\342\200\236\321\205\342\200\236].[\320\220.4.22]

A second application of the formula for multiplying partitioned matrices shows

that the right side of [A.4.22]is in turn equal to

A2x2 \320\233\342\200\236\321\205\342\200\236]

Thus, [A.4.22] can be

=
[xx x2

\342\200\242\342\200\242\342\200\242
\321\205\342\200\236]

= \320\242\320\233.

written

0

.0

0 \342\200\242\342\200\242

A2
\342\200\242\342\200\242

0 \342\200\242\342\200\242

\342\200\2420
\342\200\2420

AT = \320\242\320\233.. [A.4.23]

Now, since the eigenvalues (At, A2, . . . , AJ are taken to be distinct, the

eigenvectors (x1(x2, . . . , \321\205\342\200\236)are known to be linearly independent. Thus, |T| \320\2440

and T\021 exists. Postmultiplying [A.4.23] by T\021 reveals a useful decomposition of
A:

[A.4.24]

The Jordan Decomposition

The decomposition in [A.4.24] required the (\302\253x \302\253)matrix A to have n

linearly independent eigenvectors. This will be true whenever A has n distinct
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eigenvalues, and could still be true even if A has some repeated eigenvalues. In

the completely general case when A has s < n linearly independent eigenvec-
eigenvectors,there always exists a decomposition similar to [A.4.24], known as the

Jordan decomposition. Specifically, for such a matrix A there exists a
nonsingular

(n x n) matrix M such that

A = MJM-1,

where the {n x n) matrix J takes the form

J = 0 J2

\320\276\320\276

with

J, =

A,
0
0

1
A,

0

0

1 \342\200\242\342\200\242\342\200\242

\342\226\240<\342\226\240\342\226\240

0

0

0

0 0 0 A;

[A.4.25]

[A.4.26]

[A.4.27]

Thus, J; has the eigenvalue A, repeated along the principal diagonal and has unity
repeated along the diagonal above the principal diagonal. The same eigenvalue A,

can appear in two different Jordan blocks J, and Jk if it corresponds to several
linearly independent eigenvectors.

Some Further Results on Eigenvalues
Suppose that A is an eigenvalue of the (n x n) matrix A. Then A is also an

eigenvalue of SAS ~x for any nonsingular (n x n) matrix S. To see this, note that

implies that

or

(A -
AI,,)x

= 0

S(A - AIJS-'Sx = 0

(SAS-1
- AIJx* = 0 [A.4.28]

for x* = Sx. Thus, A is an eigenvalue of SAS x associated with the eigenvec-
eigenvectorx*.

From [A.4.25], this implies that the determinant of any (n x n) matrix A is

the same as the determinant of its Jordan matrix J defined in [A.4.26]. SinceJ is
upper triangular, its determinant is the product of terms along the principal di-

diagonal, which were just the eigenvalues of A. Thus, the determinant of any matrix
A is given by the product of its eigenvalues.

It is also clear that the eigenvalues of A are the same as those of A'. Taking

the transpose of [A.4.25],

A' = (MVJ'M',

we see that the eigenvalues of A' are the eigenvalues of J'. Since J' is lower
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triangular, its eigenvalues are the elementson its principal diagonal. But J' and J

have the same principal diagonal, meaning that A' and A have the same eigenvalues.

Matrix Geometric Series
The results of [A.3.6] through [\320\220.\320\227\320\2330]generalize readily to geometric series

involving square matrices. Consider the sum

Sr
=

1\342\200\236+ A + A2 + A3 + \342\200\242\342\200\242\342\200\242+ \320\220\320\263 [\320\220.4.29]

for A an (\320\273x n) matrix. Premultiplying both sides of [A.4.29] by A, we see that

ASr
= A + A2 + A3 + \342\200\242\342\200\242\342\200\242+ Ar + Ar+1. [A.4.30]

Subtracting [A.4.30] from [A.4.29], we find that

A\342\200\236
- A)Sr =

1\342\200\236
- Ar+i. [A.4.31]

Notice from [A.4.18] that if |1\342\200\236
-

A| = 0, then A = 1 would be an eigenvalue of

A. Assuming that none of the eigenvalues of A is equal to unity, the matrix

A\342\200\236
- A) is nonsingular and [A.4.31] implies that

Sr =
A\342\200\236

-
\320\220\320\223'\320\224,

- AT+i) [A.4.32]

if no eigenvalue of A equals 1. If all the eigenvalues of A are strictly less than 1

in modulus, it can be shown that Ar+1 \342\200\224\302\2730 as T\342\200\224*\302\273(implying that

A\342\200\236+ A + A2 + A3 + \342\200\242\342\200\242
\342\200\242)

= (I,,
-

A)\021 [A.4.33]

assuming that the eigenvalues of A are all inside unit circle.

Kronecker Products

For A an (m x n) matrix and Ba(pxj) matrix, the Kronecker product of

A and \320\222is defined as the following (mp) x (nq) matrix:

a\302\256b=

\321\217\320\277\320\222\321\21712\320\222

\302\2602iB \302\26022B

The following properties of the Kronecker product are readily verified. For any

matrices A, B, and C,

(A\302\256 B)'
=

A'\302\256B'

(A \302\256\320\222)\302\256\320\241= \320\220\302\256(\320\222\302\256\320\241).

Also, for A and \320\222both (m x n) matrices and \320\241any matrix,

(A + \320\222)\302\256\320\241=
(\320\220\302\256\320\241)+ (\320\222\302\256\320\241)

\320\241\302\256(A + B) = (C \302\256A) + (\320\241\302\256\320\222).

Let A be (m x \302\253),\320\222be (p x q), \320\241be (n x k), and D be (q X r). Then

(A \302\256B)(C \302\256D)
= (AC) \302\256(BD); [A.4.38]
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that is,

\321\21712\320\222

022\320\222

cuD ci2D

c21D C22D

\321\201\342\200\236[\320\236cn2D

2avcnB

2 \320\262\321\206\321\201\321\217\320\262

c2*D

2 \302\260i;

2 a2icJ2BD

2

2<

For \320\220(\320\273x \320\273)and \320\222(p x p) both nonsingular matrices we can set \320\241=

A-1 and D = \320\222\021in [A.4.38] to deduce that

(A\302\256

Thus,

IB\021) = (AA-1) \302\256(BB-1)
=

1\342\200\236\302\256Ip
=

I,lp.

(A \302\256B)-1
=

(A\021 \302\256\320\222\021). [\320\220.4.39]

Eigenvalues of a Kronecker Product

For A an (\320\273x \320\273)matrix with (possibly nondistinct) eigenvalues (Ab A2,. . . ,

\320\233\342\200\236)and \320\222(p x p) with eigenvalues (jiu ^, . . \342\226\240, fip), then the (np) eigenvalues

of A \302\256\320\222are given by A,/iy for i = 1, 2, . . . , n and j = 1, 2, . . . ,p.To see

this, write A and \320\222in Jordan form as

\320\222= MgJgMg1.

Then (M^ \302\256Me) has inverse given by (Mj1 \302\256Mj1). Moreover, we know from

[A.4.28] that the eigenvalues of (A \302\256B) are the same as the eigenvalues of

(M^1 \302\256Mj')(A \302\256B)(M/4 \302\256Me)
= (M^'AM^) \302\256(MjJBMe)

=
\320\227\320\260\302\256Je-

But 3A and \320\227\320\262are both upper triangular, meaning that CA \302\256Je) is upper triangular
as well. The eigenvalues of (A \302\256B) are thus just the terms on the principal diagonal
of (JU \302\256Je)> which are given by A/My.

Positive Definite Matrices

An (\302\253x n) real symmetric matrix A is said to be positive semideflnite if for

any real (n x 1) vectorx,
x'Ax > 0.

We make the stronger statement that a real symmetric matrix A is positive definite

if for any real nonzero (\302\253x 1) vector x,

x'Ax > 0;

hence, any positive definite matrix could also be said to be positive semidefinite.
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Let A be an eigenvalue of A associated with the eigenvector x:

Ax = Ax.

Premultiplying this equation by x' results in

x'Ax = Ax'x.

Since an eigenvector x cannot be the zero vector, x'x > 0. Thus, for a positive
semidefinite matrix A, any eigenvalue A of A must be greater than or equal to
zero. For A positive definite, all eigenvalues are strictly greater than zero. Since
the detenninant of A is the product of the eigenvalues, the determinant of a positive
definite matrix A is strictly positive.

Let A be a positive definite (n x n) matrix and let \320\222denote a nonsingular
(n x n) matrix. Then B'AB is positive definite. To see this, let x be any nonzero

vector. Define
x = Bx.

Tlien x cannot be the zero vector, for if it were, this equation would state that
there exists a nonzero vector x such that

Bx = Ox,
in which case zero would be an eigenvalue of \320\222associated with the eigenvector x.
But since \320\222is nonsingular, none of its eigenvalues can be zero. Thus, x = Bx
cannot be the zero vector, and

x'B'ABx = x'Ax>0,

establishing that the matrix B'AB is positive definite.

A special case of this result is obtained by letting A be the identity matrix.

Then the result implies that any matrix that can be written as \320\222'\320\222for some non-

singular matrix \320\222is positive definite. More generally, any matrix that can be written

as B'B for an arbitrary matrix \320\222must be positive semidefinite:

x'B'Bx = x'x = x] + x\\ + ^ 0, [A.4.40]
where x = Bx.

The conversepropositions are also true: if A is positive semidefinite, then

there exists a matrix \320\222such that A = B'B; if A is positive definite, then there

exists a nonsingular matrix \320\222such that A = B'B. A proof of this claim and an

algorithm for calculating \320\222are provided in Section 4.4.

Conjugate Transposes
Let A denote an (m x n) matrix of (possibly) complex numbers:

bui
\342\200\242\342\226\240\342\226\240

ain + blni\"

A = a21 b21i

bmli

a2n b2ni

The conjugate transpose of A, denoted A\", is formed by transposing A and replacing
each element with its complex conjugate:

'an -
bui

\342\200\242\342\200\242\342\200\242
aml

-
\320\254\321\2021\320\223

\320\220\320\275= ai2
~ bui \342\200\242\342\226\240\342\200\242

am2
-

aln
- bui \342\200\242\342\200\242\342\200\242

a\342\204\242
-

Thus, if A is real, then A\" and A' would denote the same matrix.
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Notice that if an (n x 1) complex vector is premultiplied by its conjugate

transpose, the result is a nonnegative real scalar:

xHx =
[(fll

-
bxi) (a2

- b2i) \342\200\242\342\200\242\342\200\242
(an

- bj)]

flj + b-J.'

a2 + b2i

= S (\302\253?+ bj) * o.

For \320\222a real (m x \302\253)matrix and x a complex (n x 1) vector,

(Bx)\"
= x\"B'.

More generally, if both \320\222and x are complex,

(Bx)\"= \321\205\"\320\252\320\270.

Notice that if A is positive semi definite, then

xHAx = xHB'Bx=
xHx,

with x = Bx. Thus, x\"Ax is a nonnegative real scalar for any x when A is positive
semidefinite. It is a positive real scalar for A positive definite.

Continuity of Functions of Vectors

A function of more than one argument, such as

\321\203
= f(xlt x2,..., xn), [A.4.41]

is said to be continuous at (cu c2, \342\226\240\342\226\240\342\226\240, \321\201\342\200\236)if f(clt c2, \342\226\240\342\226\240\342\226\240, \321\201\342\200\236)is finite and for
every e > 0 there is a S > 0 such that

\\f(xu x2, . . . , \321\205\342\200\236)
-

f(cu c2, . . . , \321\201\342\200\236)|< \320\265

whenever

(*i
- qJ + (x2

-
c2f + \342\226\240\342\226\240\342\200\242+ (*\342\200\236

-
\321\201,,J< S2.

Partial Derivatives

The partial derivative of / with respect to x, is defined by

\342\226\240f-
= lim \320\224-1 , x2, . . . , *,_!, x, + \320\224,x/+1, . . . , \321\205\342\200\236)

[A. 4.42]

If we collect the n partial derivatives in [A.4.42] in a vector, we obtain the

gradient of the function /, denoted V:

[A. 4.43]
df/dx2
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For example, suppose /is a linear function:

f(xu x2, . \342\226\240\342\226\240, \321\205\342\200\236)
= axxx + a2x2 +

Definea and x to be the following (\302\253x 1) vectors:

\320\260\320\277\321\205\342\200\236.

a =

x =

Then [A.4.44] can be written

/(x)
= a'x.

The partial derivative of /(\342\200\242)with respect to the ith argument is

[A.4.44]

[A.4.45]

[A.4.46]

te,
and the gradient is

V = = a.

Second-Order Derivatives

A second-order derivative of [A.4.41] is given by

a2/fa' \342\226\240\342\226\240\342\226\240>**)_ JL fa/fa. \342\226\240\342\226\240\342\226\240.*.)

bx, dXj bx, dx,

Where second-order derivatives exist and are continuous for all i and /, the order

of differentiation is irrelevant:

\302\261p/(^t,
\342\226\240\342\226\240\342\226\240, x,I = \302\261[df(xu ..., x,I

\320\227\320\264\320\263,|_ to; J toy L to; J'

Sometimes these second-orderderivatives are collected in an n x n matrix H called
the Hessian matrix:

We will also use the notation

a*.- dx

\320\255\321\205\320\227\321\205'

to represent the matrix H.
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Derivatives of Vector-Valued Functions

Suppose we have a set of m functions \320\224(), /2(-). \342\200\242\342\200\242\342\200\242,/\342\200\236,(\342\200\242).each of which

depends on the n variables (xlt x2, \342\226\240\342\226\240\342\226\240, xn). We can collect the m functions into
a single vector-valued function:

We sometimes write

f(x) =
(mx 1)

f;

\320\223/iW

L/m(x)J

to indicate that the function takes n different real numbers (summarized by the
vector x, an element of U\") and calculates m different new numbers (summarized
by the value of f, an element of Rm). Suppose that each of the functions \320\233(-).

\320\233()> \342\200\242\342\200\242\342\200\242> /m(') has derivatives with respect to each of the arguments Xi, x2,
. . . , xn. We can summarize these derivatives in an (m x \302\253)matrix, called the
Jacobian matrix of f and indicated by dt/dx':

df

dx'
(m x n)

\320\260\320\264/\320\260\320\273\320\2632

\320\264/2/\320\264\321\2052

dfjdx2

dfjdxn

\320\264/2/\320\264\321\205\342\200\236

dfjdxj

For example, suppose that each of the functions /,(x) is linear:

/M
\342\200\242\342\200\242\342\200\242+ ab,xn
\342\200\242\342\200\242\342\200\242+ a2nxn

We could write this system in matrix form as

f(x) = Ax,

where

A =
(m xn)

a2i

Ami am2
' \" '

OmnJ

and x is the (\302\253x 1) vector defined in [A.4.46]. Then

df

ax'
= A.

Taylor's Theorem with Multiple Arguments

Let/: U\" -* R1 as in [A.4.41], with continuous second derivatives. A first-

order Taylor series expansion of /(x) around \321\201is given by

/W =
\342\204\226+ \342\200\242(\321\205-\321\201)+ \302\253,(c,x). [A.4.47]
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Here df/\320\264\321\205'denotes the A x n) vector that is the transpose of the gradient, and

the remainder Rt( \342\200\242)satisfies

1 \320\273\320\273

\320\257(\321\201Y\\ =2 - V V
\302\253-\302\253\321\201.\302\273

(\320\264\320\263,
-

\321\201,)(\320\264\320\263;
-

C/)

for 8(i, /) an (\302\253x 1) vector, potentially different for each i and j, with each

8(i, /) between \321\201and x, that is, 8(i, /) =
A(i, /)c + [1

-
A(/, ;)]x for some

A(\302\243,/) between 0 and 1. Furthermore,

[(x
- c)'(x - = \320\276.

An implication of [A.4.47] is that if we wish to approximate the consequences
for / of simultaneously changing xx by AL, x2 by \320\2242,. . . , and \321\205\342\200\236by \320\224\342\200\236,we could

use

/(*i + \320\224\321\214x2 + \320\2242,. . . , \321\205\342\200\236+ \320\224\342\200\236)
- f(xu x2, . . . , \321\205\342\200\236)

= it \320\264 Jt-\320\264 J^ \320\264
fA-448]

If/(\342\200\242)has continuous third derivatives, a second-orderTaylor series expan-
expansionof/(x) around \321\201is given by

/(x) = /

4

where

1
f ,

\320\2332(\321\201,x) - - 2,
^

with 8(i, y, A:) between

2(X
C

\342\226\240(x
-

a2/
'

ax ax'

^ ^
a'/

ri *_ i ax, \321\215\321\205\321\203-\320\260\321\205*X-

\321\201and x and

lim . . .
\302\273-,\321\201(x

- c)'(x

Multiple Integrals
The notation

indicates the following (

\320\254d

jjf(*,y)
\320\260\321\201

\321\215\321\200\320\265ration:

c)

X-C

)

-c)

rfy dx

first integrate

(x -
\321\201)+ \320\2572(\321\201,\321\205),

[A.4.49]

- ck)

= 0.

with respect to y, with x held fixed, and then integrate the resulting function with

respect to x. For example,
1 2

\302\243
x = 2[l5/5

-
W/5]

= 2/5.x'y dydx =
\302\243

\320\273\320\2634[B2/2)
-
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Provided that f{x, y) is continuous, the order of integration can be reversed.For
example,

\320\263l

jj x'y dxdy =
Jo

A5/5)\321\203dy
= A/5) \342\200\242

B2/2)
= 2/5.

A.5. Probability and Statistics

Densitiesand Distributions

A stochastic or random variable X is said to be discrete-valued if it can take
on only one of \320\232particular values; call these xit x2, . \342\226\240. , xK. Its probability
distribution is a set of numbers that give the probability of each outcome:

P{X=
xk)

= probability that X takes on the value xk, \320\272= 1, . . . , \320\232.

The probabilities sum to unity:

2 p{x = xk) = l.
k-l

Assuming that the possible outcomes are orderedxt < x2 < \342\226\240\342\200\242\342\200\242< xK, the

probability that X takes on a value less than or equal to the value Xj is given by

If AT is equal to a constant \321\201with probability 1, then X is nonstochastic.

The probability law for a continuous-valued random variable X can often be
describedby the density function fx(x) with

fx(x)dx=l. [A.5.1]

The subscript X in fx(x) indicates that this is the density of the random variable

X; the argument x of fx(x) indexes the integration in [A.5.1]. The cumulative

distribution function of X (denoted Fx(a)) gives the probability that X takes on a

value less than or equal to a:

fx(x) dx.

Population Moments
The population mean \320\264of a continuous-valued random variable X is given

by

Jx-fx(x)dx,
=

J_^

provided this integral exists. (In the formulas that follow, we assume for simplicity

of exposition that the density functions are continuous and that the indicated
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integrals all exist.) The population variance is

(x
-

\320\274J\342\200\242/*(*)dx.

The square^root of the variance is called the population standard deviation.

In general, the rth population moment is given by

The population mean could thus be described as the first population moment.

Expectation
The population mean \320\264is also called the expectation of X, denoted E(X) or

sometimessimply EX. In general, the expectation of a function g(X) is given by

E{g{X))
=

/\". g(x)\342\200\242/*(*)&, [A.5.3]

where/^(x) is the density of X. For example,the rth population moment of AT is

the expectation of Xr.

Consider the random variable a + bXior constants a and b. Its expectation
is

, E(a + bX)
=

J_ [a + bx]-fx(x) dx

= a
j'_Jx(x)

dx + b
\302\243

x-fx(x) dx

= a + b-E(X).
Thevariance of a + bX is

Var(a + bX) =
J [(a + \320\254\320\273\320\263)

-
(a

x -
\321\206\320\243-/\321\205(\321\205)<1\321\205 [\320\220.5.4]

Another useful result is

Z - /i + mJ]
-

/\320\263)+ /\320\2632]

= Var(Z) + 0 + [E(X)f.
To simplify the appearance of expressions,we adopt the convention that

exponentiation and multiplication are carried out before the expectation op-
operator. Thus, we will use E(X -

\321\206+ \320\264Jto indicate the same operation as

E[(X
-

fi + nJ]. The square of E(X -
fi + fi) is indicated by using additional

parentheses, as [E(X \342\200\224
\321\206+ \320\264)]2.

Sample Moments

A sample moment is i

bserved set of data, si
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sample mean,

x =
A/\320\223)-(\320\264\320\263,+ x2 + \342\226\240\342\226\240\342\200\242+ xT),

which is a natural estimate of the population mean \320\264.The sample variance,

2 (x,-x)\\r-l
affords an estimate of the population variance a2. More generally, the rth sample
moment is given by

where xr, denotes x, raised to the rth power.

Bias and Efficiency
Let 6 be a sample estimate of a vector of population parameters \320\262.For

example, \320\262could be the sample mean x and \320\262the population mean /\320\263.The estimate

is said to be unbiased if \302\243F)
= \320\262.

Suppose that \320\262is an unbiased estimate of \320\262.The estimate \320\262is said to be
efficient if it is the case that for any other unbiased estimate \320\262*,the following
matrix is positive semidefinite:

P =
\320\225[(\320\262*

-
\320\262)-(\320\262*

-
\320\262)']

-
\320\225[(\320\262

-
\320\262)-(\320\262

-
\320\262)'].

Joint Distributions

For two random variables X and Y with the joint density fx,y{x, y), we
calculate the probability of the joint event that both X < a and Y s. b from

P{X ^a,Y^b}=\\\" \320\223fx,Y(x, y) dy dx.
J -\320\236\320\241J \342\200\224X

This can be represented in terms of the joint cumulative distribution function:

Fx,Y(a, b) = P{X^a,Y^ b].
The probability that X s a by itself can be calculated from

\\ 5]P{X sa,Y any}
=

|\"_
\320\237

\"_
fx,YQc, \320\243)dy\\ dx. [A.5.

Comparison of [A.5.5]with [A.5.2] reveals that the marginal density fx(x) is ob-
obtained by integrating the joint density fXtY(x, y) with respect to y:

Conditional Distributions

The conditional density of Y given X is given by

[A-57]
otherwise.
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Notice that this satisfies the requirement of a density [A.5.1]:

fx,v(x, \320\243)dy
r

fxix)i-

fx(x)
A further obvious implication of the definition in [A.5.7] is that a joint density

can be written as the product of the marginal density and the conditional density:

/*.r(*. \320\243)
= /mC !*)\342\200\242/*(*)\342\200\242 [A.5.8]

The conditional expectation of Y given that the random variable X takes on
the particular value x is

E(Y\\X
= x) =

\\lj-fnxb\\x) dy. [A.5.9]

Law of Iterated Expectations
Note that the conditional expectation is a function of the value of the random

variable X. For different realizations of X, the conditional expectation will be a

different number. Supposewe view E(Y\\X) as a random variable and take its

expectation with respect to the distribution of X:

EX[EY]X(Y\\X)]
=

\302\243_\320\230^\320\263/\321\202\320\253*)*\320\247/*\320\234 dx-

Results [A.5.8] and [A.5.6]can be used to express this expectation as

J / yfyjtiy, x)dydx = \\jfY{y) dy.

Thus,

EX[EY{X(Y\\X)\\
= EY(Y). [A.5.10]

In words, the random variable E(Y\\X) has the same expectation as the random

variable Y. This is known as the law of iterated expectations.

Independence

The variables Y and X are said to be independent if

fxA*. \320\243)
=

\320\223\321\205\320\250\321\203\320\234- [A.5.11]

Comparing [A.5.11] with [A.5.8], if Y and X ait independent, then

fr\\x(.y\\*) = fy(y). [A.5.12]

Covariance

Let fix denote E(X) and fiY denote E(Y). The population covariance between

X and Y is given by

Cov(Z, Y)*\\ \\
(x

-
\321\206\321\205){\321\203

-
/iy)-/^.y(x, \321\203)dy dx. [A.5.13]

\342\200\224\320\276\321\201\342\200\224\321\215\321\201
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Correlation

The population correlation between X and \320\243is given by

Corr(X, \320\243)
^ C0V^'y>

If the covariance (or correlation) between X and \320\243is zero, then X and \320\243are said
to be uncorrelated.

Relation Between Correlation and Independence
Note that if X and \320\243are independent, then they are uncorrelated:

Cov(X, Y)= j J (x - /t*)^ -
iiY)-fx(x)-fY(y) dy dx

\320\241 \320\223\320\223 1=
(-\320\263

-
\320\234\320\273-) (\320\243

~
t*y)-fy(y) dy -fx(x) dx.J \342\200\224\320\266 I J \342\200\224* I

Furthermore,

f\" f\"=
J_acJ'-/y(j')<y

~
f-yj^fy(y)dy[/.=

=
\320\224\321\203

- fly
= 0.

Thus, if X and \320\243are independent, then Cov(Z, \320\243)
= 0, as claimed.

The converseproposition, however, is not true\342\200\224thefact that X and \320\243are

uncorrelated is not enough to deduce that they are independent. To construct a
counterexample, suppose that Z and \320\243are independent random variables each
with mean zero, and let X = Z-Y. Then

E(X- /i*)(y-/iy) = E[(ZY)-Y]
= E(Z)-E(Y*)= 0,

and so X and \320\243are uncorrelated. They are not, however, independent\342\200\224the value

of ZY depends on \320\243.

Orthogonality

Consider a sample of sizeT on two random variables, {xi, x2, \342\226\240\342\226\240\342\226\240, xT] and

{.\320\243\321\214\320\243\320\263>\342\200\242\342\200\242\342\200\242> \320\243\321\202)-The two variables are said to be orthogonal if

\321\202

2 x,y, = 0.
r-1

Thus, orthogonality is the sample analog of absence of correlation.
For example, let xt

= 1 denote a sequence of constants and let y, =
w,

\342\200\224

w, where w = (VTyZJ.iW,is the sample mean of the variable w. Then x and \321\203

are orthogonal:

\320\263 \320\263

2 1-(\320\270-\320\263
-

w) = 2 \320\270-,
- T-w = 0.

r-l r-1
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Population Moments of Sums
Consider the random variable aX + bY. Its mean is given by

E(aX + bY) = | | (ax + by)-fx_Y(x, y) dy dx

\342\200\224\320\226\342\200\224\320\255\320\241

DC DC \320\255\320\241\320\255\320\241

=
a\\ J x-fx_Y{x,y)dydx + b J J \321\203-fx.Y(x, y) dy dx

and so

E(aX + bY) = a-E(X) + b-E(Y). [A.5.14]

The variance of (aX + bY) is

Var(aZ + bY)=
\\ \\

[(ax + by) - (a(ix + b^f-f^x, y) dy dx

\320\255\320\241DC

=
J J [(ax -

\320\260\320\264\320\273-J+ 2(ax
- afix)(by -

bfiY)

+ (by
- btx.Yf]-fx,Y(x,y)dydx

DC \320\255\320\241

= a2
J \\

(x- iLxf-fx<Y(x,y)dydx
\342\200\224\320\255\320\241\342\200\224\320\255\320\241

+ 2ab
j J (x -

fix)(y
-

fiY)-fx,y(x, y) dy dx

DC \320\236\320\241

+ b2
j | (y- ^Yyfx_Y(x,y)dydx.

Thus,

Var(aZ + bY) = a2-Var(Z) + 2ab-Cov(X, Y) + b2Vax(Y). [A.5.15]
When X and \320\243are uncorrelated,

Var(aZ+ bY) = a2-Var(Z)+ f>2-Var(y).

It is straightforward to generalize results [A.5.14] and [A.5.15]. If {Xu
X2, . . . , Xn) denotes a collection of n random variables, then

E(axXx + a2X2+ \342\226\240\342\226\240\342\226\240+ anXn)
= ai-E(X{) + a2-E(X2)+ \342\226\240\342\226\240\342\226\240+ an-E(Xn)

J

^ + 02X2 + \342\226\240\342\226\240\342\226\240+ aJCn)

aJ-Var^) + \320\26022\320\243\320\260\321\205(\320\245\320\263)+ \342\200\242\342\226\240\342\226\240+ aJ-Var(ATn)

+ 2\320\2601\320\2602-\320\241\320\276\321\207(\320\2451,X2) + 2alarCov(X1, Z3) + \342\200\242\342\200\242\342\200\242
[A.5.17]

\321\214Xn) + 20^3-Cov(Z2, X3) + 20^^-Cov(X2,XA)
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If the X's are uncorrelated, then [A.5.17] simplifies to

Var(a1Z1 + \321\212\320\245\320\263+ \342\200\242\342\200\242\342\200\242+ aJLn)

+ aI-Var(Z2) + \342\200\242\342\200\242\342\226\240+

Cauchy-Schwarz Inequality

The Cauchy-Schwarz inequality states that for any random variables X and
\320\243whose variances and covariance exist, the correlation is no greater than unity in

absolute value:

-l<Corr(Z, Y)s l. [A.5.19]
To establish the far right inequality in [A.5.19], consider the random variable

/\320\260\321\202(\320\245)War(y)'

The square of this variable cannot take on negative values, so

(x- \321\206\321\205)(\320\243
-

\320\274

'P /ar(Z) War(y).

Recognizing that Var(AT) and Var(y) denote population moments (as opposed to
random variables), equation [A.5.15] can be used to deduce

E(X
- nxf _ JE[(X -

\302\273X)(J
-

My)]l E(Y -
nYf ^

Var(Z) [ VVar(Z) VVar(y) J Var(y)

Thus,

1 - 2Corr(Z, y) + U0,
meaning that

Corr(Z, \320\243)
< 1.

To establish the far left inequality in [A.5.19], notice that

Ux-\302\273x)

IVVar(Z)

implying that

1 + 2-Corr(Z, \320\243)+ 1>0,

so that

Corr(X, \320\243)
> - 1.

The Normal Distribution

The variable Y, has a Gaussian, or Normal, distribution with mean \320\264and

variance a2 if

We write

Y, ~

to indicate that the density of Y, is given by [A.5.20].
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Centered odd^ordered population moments for a Gaussian variable arezero:

E(Y,
- n)r = 0 for r = 1, 3, 5,

Thecentered fourth moment is

E(Y, -
\321\206\320\243

= \320\252\320\260\\

Skew and Kurtosis

The skewness of a variable \320\243,with mean \320\264is represented by

E(Y, -
mK

[Var(y,)P'

A variable with a negative skew is more likely to be far below the mean than it is

to be far above the mean. The kurtosis is

E(Y,
- tf

[Var(yr)]2

'

A distribution whose kurtosis exceeds 3 has more massin the tails than a Gaussian
distribution with the same variance.

Other Useful Univariate Distributions

Let (Xi, X2, . . . , Xn) be independent and identically distributed (i.i.d.)

N@, 1) variables, and consider the sum of their squares:

\320\243= XI + X\\ + \342\226\240\342\226\240\342\226\240+ X\\.

Then \320\243is said to have a chi-square distribution with n degrees of freedom,denoted

LetX~
N@, 1) and \320\243~

*2(n) with X and \320\243independent. Then

2

is said to have a t distribution with n degrees of freedom, denoted

Z ~
t(n).

Let Yi
~

x\\n\\) and Y2
~

\320\2452(\320\277\320\263)with Yi and Y2 independent. Then

is said to have an F distribution with nx numerator degrees of freedom and n2
denominator degreesof freedom,denoted

Z ~
F(ni, n2).

Note that if Z ~
t(n), then Z2 ~ F(l, n).

LikelihoodFunction

Suppose we have observed a sampleof sizeT on some random variable Y,.
Let/yi-y2 YT(yu \321\203\320\263,. . . , \321\203\321\202;\320\262)denote the joint density of \320\243,,\320\2432,. . . , YT.
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The notation emphasizesthat this joint density is presumed to depend on a vector
of population parameters \320\262.If we view this joint density as a function of \320\262(given
the data on Y), the result is called the sample likelihood function.

For example, consider a sample of Ti.i.d. variables drawn from a N(fi, a2)
distribution. For this distribution, \320\262=

(\320\264,\320\276-2)',and from [A.5.11] the joint density
is the product of individual terms such as [A.5.20]:

fy,.y2 \321\203\321\202\320\254\321\212\320\2432,\342\226\240\342\226\240\342\226\240, \320\243\321\202,\320\234.\320\276-2)
= 0 /\321\203,(\320\243\320\277\320\234.\320\276\022)-\320\237.

\320\263-1

The log of the joint density is the sum of the logs of these terms:

log/y,,y2 \320\243\321\202\320\254\320\270\320\243\320\263,
\342\226\240\342\226\240\342\226\240,\320\243\321\202,\320\234,\320\276-2)

\320\243,;\320\234,\320\276\022) [\320\220.5.21]

=
(-\320\223/2) 1\320\2768B\321\202\320\263)

-
(\320\223/2)log(o-2)

- 2 (\320\243'~2\320\234)
.

Thus, for a sample of T Gaussian random variables with mean fi and variance a2,
the sample log likelihood function, denoted &(ji, a-2; yx, y2, . . . , yT), is given by.

\321\2022;\320\243\320\263,\320\2432,..-,\320\243\321\202)
= \320\272-(\320\223/2)Iog(c72)

- J
(\320\243''

^f. [A.5.22]

In calculating the samplelog likelihood function, any constant term that does not

involve the parameter fi or a2 can be ignored for most purposes. In [A.5.22], this

constant term is

*\302\273-G72)logBw).

Maximum Likelihood Estimation

For a given sample of observations (yl, y2, \342\226\240\342\226\240\342\226\240, yT), the value of \320\262that

makes the sample likelihood as large as possible is called the maximum likelihood

estimate (MLE) of \320\262.For example, the maximum likelihood estimate of the pop-
population mean \320\264for an i.i.d. sample of sizeT from a N(fi, a2) distribution is found

by setting the derivative of [A.5.22]with respect to fi equal to zero:

aa> _
i y,

-
M

\320\224
=

A/\320\223)2 \320\243- [\320\220.5.23]

or

2r-l

The MLEof cr2 is characterized by

\320\264\320\250. T S, (y,
-

\320\264J

da2 la-2 r_i 2cr4

Substituting [A.5.23] into [A.5.24] and solving for a2 gives

&2 =
A/\320\223)2 (\320\243.

~
ft2- [A.5.25]
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Thus, the sample mean is the MLE of the population mean and the sample
variance is the MLE of the population variance for an i.i.d. sampleof Gaussian

variables. V

Multivariate Gaussian Distribution

Let

Y = (Yu Y2,..., Yn)'

be a collection of n random variables. The vector Y has a multivariate Normal, or
multivariate Gaussian, distribution if its density takes the form

/v(y) = B77)-ill|
-\302\273*

exp[(- l/2)(y
-

\321\206)'\320\237\"\320\247\321\203
-

|\302\273)]. [A.5.26]

The mean of Y is given by the vector ji:

E(Y) = |i;
and its variance-covariance matrix is ft:

E(Y -
,\302\273)(\302\245

- |i)' = ft.

Note that (Y
- ji)(Y -

\321\206)'is symmetric and positive semidefinite for any

Y, meaning that any variance-covariance matrix must be symmetric and positive
semidefinite; the form of the likelihood in [A.5.26] assumes that ft is positive

definite.

Result [A.4.15] is sometimesusedto write the multivariate Gaussian density
in an equivalent form:

/v(y) = B^)-\"ift-41/2exp[(-l/2)(y - |i)'Il-4y -
\321\206)].

If Y ~
N(\\jl, ft), then for any nonstochastic (r x n) matrix H' and (r x 1)

vector b,

H'Y + b + b), H'ftH).

Correlation and IndependenceforMultivariate

Gaussian Variates

If Y has a multivariate Gaussian distribution, then absence of correlation

implies independence.Toseethis, note that if the elements of Y are uncorrelated,
then E[(Y, -

\320\274)(\320\243;
-

\320\274)]
= 0 for ; \320\244j and the off-diagonal elementsof ft are

zero:

\320\260]\320\236

\320\236\320\276-l

6 6

For such a diagonal matrix ft,

|ft| =
<\321\202\\\320\270\\

ft\021 =

\320\236

0

0 0
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Substituting [A.5.27] and [A.5.28] into [A.5.26]produces
/v(y)

= Bn)-^[aW2
\342\226\240\342\226\240\342\226\240

<,*]-\302\253

x \320\265\321\205\321\200[(-1/2){(^
-

MlJ/o-? + (y2 -
M

=
\320\237B\321\2027)-^\320\230]-

which is the product of n univariate Gaussian densities. Since the joint density is
the product of the individual densities, the random variables (\320\243\321\214Y2, . . . , Yn)
are independent.

Probability Limit

Let {Xv X2,. . . , XT] denote a sequenceof random variables. Often we are
interested in what happens to this sequence as T becomes large. For example,XT

might denote the sample mean of T observations:

\320\245\320\263
=

A/\320\223)-(\320\243,+ \320\2432+ \342\200\242\342\200\242\342\200\242+ YT), [A.5.29]

in which case we might want to know the properties of the sample mean as the
size of the sample T grows large.

The sequence{Xx, X2, \342\226\240\342\226\240\342\226\240, XT] is said to converge in probability to \321\201if for

every e > 0 and S > 0 there exists a value N such that, for all T ^ N,

P{\\XT
- c\\>8}< \320\262. [\320\220.5.30]

When [A.5.30] is satisfied, the number \321\201is called the probability limit, or

plim, of the sequence {Xu X2, \342\226\240. . , XT]. This is sometimesindicated as

Law of Large Numbers

Under fairly general conditions detailed m Chapter 7, the sample mean [A.5.29]
convergesin probability to the population mean:

\"

[A.5.31]

When [A.5.31] holds, we say that the sample mean gives a consistent estimate of

the population mean.

Convergence in Mean Square

A stronger condition than convergence in probability is mean square conver-

convergence.The sequence {Xv X2, . . . , XT] is said to converge in mean square if for

every e > 0 there exists a value N such that, for all T >
N,

E(XT
- cf < e. [A.5.32]

We indicate that the sequenceconvergesto \321\201in mean square as follows:

\320\245\321\202\320\277\320\233\321\201.

Convergence in mean square implies convergence in probability, but con-
convergence in probability does not imply convergence in mean square.
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\320\262

Statistical Tables

TABLE B.I
Standard Normal Distribution

Area \302\273Prob(Z \320\263z0)

\342\200\224\302\273

u

0.0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

1.4

.00

.5000

.4602

.4207

.3821

.3446

.3085

.2743

.2420

.2119

.1841

.1587

.1357

.1151

.0968

.0808

.01

.4960

.4562

.4168

.3783

.3409

.3050

.2709

.2389

.2090

.1814

.1562

.1335

.1131

.0951

.0793

.02

.4920

.4522

.4129

.3745

.3372

.3015

.2676

.2358

.2061

.1788

.1539

.1314

.1112

.0934

.0778

0

Second decimal place of z0

.03

.4880

.4483

.4090

.3707

.3336

.2981

.2643

.2327

.2033

.1762

.1515

.1292

.1093

.0918

.0764

.04

.4840

.4443

.4052

.3669

.3300

.2946

.2611

.2296

.2005

.1736

.1492

.1271

.1075

.0901

.0749

.05

.4801

.4404

.4013

.3632

.3264

.2912

.2578

.2266

.1977

.1711

.1469

.1251

.1056

.0885

.0735

.06

.4761

.4364

.3974

.3594

.3228

.2877

.2546

.2236

.1949

.1685

.1446

.1230

.1038

.0869

.0722

.07

.4721

.4325

.3936

.3557

.3192

.2843

.2514

.2206

.1922

.1660

.1423

.1210

.1020

.0853

.0708

.08

.4681

.4286

.3897

.3520

.3156

.2810

.2483

.2177

.1894

.1635

.1401

.1190

.1003

.0838

.0694

.09

.4641

.4247

.3859

.3483

.3121

.2776

.2451

.2148

.1867

.1611

.1379

.1170

.0985

.0823

.0681

{continued on next page)
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TABLE B.I

iz0 .00

(continued)

.01
.Of

Second decimal place of z0

.03 .04 .05 .06 .07 .08 .09

1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455

1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0352 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294

1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119.0116.0113.0110
2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084

2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064

2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048

2.6 .0047 .0045 .0044 .0043 .0041 ,0040 .0039 .0038 .0037 .0036
2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026

2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
2.9 .0019 .0018 .0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014
3.0
3.5
4.0
4.5

5.0

.00135

.000 233

.000031

.000 003

.000 000

7
40
287

Table entries give the probability that a Jv~(O, 1) variable takes on a value greater than or equal to z0.
For example, if Z -

N@, 1), the probability that Z > 1.96= 0.0250.By symmetry, the table entries
could also be interpreted as the probability that a Jv~@, 1) variable takes a value less than or equal to

-z<>.

Source: Thomas H. Wonnacott and Ronald J. Wonnacott, Introductory Statistics, 2d ed., p. 480.

Copyright \302\2511972 by John Wiley & Sons, Inc., New York. Reprinted by permission of John Wiley &
Sons, Inc.

752 Appendix \320\222\\ Statistical Tables



table \320\262.:2

The x2 Distribution

Degreesof
freedom

(m)

1

2
3
4

5
6
7
8
9

10
11
12
13
14

15

16
17
18
19

20
21
22

23

24

25
26
27
28
29

30
40

50

60

70
80
90

100

0.995

4 x 10\025

0.010

0.072
0.207

0.412
0.676
0.989
1.34
1.73
2.16
2.60
3.07

3.57

4.07

4,60
5.14
5.70
6.26
6.84
7.43

8.03

8.64
9.26
9.89

10.5
11.2
11,8
12.5
13.1
13.8
20.7

28.0

35.5

43.3
51.2
59.2
67.3

Probability

0.990

2 x 10\024

0.020

0.115
0.297

0.554
0.872
1.24
1.65
2.09
2.56
3.05

3.57

4.11
4.66

5.23
5.81
6.41
7.01
7.63

8.26

8.90
9.54

10.2
10.9

11.5
12.2
12.9
13.6
14.3
15.0
22.2
29.7

37.5

45.4
53.5
61.8
70.1

thatx\\m)

0.975

0.001
0.051
0.216
0.484

0.831
1.24
1.69
2.18
2.70

3.25

3.82
4.40
5.01
5.63

6.26
6.91
7.56
8.23
8.91
9.59

10.3
11.0
11.7
VIA

13.1

13.8
14.6
15.3
16.0

16.8
24.4

32.4

40.5

48.8 \342\226\240

57.2

65.6
74.2

is greater than entry

0.950

0.004
0.103
0.352
0.711
1.15
1.64
2.17
2.73

3.33

3.94
4.57
5.23
5.89
6.57
7.26
7.96
8.67
9.39

10.1
10.9
11.6
12.3
13.1
13.8

14.6

15.4
16.2
16.9
17.7

18.5
26.5
34.8
43.2
51.7
60.4

69,1

77.9

0.900

0.016
0.211
0.584
1.06
1.61
2.20
2.83

3.49

4.17

4.87
5.58
6.30
7.04
7.79

8.55

9.31
10.1
10.9
11.7

12.4
13.2
14.0
14.8
15.7
16.5
17.3
18.1
18.9
19.8
20.6

29.1

37.7
46.5

55.3
64.3
73.3
82.4

0.750

0.102
0.575
1.21
1.92

2.67
3.45
4.25
5.07
5.90
6.74
7.58
8.44
9.30

10.2
11.0
11.9
12.8
13.7

14.6

15.5
16.3
17.2
18.1
19.0
19.9
20.8
21.7
22.7

23.6

24.5
33.7
42.9
52.3

61.7
71.1
80.6
90.1

0.500

0,455

1.39
2.37
3.36

4.35
5.35
6.35
7.34
8.34
9.34

10.3
11.3
12.3
13.3
14.3
15.3
16.3

17.3

18.3

19.3
20.3
21.3
22.3
23.3
24.3
25.3
26.3
27.3
28.3
29.3
39.3

49.3

59.3

69.3
79.3
89.3
99.3

(continued on next page)
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TABLE B.2 (continued)

Degrees of
freedom

(m)

1
2
3
4

5
6
7
8
9

10

11
12
13
14

15
16
17
18
19
20

21

22
23
24

25
26
27

28

29

30
40
50
60
70

80

90
100

0.250

1.32
2.77
4.11
5.39
6.63

7.84

9.04
10.2
11.4

12.5
13.7
14.8
16.0
17.1
18.2
19.4
20.5
21.6

,22,7

23,8

24.9
26,0
27.1
28.2

29.3
30.4
31.5
32.6
33.7
34.8

45.6

56,3
67.0

77,6
88,1
98.6

109

Probability that *2(m) is greater than

0.100

2.71
4.61
6.25
7.78

9.24
10.6
12.0
13.4
14.7

16.0

17.3
18,5
19.8
21,1

22.3
23.5
24.8
26.0
27.2
28.4
29.6
30,8

32.0

33.2

34.4
35.6
36,7
37.9
39.1
40,3

51,8

63,2
74,4

85,5
96.6

108
118

0.050

3.84

5.99
7.81
9.49

11.1
12.6
14.1
15.5
16.9
18.3
19.7

21.0

22.4
23,7

25.0
26.3
27.6
28,9

30.1

31,4
32.7
33.9
35.2
36.4
37.7
38,9

40,1

41.3
42.6

43.8
55.8
67.5
79.1
90.5

102

113

124

0.025

5.02
7.38
9.35

11.1
12.8
14.4

16.0

17.5
19.0

20.5
21.9
23,3
24.7
26.1
27,5

28.8

30.2
31.5
32.9

34,2
35.5
36.8
38,1
39.4
40.6
41.9
43.2

44.5

45.7

47.0
59.3
71,4
83.3
95.0

107

118

130

0.010

6.63
9.21

11.3
13.3
15.1
16.8
18.5
20.1
21.7

23.2

24,7
26.2
27,7
29.1

30.6
32.0
33.4
34,8

36.2

37.6
38.9
40.3
41.6
43.0
44.3

45.6

47,0
48.3
49.6

50.9
63.7
76.2
88.4

100

112

124
136

entry

0.005

7.88
10.6
12,8
14.9

16.7
18.5
20.3
22.0
23.6
25.2
26.8
28.3
29.8
31.3
32.8
34.3

35,7

37.2
38.6

40.0
41,4
42.8
44.2
45.6
46.9
48.3
49.6
51.0
52.3
53.7
66.8
79.5
92.0

104

116

128
140

0.001

10.8
13.8
16.3
18.5
20.5
22.5
24.3

26.1

27.9

29.6
31.3
32.9
34.5
36.1
37.7
39,3

40.8

42.3
43.8

45.3
46.8
48.3
49.7
51.2
52.6
54,1

55.5

56,9
58.3

59.7
73.4
86.7
99,6

112

125
137
149

The probability shown at the head of the column is the area in the right-hand tail. For example, there
is a 10% probability that a x2 variable with 2 degrees of freedom would be greater than 4.61.

Source: Adapted from Henri Theil, Principles of Econometrics, pp. 718-19. Copyright \302\2511971 by John
Wiley & Sons, Inc., New York. Also Thomas H. Wonnacott and Ronald J. Wonnacott, Introductory

Statistics, 2d ed., p. 482. Copyright \302\2511972 by John Wiley & Sons, Inc., New York. Reprinted by
permission of John Wiley & Sons, Inc.
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TABLE B.3
The t Distribution

Degrees of
freedom

(m)

1
2
3
4

5
6
7
8
9

10
11
12
13
14

15

16

17
18
19

20
21
22

23

24

25
26
27
28
29

30

40

60
120

OO

0.25

1.000

.816

.765

.741

.727

.718

.711

.706

.703

.700

.697

.695

.694

.692

.691

.690

.689

.688

.688

.687

.686

.686

.685

.685

.684

.684

.684

.683

.683

.683

.681

.679

.677

.674

0.10

3.078
1.886
1.638
1.533

1.476
1.440
1.415
1.397

1.383

1.372

1.363
1.356
1.350
1.345

1.341
1.337
1.333
1.330
1.328
1.325
1.323
1.321
1.319
1.318
1.316
1.315

1.314

1.313

1.311

1.310
1.303
1.296
1.289
1.282

Probability that t(m) is greater than

0.05

6.314

2.920
2.353
2.132

2.015
1.943
1.895
1.860
1.833
1.812
1.796

1.782

1.771

1.761

1.753
1.746
1.740
1.734
1.729
1.725
1.721
1.717
1.714
1.711
1.708

1.706

1.703

1.701
1.699

1.697
1.684
1.671
1.658
1.645

0.025

12.706

4.303
3.182
2.776

2.571
2.447

2.365

2.306

2.262

2.228
2.201
2.179
2.160
2.145
2.131
2.120
2.110
2.101
2.093

2.086

2.080

2.074
2.069
2.064

2.060
2.056

2.052

2.048

2.045

2.042
2.021
2.000
1.980
1.960

0.010

31.821

6.965

4.541
3.747

3.365
3.143
2.998

2.896

2.821

2.764
2.718
2.681
2.650
2.624

2.602

2.583

2.567
2.552
2.539

2.528
2.518
2.508

2.500

2.492

2.485
2.479
2.473
2.467
2.462

2.457

2.423

2.390
2.358
2.326

entry

0.005

63.657

9.925
5.841
4.604

4.032
3.707

3.499

3.355

3.250

3.169
3.106
3.055
3.012
2.977

2.947

2.921

2.898
2.878
2.861

2.845
2.831
2.819
2.807

2.797

2.787

2.779
2.771
2.763
2.756

2.750

2.704

2.660

2.617
2.576

0.001

318.31
22.326

10.213

7.173

5.893
5.208
4.785
4.501
4.297

4.144

4.025

3.930
3.852
3.787

3.733
3.686

3.646

3.610

3.579

3.552
3.527
3.505
3.485

3.467

3.450

3.435
3.421
3.408
3.396

3.385

3.307

3.232

3.160
3.090

The probability shown at the head of the column is the area in the right-hand tail. For example, there
is a 10% probability that a ( variable with 20 degrees of freedom would be greater than 1.325. By
symmetry, there is also a 10% probability that a ( variable with 20 degrees of freedom would be less
than -1.325.

Source:Thomas H. Wonnacott and Ronald J. Wonnacott, Introductory Statistics, 2d ed., p. 481.

Copyright \302\2511972 by John Wiley & Sons, Inc., New York. Reprinted by permission of John Wiley &
Sons, Inc.
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TABLE B.4
The F Distribution

Denominator

degrees of
freedom

(m2)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

161
4052

18.51

98.49

10.13
34.12
7.71

21.20

6.61
16.26
5.99

13.74
5.59

12.25
5.32

11.26
5.12

10.56

4.96

10.04

4.84

9.65

4.75
9.33
4.67
9.07
4.60
8.86

4.54
8.68
4.49
8.53
4.45
8.40
4.41
8.28
4.38
8.18

2
200

4999

19.00
99.00

9.55

30.82

6.94

18.00

5.79
13.27

5.14
10.92

4.74

9.55

4.46

8.65

4.26
8.02

4.10

7.56

3.98

7.20

3.88
6.93

3.80
6.70

3.74

6.51

3.68
6.36

3.63
6.23

3.59
6.11

3.55

6.01

3.52
5.93

Numerator degrees of freedom (m,)

3

216
5403

19.16

99.17

9.28

29.46

6.59
16.69

5.41

12.06

4.76

9.78

4.35
8.45

4.07

7.59

3.86
6.99

3.71

6.55

3.59
6.22

3.49

5.95

3.41
5.74

3.34

5.56

3.29
5.42

3.24

5.29

3.20
5.18

3.16
5.09
3.13
5.01

4

225

5625

19.25

99.25

9.12
28.71

6.39

15.98

5.19
11.39
4.53
9.15
4.12
7.85

3.84

7.01

3.63
6.42

3.48
5.99
3.36
5.67
3.26
5.41
3.18
5.20

3.11

5.03

3.06
4.89

3.01

4.77

2.96

4.67

2.93
4.58

2.90

4.50

5

230

5764

19.30
99.30

9.01

28.24

6.26

15.52

5.05
10.97

4.39

8.75

3.97
7.46

3.69
6.63

3.48

6.06

3.33
5.64

3.20

5.32

3.11
5.06
3.02

4.86

2.96
4.69

2.90

4.56

2.85

4.44

2.81
4.34

2.77

4.25

2.74

4.17

6

234
5859

19.33

99.33

8.94

27.91

6.16
15.21

4.95

10.67

4.28
8.47

3.87

7.19

3.58

6.37

3.37
5.80

3.22

5.39

3.09

5.07

3.00
4.82

2.92

4.62

2.85

4.46

2.79
4.32

2.74

4.20

2.70
4.10

2.66

4.01

2.63
3.94

7

237

5928

19.36
99.34

8.88
27.67

6.09

14.98

4.88
10.45

4.21

8.26

3.79
7.00

3.50
6.19

3.29
5.62

3.14
5.21

3.01
4.88

2.92

4.65

2.84

4.44

2.77
4.28

2.70

4.14

2.66

4.03

2.62
3.93
2.58
3.85
2.55
3.77

8

239

5981

19.37
99.36

8.84

27.49

6.04

14.80

4.82
10.27

4.15

8.10

3.73
6.84
3.44
6.03
3.23
5.47

3.07

5.06

2.95

4.74

2.85
4.50

2.77

4.30

2.70

4.14

2.64
4.00

2.59

3.89

2.55

3.79

2.51
3.71
2.48
3.63

9

241

\302\253022

19.38

99.38

8.81

27.34

6.00
14.66

4.78

10.15

4.10
7.98

3.68

6.71

3.39
5.91
3.18
5.35

3.02
4.95
2.90
4.63
2.80
4.39
2.72
4.19
2.65

4.03

2.59
3.89

2.54

3.78

2.50
3.68

2.46

3.60

2.43
3.52

10

242

6056

19.39
99.40

8.78
27.23

5.96

14.54

4.74
10.05

4.06

7.87

3.63
6.62

3.34

5.82

3.13
5.26

2.97

4.85

2.86
4.54

2.76
4.30

2.67

4.10

2.60
3.94

2.55

3.80

2.49
3.69

2.45

3.59

2.41
3.51

2.38

3.43

(continued on page 758)
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\320\233 12 14 16 20 24 30 40 50 75 100 200 500 \302\260\302\260

~2\302\253 244 245 246 248 249 250 251 252 253 253 254 254 254~
6082 6106 6142 6169 6203 6234 6258 6286 6302 6323 6334 6352 6361 6366

19.40 19.41 19.42 19.43 19.44 19.45 19.46 19.47 19.47 19.48 19.49 19.49 19.50 19.50

99.41 99.42 99.43 99.44 99.45 99.46 99.47 99.48 99.48 99.49 99.49 99.49 99.50 99.50

8.76 8.74 8.71 8.69 8.66 8.64 8.62 8.60 8.58 8.57 8.56 8.54 8.54 8.53

27,13 27.05 26.92 26.83 26.69 26.60 26.50 26.41 26.35 26.27 26.23 26.18 26.14 26.12

5.93 5.91 5.87 5.84 5.80 5.77 5.74 5.71 5.70 5.68 5.66 5.65 5.64 5.63
14.45 14.37 14.24 14.15 14.02 13.93 13.83 13.74 13.69 13.61 13.5713.5213.4813.46

4.70 4.68 4.64 4.60 4.56 4.53 4.50 4.46 4.44 4.42 4.40 4.38 4.37 4.36

9.96 9.89 9.77 9.68 9.55 9.47 9.38 9.29 9.24 9.17 9.13 9.07 9.04 9.02

4.03 4.00 3.96 3.92 3.87 3.84 3.81 3.77 3.75 3.72 3.71 3.69 3.68 3.67
7.79 7.72 7.60 7.52 7.39 7.31 7.23 7.14 7.09 7.02 6.99 6.94 6,90 6.88

3.60 3.57 3.52 3.49 3.44 3.41 3.38 3.34 3.32 3.29 3.28 3.25 3.24 3.23
6.54 6.47 6.35 6.27 6.15 6.07 5,98 5.90 5,85 5.78 5.75 5.70 5.67 5.65

3.31 3.28 3.23 3.20 3.15 3.12 3.08 3.05 3.03 3.00 2.98 2.96 2.94 2.93
5.74 5.67 5.56 5.48 5.36 5.28 5.20 5.11 5.06 5.00 4.96 4.91 4.88 4.86

3.10 3.07 3.02 2.98 2.93 2.90 2.86 2.82 2.80 2.77 2.76 2.73 2.72 2.71

5.18 5.11 5.00 4.92 4.80 4.73 4.64 4.56 4.51 4.45 4.41 4.36 4.33 4.31

2.94 2.91 2.86 2.82 2.77 2.74 2.70 2.67 2.64 2.61 2.59 2.56 2.55 2.54

4.78 4.71 4.60 4.52 4.41 4.33 4.25 4.17 4.12 4.05 4.01 3.96 3.93 3.91
2.82 2.79 2.74 2.70 2.65 2.61 2.57 2.53 2.50 2.47 2.45 2.42 2.41 2.40

4.46 4.40 4.29 4.21 4.10 4.02 3.94 3.86 3.80 3.74 3.70 3.66 3.62 3.60

2.72 2.69 2.64 2.60 2.54 2.50 2.46 2.42 2.40 2.36 2.35 2.32 2.31 2.30
4.22 4.16 4.05 3.93 3.86 3.78 3.70 3.61 3.56 3.49 3.46 3.41 3.38 3.36
2.63 2.60 2.55 2.51 2.46 2.42 2.38 2.34 2.32 2.28 2.26 2.24 2.22 2.21

4.02 3.96 3.85 3.78 3.67 3.59 3.51 3.42 3.37 3.30 3.27 3.21 3.18 3.16
2.56 2.53 2.48 2.44 2.39 2.35 2.31 2.27 2.24 2.21 2.19 2.16 2.14 2.13

3.86 3.80 3.70 3.62 3.51 3.43 3.34 3.26 3.21 3.14 3.11 3.06 3.02 3.00

2.51 2.48 2.43 2.39 2.33 2.29 2.25 2.21 2.18 2.15 2.12 2.10 2.08 2.07

3.73 3.67 3.56 3.48 3.36 3.29 3.20 3.12 3.07 3.00 2.97 2.92 2.89 2.87

2.45 2.42 2.37 2.33 2.28 2.24 2.20 2.16 2.13 2.09 2.07 2.04 2.02 2.01

3.61 3.55 3.45 3.37 3.25 3.18 3.10 3.01 2.96 2.89 2.86 2.80 2.77 2.75

2.41 2.38 2.33 2.29 2.23 2.19 2.15 2.11
3.52 3.45 3.35 3.27 3.16 3.08
2.37 2.34 2.29 2.25 2.19 2.15
3.44 3.37 3.27 3.19 3.07 3.00

2.34 2.31 2.26 2.21 2.15 2.11
3.36 3.30 3.19 3.12 3.00 2.92

2.15

3.00

2.11
2.91

2.07

2.84

2.11
2.92

2.07

2.83

2.02

2,76

2.08
2.86

2.04

2.78

2.00

2.70

2.04
2.79

2.00

2.71

1.96

2.63

2.02
2.76

1.98

2.68

1.94

2.60

1.99
2.70

1.95

2.62

1.91
2.54

1.97

2.67

1.93
2.59

1.90

2.51

1.96

2.65

1.92
2.57

1.88

2.49
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TABLE B.4 (continued)

Denominator

degrees of
freedom

(m2)

20

21

22

23

24

25

26

27

28

29

30

32

34

36

38

40

42

44

46

48

;

4.35

8.10

4.32
8.02

4.30

7.94

4.28

7.88

4.26
7.82

4.24
7.77

4.22

7.72

4.21
7.68

4.20
7.64

4.18

7.60

4.17
7.56

4.15

7.50

4.13
7.44
4.11
7.39

4.10
7.35

4.08

7.31

4.07
7.27

4.06

7.24

4.05

7.21

4.04
7.19

2

3.49
5.85

3.47
5.78

3.44
5.72

3.42

5.66

3.40
5.61

3.38

5.57

3.37
5.53
3.35
5.49

3.34

5.45

3.33
5.42

3.32

5.39

3.30
5.34

3.28

5.29

3.26
5.25

3.25

5.21

3.23
5.18

3.22
5.15

3.21

5.12

3.20
5.10

3.19

5.08

Numerator degrees of freedom

3

3.10
4.94

3.07

4.87

3.05
4.82

3.03

4.76

3.01
4.72

2.99

4.68

2.98

4.64

2.96
4.60

2.95

4.57

2.93

4.54

2.92
4.51

2,90

4.46

2.88
4.42

2.86

4.38

2.85

4.34

2.84
4.31
2.83
4.29
2.82

4.26

2.81
4.24

2.80

4.22

4

2.87

4.43

2.84
4.37

2.82

4.31

2.80
4.26

2.78

4.22

2.76

4.18

2.74
4.14

2.73
4.11
2.71
4.07
2.70
4.04

2.69
4.02
2.67
3.97
2.65

3.93

2.63
3.89

2.62

3.86

2.61
3.83
2.59
3.80
2.58
3.78
2.57

3.76

2.56
3.74

5

2.71

4.10

2,68
4.04

2.66

3.99

2.64

3.94

2.62
3.90

2.60

3.86

2.59
3.82

2.57

3.79

2.56

3.76

2.54
3.73

2.53
3.70
2.51
3.66
2.49

3.61

2.48
3.58

2.46

3.54

2.45
3.51

2.44

3.49

2.43
3.46

2.42

3.44

2.41
3.42

6

2.60
3.87

2.57
3.81

2.55

3.76

2.53
3.71
2.51
3.67

2.49

3.63

2.47
3.59

2.46

3.56

2.44
3.53
2.43
3.50

2.42
3.47

2.40
3.42

2.38

3.38

2.36
3.35
2.35
3.32

2.34

3.29

2.32
3.26

2.31
3.24

2.30
3.22

2.30
3.20

7

2.52

3.71

2.49
3.65

2.47

3.59

2.45
3.54

2.43

3.50

2.41
3.46

2.39

3.42

2.37
3.39
2.36
3.36
2.35

3.33

2.34
3.30
2.32
3.25
2.30

3.21

2.28
3.18
2.26
3.15

2.25

3.12

2.24
3.10
2.23
3.07
2.22

3.05

2.21
3.04

(m.)

8

2.45
3.56

2.42

3.51

2.40

3.45

2.38
3.41
2.36
3.36

2,34

3.32

2.32
3.29

2.30
3.26

2.29

3.23

2.28
3.20

2.27

3.17

2.25
3.12
2.23
3.08
2.21
3.04
2.19
3.02

2.18
2.99

2.17

2.96

2.16
2.94

2.14

2.92

2.14
2.90

9

2.40
3.45

2.37
3.40

2.35
3.35
2.32
3.30
2.30
3.25

2.28
3.21
2.27

3.17

2.25
3.14
2.24
3.11
2.22
3.08

2.21
3.06
2.19
3.01

2.17
2.97

2.15
2.94

2.14

2.91

2.12

2.88

2.11
2.86

2.10

2.84

2.09

2.82

2.08
2.80

10

2.35
3.37

2.32

3.31

2.30
3.26

2.28

3.21

2.26
3.17

2.24
3.13
2.22

3.09

2.20
3.06

2.19

3.03

2.18

3.00

2.16
2.98

2.14
2.94

2.12

2.89

2.10
2.86

2.09

2.82

2.07

2.80

2.06
2.77

2.05

2.75

2.04

2.73

2.03
2.71

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.02
7.17 5.06 4.20 3.72 3.41 3.18 3.02 2.88 2.78 2.70

55 4.02 3.17 2.78 2.54 2.38 2.27 2.18 2.11 2.05 2.00

7.12 5.01 4.16 3.68 3.37 3.15 2.98 2.85 2.75 2.66

(continued on page 760)
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\320\233 12 14 16 20 24 30 40 SO 75 100 200 500 \302\260\302\260

2.31 2.28 2.23 2.18 2.12 2.08 2.04 1.99 1.96 1.92 1.90 1.87 1.85 1.84

3.30 3.23 3.13 3.05 2.94 2.86 2.77 2.69 2.63 2.56 2.53 2.47 2.44 2.42

2.28 2.25 2.20 2.15 2.09 2.05 2.00 1.96 1.93 1.89 1.87 1.84 1.82 1.81

3.24 3.17 3.07 2.99 2.88 2.80 2.72 2.63 2.58 2.51 2.47 2.42 2.38 2.36

2.26 2.23 2.18 2.13 2.07 2.03 1.98 1.93 1.91 1.87 1.84 1.81 1.80 1.78

3.18 3.12 3.02 2.94 2.83 2.75 2.67 2.58 2.53 2.46 2.42 2.37 2.33 2.31
2.24 2.20 2.14 2.10 2.04 2.00 1.96 1.91 1.88 1.84 1.82 1.79 1.77 1.76
3.14 3.07 2.97 2.89 2.78 2.70 2.62 2.53 2.48 2.41 2.37 2.32 2.28 2.26

2.22 2.18 2.13 2.09 2.02 1.98 1.94 1.89 1.86 1.82 1.80 1.76 1.74 1.73
3.09 3.03 2.93 2.85 2.74 2.66 2.58 2.49 2.44 2.36 2.33 2.27 2.23 2.21

2.20 2.16 2.11 2.06 2.00 1.96 1.92 1.87 1.84 1.80 1.77 1.74 1.72 1.71

3.05 2.99 2.89 2.81 2.70 2.62 2.54 2.45 2.40 2.32 2.29 2.23 2.19 2.17

2.18

3.02

2.16
2.98

2.15
2.95

2.14
2.92

2.12

2.90

2.10
2.86

2.08

2.82

2.06

2.78

2.05
2.75

2.04

2.73

2.02

2.70

2.01
2.68

2.00

2.66

1.99

2.64

1.98
2.62

1.97

2.59

2.15

2.96

2.13
2.93

2.12

2.90

2.10
2.87

2.09

2.84

2.07

2.80

2.05
2.76

2.03

2.72

2.02

2.69

2.00
2.66

1.99

2.64

1.98

2.62

1.97
2.60

1.96

2.58

1.95

2.56

1.93
2.53

2.10
2.86

2.08

2.83

2.06

2.80

2.05
2.77

2.04

2.74

2.02

2.70

2.00
2.66

1.98

2.62

1.96

2.59

1.95
2.56

1.94

2.54

1.92

2.52

1.91
2.50

1.90

2.48

1.90

2.46

1.88
2.43

2.05

2.77

2.03
2.74

2.02

2.71

2.00

2.68

1.99
2.66

1.97

2.62

1.95

2.58

1.93
2.54

1.92

2.51

1.90

2.49

1.89
2.46

1.88

2.44

1.87
2.42

1.86

2.40

1.85

2.39

1.83
2.35

1.99

2.66

1.97
2.63

1.96

2.60

1.94
2.57

1.93

2.55

1.91
2.51

1.89

2.47

1.87

2.43

1.85
2.40

1.84

2.37

1.82

2.35

1.81
2.32

1.80
2.30

1.79

2.28

1.78
2.26

1.76

2.23

1.95

2.58

1.93
2.55

1.91

2.52

1.90

2.49

1.89
2.47

1.86

2.42

1.84

2.38

1.82
2.35

1.80

2.32

1.79

2.29

1.78
2.26

1.76

2.24

1.75

2.22

1.74
2.20

1.74

2.18

1.72

2.15

1.90
2.50

1.88
2.47

1.87

2.44

1.85
2.41

1.84

2.38

1.82

2.34

1.80
2.30

1.78

2.26

1.76
2.22

1.74

2.20

1.73
2.17

1.72

2.15

1.71
2.13

1.70

2.11

1.69
2.10

1.67

2.06

1.85
2.41

1.84

2.38

1.81
2.35

1.80

2.32

1.79

2.29

1.76
2.25

1.74

2.21

1.72

2.17

1.71
2.14

1.69

2.11

1.68

2.08

1.66
2.06

1.65

2.04

1.64

2.02

1.63
2.00

1.61

1.96

1.82

2.36

1.80
2.33
1.78
2.30
1.77
2.27

1.76
2.24
1.74
2.20
1.71
2.15
1.69

2.12

1.67
2.00

1.66

2.05

1.64

2.02

1.63
2.00

1.62

1.98

1.61
1.96

1.60

1.94

1.58

1.90

1.78
2.28

1.76

2.25

1.75

2.22

1.73
2.19

1.72

2.16

1.69
2.12

1.67

2.08

1.65
2.04

1.63

2.00

1.61
1.97

1.60

1.94

1.58

1.92

1.57
1.90

1.56

1.88

1.55

1.86

1.52
1.82

1.76

2.25

1.74

2.21

1.72
2.18

1.71

2.15

1.69

2.13

1.67
2.08

1.64

2.04

1.62

2.00

1.60
1.97

1.59

1.94

1.57

1.91

1.56
1.88

1.54

1.86

1.53
1.84

1.52

1.82

1.50
1.78

1.72

2.19

1.71
2.16

1.69

2.13

1.68
2.10

1.66

2.07

1.64

2.02

1.61
1.98

1.59

1.94

1.57

1.90

1.55
1.88

1.54

1.85

1.52

1.82

1.51
1.80

1.50

1.78

1.48

1.76

1.46
1.71

1.70

2.15

1.68
2.12

1.67

2.09

1.65
2.06

1.64

2.03

1.61
1.98

1.59

1.94

1.56

1.90

1.54
1.86

1.53

1.84

1.51
1.80

1.50

1.78

1.48

1.76

1.47
1.73

1.46
1.71
1.43
1.66

1.69
2.13
1.67

2.10

1.65
2.06

1.64

2.03

1.62

2.01

1.59
1.96

1.57
1.91

1.55

1.87

1.53
1.84

1.51

1.81

1.49

1.78

1.48
1.75

1.46

1.72

1.45

1.70

1.44
1.68

1.41
1.64
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TABLE B.4 (continued)

Denominator

degrees of
freedom

(m2)

\302\2530

65

70

80

100

125

150

200

400

1000

QO

;

4.00
7.08

3.99

7.04

3.98

7.01

3.96
6.96

3.94

6.90

3.92
6.84

3.91

6.81

3.89
6.76

3.86

6.70

3.85
6.66

3.84

6.64

2

3.15
4.98
3.14
4.95
3.13
4.92
3.11
4.88
3.09

4.82

3.07
4.78

3.06

4.75

3.04

4.71

3.02
4.66

3.00

4.62

2.99

4.60

/

Numerator degrees of freedom (m

3

2.76
4.13
2.75
4.10
2.74

4.08

2.72
4.04

2.70
3.98

2.68

3.94

2.67
3.91
2.65
3.88
2.62

3.83

2.61
3.80

2.60

3.78

4

2.52

3.65

2.51
3.62

2.50

3.60

2.48
3.56

2.46

3.51

2.44
3.47

2.43
3.44

2.41

3.41

2.39
3.36
2.38
3.34

2.37

3.32

5

2.37

3.34

2.36
3.31
2.35
3.29
2.33

3.25

2.30
3.20

2.29

3.17

2.27
3.14
2.26
3.11
2.23

3.06

2.22
3.04

2.21

3.02

6

2.25

3.12

2.24
3.09

2.23

3.07

2.21

3.04

2.19
2.99

2.17
2.95

2.16
2.92

2.14
2.90

2.12
2.85

2.10

2.82

2.09

2.80

7

2.17
2.95

2.15

2.93

2.14
2.91

2.12

2.87

2.10
2.82

2.08

2.79

2.07

2.76

2.05
2.73

2.03
2.69

2.02

2.66

2.01

2.64

.)

8

2.10
2.82

2.08

2.79

2.07

2.77

2.05
2.74

2.03

2.69

2.01
2.65

2.00

2.62

1.98

2.60

1.96
2.55

1.95

2.53

1.94

2.51

9

2.04

2.72

2.02
2.70

2.01

2.67

1.99

2.64

1.97
2.59

1.95

2.56

1.94

2.53

1.92
2.50

1.90

2.46

1.89

2.43

1.88
2.41

10

1.99

2.63

1.98
2.61

1.97

2.59

1.95
2.55

1.92
2.51

1.90

2.47

1.89
2.44

1.87
2.41

1.85

2.37

1.84
2.34

1.83
2.32

The table describes the distribution of an F variable with m, numerator and nu denominator degrees
of freedom. Entries in the standard typeface give the 5% critical value, and boldface entries give the
1% critical value for the distribution. For example, there is a 5% probability that an F variable with 2
numerator and 50 denominator degrees of freedom would exceed 3.18; there is only a 1% probability
that it would exceed 5.06.

Source; George W. Snedecor and William G. Cochran, Statistical Methods, 8th ed. Copyright 1989 by
Iowa State University Press. Reprinted by permission of Iowa State University Press.
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\320\273

1.95

2.56

1.94

2.54

1.93
2.51

1.91

2.48

1.88

2.43

1.86
2.40

1.85

2.37

1.83
2.34

1.81

2.29

1.80

2.26

1.79
2.24

12

1.92
2.50

1.90

2.47

1.89

2.45

1.88
2.41

1.85

2.36

1.83
2.33
1.82
2.30
1.80
2.28

1.78

2.23

1.76

2.20

1.75
2.18

14

1.86
2.40

1.85

2.37

1.84

2.35

1.82
2.32

1.79

2.26

1.77
2.23

1.76

2.20

1.74
2.17

1.72

2.12

1.70
2.09

1.69

2.07

16

1.81
2.32

1.80

2.30

1.79
2.28

1.77

2.24

1.75

2.19

1.72
2.15

1.71

2.12

1.69

2.09

1.67
2.04

1.65

2.01

1.64

1.99

20

1.75

2.20

1.73
2.18

1.72

2.15

1.70

2.11

1.68
2.06

1.65

2.03

1.64

2.00

1.62
1.97

1.60

1.92

1.58

1.89

1.57
1.87

24

1.70
2.12

1.68

2.09

1.67
2.07

1.65

2.03

1.63
1.98

1.60

1.94

1.59

1.91

1.57
1.88

1.54

1.84

1.53
1.81

1.52

1.79

30

1.65

2.03

1.63
2.00

1.62

1.98

1.60

1.94

1.57
1.89

1.55

1.85

1.54

1.83

1.52
1.79

1.49

1.74

1.47

1.71

1.46
1.69

40

1.59
1.93

1.57

1.90

1.56
1.88

1.54

1.84

1.51
1.79

1.49
1.75

1.47

1.72

1.45
1.69

1.42
1.64

1.41
1.61

1.40

1.59

50

1.56

1.87

1.54
1.84

1.53
1.82

1.51

1.78

1.48

1.73

1.45
1.68

1.44

1.66

1.42

1.62

1.38
1.57

1.36
1.54

1.35
1.52

75

1.50
1.79

1.49

1.76

1.47
1.74

1.45

1.70

1.42

1.64

1.39
1.59

1.37

1.56

1.35
1.53

1.32
1.47

1.30
1.44

1.28

1.41

100

1.48

1.74

1.46
1.71

1.45

1.69

1.42
1.65

1.39

1.59

1.36
1.54

1.34

1.51

1.32
1.48

1.28

1.42

1.26

1.38

1.24
1.36

200

1.44
1.68

1.42

1.64

1.40
1.62

1.38

1.57

1.34
1.51

1.31
1.46
1.29
1.43
1.26
1.39
1.22
1.32
1.19
1.28

1.17
1.25

500

1.41
1.63

1.39
1.60

1.37
1.56

1.35
1.52

1.30
1.46

1.27

1.40

1.25
1.37

1.22

1.33

1.16
1.24

1.13

1.19

1.11
1.15

\320\276\320\276

1.39

1.60

1.37
1.56

1.35

1.53

1.32
1.49

1.28

1.43

1.25

1.37

1.22
1.33
1.19
1.28
1.13
1.19
1.08

1.11

1.00
1.00
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TABLE B.5
Critical Values for the Phillips-Perron Zp Test and for the Dickey-Fuller Test
Basedon Estimated OLS Autoregressive Coefficient

Sample
size

T

25
50

100
250
500

00

25

50

100
250
500

00

25

50

100
250
500

oo

0.01

-11.9

-12,9
-13.3
-13.6
-13.7
-13.8

-17.2
-18.9
-19.8
-20.3
-20.5
-20.7

-22.5

-25.7

-27.4
-28.4
-28.9
-29.5

Probability

0.025

-9.3

-9.9
-10.2
-10.3
-10.4
-10.5

-14.6
-15.7
-16.3
-16.6
-16.8
-16.9

-19.9

-22.4

-23.6
-24.4
-24.8
-25.1

0,05

-7.3

-7.7

-7.9
-8.0
-8.0
-8.1

-12.5
-13.3
-13.7
-14.0
-14.0
-14.1

-17.9

-19.8

-20.7

-21.3
-21.5
-21.8

that T(p
-

0.10

Case1
-5.3
-5.5
-5.6
-5.7
-5.7
-5.7

Case 2

-10.2
-10.7
-11.0
-11.2
-11.2
-11.3

Case 4

-15.6

-16.8
-17.5
-18.0
-18.1
-18.3

1)is less

0,90

1.01
0.97
0.95
0.93
0.93
0.93

-0.76
-0.81
-0.83
-0.84
-0.84
-0.85

-3.66

-3.71

-3.74
-3.75
-3.76
-3.77

than entry

0.95

1.40
1.35
1.31
1.28
1.28
1.28

0.01
-0.07
-0.10
-0.12
-0.13
-0.13

-2.51

-2.60

-2.62
-2.64
-2.65
-2.66

0.975

1.79

1.70

1.65
1.62
1.61
1.60

0.65
0.53
0.47
0.43
0.42
0.41

-1.53
-1.66
-1.73
-1.78
-1.78
-1.79

0.99

2.28

2.16
2.09
2.04
2.04
2.03

1.40
1.22
1.14
1.09
1.06
1.04

-0.43

-0.65

-0.75
-0.82
-0.84
-0.87

The probability shown at the head of the column is the area in the left-hand tail.

Source: Wayne A. Fuller, Introduction to Statistical Time Series, Wiley, New York, 1976, p. 371.
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TABLE B.6
Critical Values for the Phillips-Perron Z, Test and for the Dickey-Fuller Test
Basedon Estimated OLS t Statistic

Sample
size

T

25
50

100
250
500

oo

25

50

100
250
500

oo

25

50

100
250
500

00

0.01

-2.66

-2.62
-2.60
-2.58
-2.58
-2.58

-3.75
-3.58
-3.51
-3.46
-3.44

-3.43

-4.38

-4.15
-4.04
-3.99
-3.98
-3.96

Probability

0.025

-2.26

-2.25
-2.24
-2.23
-2.23
-2.23

-3.33
-3.22
-3.17
-3.14
-3.13
-3.12

-3.95

-3.80

-3.73

-3.69
-3.68
-3.66

0.05

-1.95
-1.95
-1.95
-1.95
-1.95
-1.95

-3.00
-2.93

-2.89

-2.88

-2.87
-2.86

-3.60
-3.50
-3.45
-3.43
-3.42
-3.41

that (p
-

0.10

Case1
-1.60
-1.61
-1.61
-1.62
-1.62
-1.62

Case 2

-2.63

-2.60
-2.58
-2.57
-2.57
-2.57

Case 4

-3.24

-3.18
-3.15
-3.13
-3.13
-3.12

l)/<Jji is less than entry

0.90

0.92

0.91
0.90
0.89
0.89
0.89

-0.37
-0.40
-0.42
-0.42
-0.43
-0.44

-1.14

-1.19

-1.22
-1.23
-1.24
-1.25

0.95

1.33

1.31

1.29
1.29
1.28
1.28

0.00
-0.03
-0.05
-0.06
-0.07
-0.07

-0.80
-0.87

-0.90

-0.92

-0.93
-0.94

0.975

1.70
1.66
1.64
1.63
1.62
1.62

0.34

0.29

0.26

0.24
0.24
0.23

-0.50
-0.58
-0.62
-0.64
-0.65
-0.66

0.99

2.16

2.08

2.03
2.01
2.00
2.00

0.72
0.66
0.63
0.62
0.61
0.60

-0.15
-0.24
-0.28
-0.31
-0.32
-0.33

The probability shown at the head of the column is the area in the left-hand tail.

Source: Wayne A. Fuller, Introduction to Statistical Time Series, Wiley, New York, 1976, p. 373.
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TABLE B.7
Critical Values for the Dickey-Fuller TestBasedon the OLS F Statistic

Sample
size

T

25
50

100
250
500

00

25

50

100
250
500

00

0.99

(F test

0.29
0.29
0.29
0.30
0.30
0.30

(F test of

0.74

0.76
0.76
0.76
0.76
0.77

0.975

of a =

0.38
0.39
0.39

0.39

0.39

0.40

5 = 0,
0.90
0.93
0.94
0.94
0.94
0.94

Probakility

0.95

0, p = 1 in

0.49

0.50

0.50
0.51
0.51
0.51

that F test is greater

0.90

Case2
regression

0.65

0.66

0.67
0.67
0.67
0.67

Case 4

p = 1 in regression y,

1.08
1.11
1.12
1.13
1.13
1.13

1.33
1.37

1.38

1.39

1.39
1.39

0.10

\\y,
= a

4.12
3.94
3.86
3.81
3.79
3.78

= a +

5.91

5.61

5.47
5.39
5.36
5.34

than entry

0.05

+ \320\240\320\243,-1

5.18

4.86

4.71
4.63
4.61
4.59

St + py,

7.24
6.73
6.49
6.34
6.30
6.25

0.025

+ u,)

6.30
5.80
5.57
5.45
5.41
5.38

-i + \",)

8.65

7.81
7.44
7.25
7.20
7.16

0.01

7.88

7.06

6.70
6.52
6.47
6.43

10.61
9.31
8.73

8.43

8.34

8.27

Theprobability shown at the head of the column is the area in the right-hand tail.

Source: David A. Dickey and Wayne A. Fuller, \"Likelihood Ratio Statistics for Autoregressive Time
Series with a Unit Root,\" Econometrica 49 A981), p. 1063.
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TABLE B.8
Critical Values for the Phillips Zp Statistic When Applied to Residuals

from Spurious Cointegrating Regression

Number of
right-hand

variables in

regression,
excluding
trend or

constant

(\320\270-1)

1

2

3
4
5

1
2
3
4
5

1
2
3
4

5

Sample
size
(\320\223)

500

500

500
500
500

500
500

500

500

500

500
500
500
500

500

0.010

-22.8
-29.3
-36.2
-42.9
-48.5

-28.3
-34.2
-41.1
-47.5

-52.2

-28.9

-35.4
-40.3
-47.4
-53.6

Probability

0.025

; that (T
0.050

Case1
-18.9
-25.2
-31.5
-37.5
-42.5

-15.6
-21.5
-27.9

-33.5

-38.1

Case 2
-23.8
-29.7
-35.7
-41.6
-46.5

-20.5
-26.1
-32.1
-37.2

-41.9

Case3

-24.8
-30.8
-36.1
-42.6
-47.1

-21.5
-27.1
-32.2
-37.7

-42.5

- 00 -
0.075

-13.8

-19.6

-25.5
-30.9
-35.5

-18.5
-23.9
-29.5
-34.7
-39.1

\342\200\224

-24.8

-29.7

-35.0
-39.7

1)is less

0.100

-12.5
-18.2
-23.9
-28.9
-33.8

-17.0
-22.2
-27.6
-32.7
-37.0

-18.1
-23.2

-27.8

-33.2

-37.7

than entry

0.125

-11.6
-17.0
-22.6
-27.4
-32.3

-15.9
-21.0
-26.2
-31.2
-35.5

\342\200\224

-21.8

-26.5

-31.7
-36.0

0.150

-10.7
-16.0
-21.5
-26.2
-30.9

-14.9
-19.9
-25.1
-29.9

-34.2

\342\200\224

-20.8

-25.3

-30.3
-34.6

The probability shown at the head of the column is the area in the left-hand tail.

Source: P. \320\241.\320\222.Phillips and S. Ouliaris, \"Asymptotic Properties of Residual Based Tests for Coin-

tegration,\" Econometrica 58 A990), pp. 189-90. Also Wayne A. Fuller, Introduction to Statistical Time
Series, Wiley, New York, 1976, p. 371.
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TABLE B.9
Critical Values for the Phillips Z, Statistic or the Dickey-Fuller t Statistic When

Applied to Residuals from Spurious Cointegrating Regression

Number of
right-hand

variables in

regression,
excluding
trend or
constant
(\320\270-1)

1

2

3
4
5

1
2
3
4
5

1

2

3
4
5

Sample
size

(\320\223)

500

500

500
500
500

500
500

500

500

, 500

500
500
500

500

500

0.010

-3.39
-3.84
-4.30
-4.67
-4.99

-3.96
-4.31
-4.73
-5.07
-5.28

-3.98

-4.36

-4.65

-5.04
-5.36

Probability that (p

0.025

-3.05
-3.55
-3.99
-4.38
-4.67

-3.64
-4.02
-4.37
-4.71
-4.98

-3.68

-4.07

-4.39

-4.77
-5.02

0.050

Case1
-2.76
-3.27
-3.74
-4.13
-4.40

Case 2

-3.37

-3.77
-4.11
-4.45
-4.71

Case3
-3.42
-3.80
-4.16
-4.49
-4.74

-
1L

0.075

-2.58
-3.11
-3.57
-3.95
-4.25

-3.20
-3.58
-3.96

-4.29

-4.56

-3.65
-3.98
-4.32
-4.58

is less than entry
0.100

-2.45
-2.99
-3.44
-3.81
-4.14

-3.07
-3.45
-3.83
-4.16
-4.43

-3.13

-3.52

-3.84
-4.20
-4.46

0.125

-2.35
-2.88
-3.35
-3.71
-4.04

-2.96

-3.35

-3.73

-4.05
-4.33

-3.42
-3.74
-4.08
-4.36

0.150

-2.26

-2.79

-3.26
-3.61
-3.94

-2.86
-3.26
-3.65
-3.96
-4.24

-3.33
-3.66
-4.00

-4.28

The probability shown at the head of the column is the area in the left-hand tail.

Source: P. C. B. Phillips and S. Ouliaris, \"Asymptotic Properties of Residual Based Tests for Coin-
tegration,\" Economeirica 58 A990), p. 190. Also Wayne A. Fuller, Introduction to Statistical Time
Series, Wiley, New York, 1976, p. 373.
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TABLE \320\222.10

Critical Values for Johansen'sLikelihood Ratio Test of the Null Hypothesis
of h Cointegrating Relations Against the Alternative of No Restrictions

Number of
random walks

(g- n- h)
(*)

1
2
3

4

5

1

2

3
4
5

1
2
3
4
5

Sample

size

(\320\223)

400

400

400
400
400

400
400

400

400

400

400
400
400
400

400

Probability that 2(<6A
-

0.500

0.58
5.42

14.30
27.10
43.79

2.415

9.335

20.188
34.873
53.373

0.447
7.638

18.759

33.672

52.588

0.200

Casel
1.82
8.45

18.83

33.16

51.13

Case 2
4.905

13.038
25.445

41.623

61.566

Case3

1.699
11.164
23.868
40.250

60.215

0.100

2.86
10.47
21.63
36.58
55.44

6.691

15.583

28.436
45.248
65.956

2.816
13.338
26.791
43.964

65.063

2o) is greater than

0.050

3.84

12.53
24.31
39.89
59.46

8.083

17.844

31.256

48.419
69.977

3.962
15.197
29.509

47.181

68.905

0.025

4.93
14.43
26.64
42.30
62.91

9.658

19.611

34.062

51.801
73.031

5.332
17.299
32.313
50.424

72.140

entry

0.001

6.51
16.31
29.75
45.58
66.52

11.576

21.962

37.291
55.551
77.911

6.936
19.310
35.397

53.792

76.955

The probability shown at the head of the column is the area in the right-hand tail. The number of

random walks under the null hypothesis (g) is given by the number of variables described by the
vector autoregression (n) minus the number of cointegrating relations under the null hypothesis (h).
In each case the alternative is that g = 0.

Source: Michael Osterwald-Lenum, \"A Note with Quantiles of the Asymptotic Distribution of the
Maximum Likelihood Cointegration Rank Test Statistics,\" Oxford Bulletin of Economics and Sta-

Statistics54 A992), p. 462; and Seren Johansen and Katarina Juselius, \"Maximum Likelihood Esti-
Estimation and Inference on Cointegration\342\200\224with Applications to the Demand for Money,\" Oxford
Bulletin of Economics and Statistics 52 A990), p. 208.
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TABLE \320\222.11

Critical Values for Johansen's Likelihood Ratio Test of the Null Hypothesis
of h Cointegrating Relations Against the Alternative of h + 1 Relations

Number of
random walks
(e -

n - h)
Or)

l

2

3
4
5

1
2
3
4
5

1 -\342\200\242

2

3

4
5

Sample
size

400

400
400
400
400

400

400

400

400
400

400
400
400

400

400

Probability that 2(<\302\243A
-

0.500

0.58
4.83
9.71

14.94
20.16

2.415
7.474

12.707

17.875

23.132

0.447
6.852

12.381
17.719
23.211

0.200

Case 1

1.82
7.58

13.31
18.97
24.83

Case 2

4.905
10.666
16.521
22.341
27.953

Case3

1.699

10.125
16.324
22.113
27.899

0.100

2.86

9.52

15.59
21.58
27.62

6.691
12.783
18.959
24.917
30.818

2.816
12.099

18.697

24.712

30.774

20) is greater than entry

0.050

3.84
11.44
17.89
23.80

30.04

8.083

14.595
21.279
27.341
33.262

3.962

14.036

20.778

27.169
33.178

0.025

4.93
13.27
20.02

26.14

32.51

9.658
16.403
23.362
29.599
35.700

5.332

15.810

23.002
29.335
35.546

0.001

6.51
15.69
22.99

28.82

35.17

11.576
18.782
26.154
32.616
38.858

6.936

17.936

25.521
31.943
38.341

The probability shown at the head of the column is the area in the right-hand tail. The number of
random walks under the null hypothesis (g) is given by the number of variables described by the
vector autoregression (\320\273)minus the number of cointegrating relations under the null hypothesis (h).
In each case the alternative is that there are h + 1 cointegrating relations.

Source: Michael Osterwald-Lenum, \"A Note with Quantiles of the Asymptotic Distribution of the
Maximum Likelihood Cointegration Rank Test Statistics,\" Oxford Bulletin of Economics and Sta-

Statistics54 A992), p. 462; and S0ren Johansen and Katarina Juselius, \"Maximum Likelihood Esti-
Estimation and Inference on Cointegration\342\200\224with Applications to the Demand for Money,\" Oxford
Bulletin of Economics and Statistics 52 A990), p. 208.
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\321\201

Answers

to Selected Exercises

Chapter 3. Stationary ARM A Processes
3.1. Yes, any MA process is covanance-stationary. Autocovariances:

To = 7.4

\320\243\302\261.
= 4-32

\320\243\302\261\320\263
= 0.8

\321\212
= 0 for |/| > 2.

3.2. Yes, the process is covanance-stationary, since

A - l.lr + 0.18z2)
= A - 0.9z)(l -

0.2z);

the eigenvalues @.9 and 0.2) are both inside the unit circle. The autocovariances are as
follows:

% = 7.89

Ti
- 7.35

\321\203,
= l.ly,.,

- 0.18y,_2 for; = 2, 3, ...
. \320\243-i

=
\320\2431-

3.3. Equating coefficients on:
L\302\260gives i//0 = 1

U gives -\321\2041\321\2040+ i/\302\273i
= 0

L2 gives -\321\204\320\263\320\244\320\260
~

\320\2441\320\2441+ \320\2442
- 0

gives -\321\204\321\200\321\204/-\321\200
-

\321\204\321\200-1\321\2041-\321\200+1
- \342\200\242

for; = p,p + 1, . . . .
-

\321\204,)//..,+ i//;.
= 0,

These imply

\321\204\320\260=

l/\302\273;
=

\321\204,!/\302\273;-,+ \321\204\320\263^-2+ \342\200\242\342\200\242\342\226\240+
\320\244\321\200\320\244/-,,for/ '=

\321\200,\321\200+ 1, . . . .

Thus the values of i//; are the solution to a pth-order difference equation with starting values

\321\204\342\200\236
= 1 and i//_i

=
i//_2

= \342\226\240\342\200\242\342\200\242=
i/\302\273_p+i

= 0. Thus, from the results on difference equations,
1'

= F>
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that is

\320\244,
= /V?-

3.4. From [2.1.6],
\321\204(\320\246\321\201

=
(<//\342\200\236+0, + fa + 03 + \342\200\242\342\226\240

\342\200\242)\342\200\242<:.

But the sum @O + 0i + 02 + 03 + \342\200\242\342\200\242
\342\200\242)can be viewed as the polynomial 0(z) evaluated

at z = 1:

0(L)c = 0A)-c.
Moreover, from [3.4.19],

0A) = 1/A - 0, -
0\320\263).

3.5. Let A, and A2 satisfy A - 0,r -
0?z2)

= A - A,z)(l -
A2r), noting that A, and A2

are both inside the unit circle for a covariance-stationary ARB) process.^
Consider first the case where A, and A2 are real and distinct. Then from [1.2.29],

\302\24310,1
= 2\\cM+'cM\\

j-0 1-0

< \302\243mi + \302\243\\
j-0 1-0

- |A2|)

Consider next the case where At and A2 are distinct complex conjugates.Let R = |A,|
denote the modulus of A! or A2. Then 0 < R < 1, and from [1.2.39],

2 I0rl
i-o

, for the case

\302\243w =
\302\243

I-o i.e

= S M{ + C2A2|
/-0

=
\302\243\\2aR' cos@/)
/-0

s \\2a\\ \302\243\320\233/|\321\201\320\2768(\320\262\320\233

s|2a| \302\243R' + |2j3|
/-\302\273

= 2(|a| + |0|)/A -

-
2j3fl''sin@/)|

1 + |2\320\240|\302\243\321\217>|

;-o

\342\226\240\320\257)

of a repeated real root |A| < 1,

i
fcil \302\243|A|> + |/

i-o

|sin(e/)|

h\\ \302\243I/A'\"!.
i-o

But

|fc.|\302\243|A
i-o

and

\302\243|/A/-4
= 1 + 2|A| + 3|Api-o

=
A + |A| + |A|2 + |A|\302\273+ \342\226\240\342\226\240\342\226\240)+ (|A| + |A|2 +
+ (|Ap+|A|3 + ---)

=
1/A

- |A|) + |A|/A -
|A|) + |A|VA - |A|) +

=
\320\2461

- |A|J
< 00.

3.8. A + 2.4z + 0.8z2)= A + 0.4z)(l + 2z).
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The invertible operator is

A + 0.4z)(l + 0.5z)= A + 0.9r + 0.2r2),
so the invertible representation is

Y, = A + 0.9L + 0.2L2)s,

Chapter 4. Forecasting
1
-2
. 3

0

1

1

0
0
1

1
\320\276

\320\276

0

2
0

0
0
1

1
0
\320\276

-2

1

0

3'
1
1

4.3.

4.4. No. The projection of \320\2434on \320\243,,\320\2432,and \320\243,can be calculated from

The projection \320\240(\320\2433|\320\2432,\320\243,),in turn, is given by

The coefficient on \320\2432in \320\240(\320\2434|\320\2433,\320\2432,\320\243,)is therefore given by a42
-

\320\260\320\277\320\260\321\212-

Chapter 5. Maximum Likelihood Estimation
5.2. The negative of the matrix of second derivatives is

H(9)= l

so that [5.7.12] implies

-[-.*]\342\231\246\342\204\226.]-[!]\342\200\242

Chapter 7. Asymptotic Distribution Theory

7.1. By continuity, \\g(XT, cT) -
g(\302\243,c)\\ > S only if \\XT

- f| + \\cT
-

c\\ > tj for some

77. But \321\201\321\202-*\321\201and XT A f means that we can find an N such that \\cT
\342\200\224

c\\ < -rfl for all
T \320\263N and such that P{\\XT

-
fj > tj/2} < \320\263for all \320\223\320\263JV. Hence P{|ATr - f| +

|cr \342\200\224\321\201I > 77} is less than g for all \320\223\320\263N, implying that P{\\g(Xn cT)
-

g(\302\243,c)\\ > S} < e.

7.2. (a) ForanXK(l) process,i//(z)
= 1/A -

\321\204\320\263)andgK(r) =
<72/(l

-
\321\204\320\263)(\\

-
\321\204\320\263~'),

with

-
0.8):

= 25.

Thus limr_. r-Var(Fr) = 25.

(b) T = 10,000(V25/10.0O0= 0.05). \342\226\240

7.3. No, the variance can be a function of time.

7.4. Yes, s, has variance a2 for all (. Since s, is a martingale difference sequence, it has
mean zero and must be serially uncorrelated. Thus {e,}is white noise and this is a covariance-
stationary MA(<*>) process.

7.7. From the results of Chapter 3, Y, can be written as Y,
= fi + S\"_0^e,./ with

2\".<MI < \302\260\302\260-Then (a) follows immediately from Proposition7.5 and result [3.3.19]. For
(b), notice that E\\e,\\r < \302\253for r = 4, so that result [7.2.14]establishes that
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where Y, li. But

)] 2 *.*.-*= 2(*

\321\203,

\302\243(\320\243,\320\243,-4)+ 0 + 0 +

\302\243(\320\243,

81

Chapter 8. Linear Regression Models

R- _ \320\243'\320\245(\320\245'\320\245)\"\320\245'\320\243
\"

y'y

_ \320\243'\320\243
-

\320\243'[1\320\263
- X(X'X)-'X']y
y'y

= 1 - [(y'MxMxy)/(y'y)]
= 1 -

[(fl'fl)/(y'y)].

r, _ \320\243'\320\243.
-

\320\243'

and

y'y -

'y
-

\320\242\320\223)\\

\320\243\320\243
- 2. = 2 (\320\243,

~
\320\243J-

8.2. The 5% critical value for a *2B) variable is 5.99. An FB, JV) variable will thus have

a critical value that approaches 5.99/2 = 3.00 as N -*<*>. One needs N of around 300
observationsbefore the critical value of an FB, N) variable reaches 3.03, or within 1% of

the limiting value.

8.3. Fourth moments of *M< are of the form E{E*)-E{y,^iy,^ly,-iy,.^).The first term is
bounded under. Assumption 8.4, and the second term is bounded as in Example 7.14.
Moreover, a typical element of (l/rJ,r,,u2xpic; is of the form

(i/\320\263)2 >}y,-a.-, =
(i/\320\263)2 (\302\253?

-
<\321\202\320\263)\321\203,->\321\203,-,+

f1 f1 1

Hence, the conditions of Proposition7.9are satisfied.

8.4. Proposition 7.5 and result [7.2.14]establish

.\320\244\342\200\236\321\202\\

(VT)Ty,.p

,., (UTJyf-t

y0 + fi2
\342\226\240\342\226\240\342\226\240

\321\203,.,+ pi2

\342\226\240\321\203,.,+ fl?
\342\226\240\342\226\240\342\226\240

To + M J \\.\320\243\321\200+ M .

which equals a\"\"' given in [4.3.6].
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Chapter 10. Covariance-Stationary Vector Processes

10.2. (a) r0 =
\\ h 2 \342\200\236

2fl

\320\263= *

[A^l + 02)cr2 A20crjj

\320\2232
=

\320\263.,
= \320\263; \320\263_2

=
\320\2632

\320\2234
= 0 forfc = \302\2613,\302\2614,....

(b) SY(o>)
= B

s22= h\\{\\

\302\243^@.)
=

(\320\263^-'\320\271.\320\276-\321\217\320\262-\321\201\320\276\320\262\321\201\320\263\321\210)+ (i + e2)-cos(o>)+ e}
5^@,)=-(\320\263^-\320\220.\320\276-.\320\247\320\262-\320\274\320\277\320\241\320\263\321\210)+ A + 02)-sin(a>)}.

(c) The variable X, follows an MA{\\)process,for which the spectrum is indeedsu.
The term s21 is j,, times h(e-^) = A,-e-'\". Multiplying j2, in turn by h(e'\")

= A,-e~ and
adding o-2 produces ^22.

(d) Bir)-' \320\223Sjc*&\\ e'\"k do = Bir)-' \320\223hre-\"ei\"k da>.

When fc = 1, this is simply

Bir)\"'J\" A, do. = A,,

as desired.When \320\272\320\2441, the integral is

Bir)-'J\" A, \342\226\240\302\253(*-!)<-\302\253fa,

= Bit)\021 f\" A,-COs[(fc
-

l)a>] da. + (-B17)-' [\" A,-sin[(fc
-

l)a>] rfa.

[(fc
-

1J\321\202\320\263]-'\320\220,

0.

sin[(fc
- -

[(fc
-

1J\321\202\320\263]-\320\220COs[(fc
-

Chapter 11. Vector Autoregressions
11.1.A typical element of [11.A.2] states that

But

where

2 2

Notice that z, is a martingale difference sequence whose variance is finite by virtue of
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Proposition 7.10.Hence, A/\320\223J,\320\263_,\320\263,\320\2330. Moreover,
\321\202

A/\320\223)2, v-Va.'-'j-* \302\2430V-

by virtue of Proposition 10.2(d).

11.2. (a) No. (b) Yes. (c) No.

11.3. a, =
\320\241, for/ = 1, 2, . . . ,p

ft
=

17; for/ = 1, 2, . . . ,p
Aq

\342\200\2244 *21*\0211

A;
=

jj
\342\200\224

fljAVay for/ = 1, 2, . . . ,p
\342\202\254,

=
Sj

- n21Uri'ft for/ = 1,2, . . . ,p

\320\276-?
= au

\302\253\302\273
=

\302\2531/

\022, = s-t,

11.4. Premultiplying by A*(L) results in

\320\223 0

Lv2tJ

Thus,

Now the determinant |A(L)| is the following polynomial in the lag operator:

|\320\220(\320\246|
= [1

-

The coefficient on L\" in this polynomial is unity, and the highest power of L is L2*, which
has coefficient

Furthermore, vu is the sum of two mutually nncorrelated MA{p)processes,and so v,, is
itself MA(p). Hence, yu follows an ARMABp, p) process;a similar argument shows that
\320\243\320\267,follows an ARMABp, p) processwith the same autoregressive coefficients but different

moving average coefficients.
In general, consider an \320\273-variable VAR of the form

with

iff = \321\202

otherwise.

Find the triangular factorization of ft = ADA' and premultiply the system by A\021, yielding

A(L)y, = u,,

where

A(L) = \320\220-\320\247

u, = A-'e,

D.
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Thus, the elements of u, are mutually uncorrelated and A@) has Is along its principal
diagonal. The adjoint matrix A*(\302\243.)has the property

Premultiplying the system by A*(L),

|A(L)|-y, =
A\302\253(L)u,.

The determinant |A(\302\243.)|is a scalar polynomial containing terms up to order L\"', while
elements of A*(L) contain terms up to order \302\243.<\"-')/>.Hence, the ith row of the system takes
the form

where v,, is the sum of n mutually uncorrelated MA[(n \342\200\224
\\)p\\ processes and is therefore

itself MA[(n
-

\\)p]. Hence, \321\203\342\200\236
- ARMA[np, (n -

\\)p].

11.5. (a) |I2 -
\320\244,\320\263|

= A
- 0.3r)(l -

0.4r)
- @.8z)@.9z)

= 1 - 0.7r - \320\236.\320\261\320\2632

= A - 1.2r)(l + 0.5r).
Since r* = 1/1.2 is inside the unit circle, the system is nonstationary.

th\\ * \320\2231\302\2601 \302\253\320\263\320\2230-3\302\260-81 \321\204 \320\223\320\276.810.5\320\2611
(b) *\342\200\236=

[0 J
*, =

[0 9 0 4J
\320\2442

=

[0 \320\261\320\2670 8gJ

\320\244,diverges as j \342\200\224\342\226\272<\302\273.

(c) \320\243\320\270-\320\270
~

\320\201(.\320\243\320\270*\320\263\\\320\243\320\277\320\243,-..\342\226\240\342\226\240\342\226\240)
=

\302\243i..+2+ 0.3e,.,+ 1 + 0.8\302\2432.,+1

MSE = 1 + @.3J + @.8JB)= 2.37.

The fraction due to e, = 1.09/2.37= 0.46.

Chapter 12. Bayesian Analysis
12.1. Take \320\272= 1, X = 1, \320\255=

M, and M =
l/i/, and notice that l'l = T and l'y

\321\202\321\203.

Chapter 13. The Kalman Filter

13.3. No, because v, is not white noise.

13.5. Notice that

\302\253^ ^ - \302\25372(i+ e2 + e< + \342\226\240\342\226\240\342\226\240*

1 + \320\2622+ 8* + \342\200\242\342\226\240\342\226\240+

j2(i -
\321\2212\"*2')

e2o-2(i
- e-2t'+2')

q.2^ _ g2C'* 21)

= a2 + 02\320\240\320\274...
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Furthermore, from [13.3.19],

\320\262\321\221,\320\270
= {\320\262*\320\247[*>

= {e-'e^/

=
{0\320\276-2/[\320\276-2+ 02/>,]}-{\321\203,-if- \320\265\321\221,-,\342\200\236.,},

which is the samedifference equation that generates {0I,|,},with both sequences, of course,

beginning with 0eO|o
=

\320\262\321\221\320\276\\\320\276
= 0. With the sequences(H'P,+ 1|,H + R) and A'x,+ 1 +

H'|,+ 1|, identical for the two representations, the likelihood in [13.4.1] to [13.4.3] must be
identical.

13.6. The innovations, in [13.5.22] will be fundamental when | \321\204
-

K\\ < 1. From [13.5.25],
we see that

\321\204
- \320\232=

\321\204\320\260\\,1(<\321\202\\,+ P).

Since P is a variance, it follows that \320\257\320\263\320\236,and so |\321\204
\342\200\224

1C| rs |\321\204|,which is specified to be
less than unity. This arises as a consequence of the general result in Proposition 13.2 that
the eigenvalues of F - KH' lie inside the unit circle.

From [13.5.23] and the precedingexpression for \321\204
- K,

-(\321\204- K)E(ef)
= -@ -

\320\232)(*\320\252+ P) = -0O-J,,
as claimed.Furthermore,

[1 + (\321\204
-

tfJ]\302\243(\302\243?)
=

(\320\276-?,+ P) + (\321\204
-

\320\232)\321\204*\320\252
= A + \321\204\320\263)(\321\202%,+ P -

\320\232\321\204\320\260\\,.

But from [13.5.24] and [13.5.25],

P =
\320\232\321\204\320\2601,+ <\321\202\320\263\321\203,

and so

[1 + {\321\204
- Kf\\E(ef) = A + \321\204*)\320\260%,+ a\\.

To understand these formulas from the perspective of the formulas in Chapter 4, note

that the model adds an ARA) process to white noise, producing an ARMAA, 1) process:

The first autocovariance of the MA(V) process on the right side of this expressionis
\342\200\224

\321\204\320\260%,,while the variance is A + \321\204*)(\320\223\321\206>+ \321\201\320\263\\.

Chapter 16. Processes with Deterministic Time Trends
It' t \\2

16.1. \302\243A/77 S (Ai + \320\2202('/\320\223)]2\302\2432
-

A/\320\223)\302\243<72[\320\2332+ 2\320\220,\320\2202((/\320\223)+ \320\232\\(\320\247\320\242)\320\263]
\\ /-1 i-i /

=
A/\320\2232)2 [A? + 2\320\232\320\234\320\247\320\242)+ \320\2202((/\320\223J]2-\302\243(\302\243,2

-
\320\276-2J.

But

A/\320\223)2 [A? + 2\320\220,\320\2202((/\320\223)+ \320\2202((/\320\223J]2-*\320\234< \302\253,

and thus

T-eU/T) 2 [A, + \320\2202(\320\223/\320\223)]2\302\243?
-

A/\320\223)2 <72[A? + IKMtIT) +
\320\22022(\320\263/\320\223J])

-\342\231\246M-E(ef
- o-2J < \302\253.

Thus

(VT) 2 [A. + \320\2202(\320\263/\320\223)]2\302\243?

\"'
(VT) 2 \302\260-2[A?+ 2\320\220,\320\2202((/\320\223)+ \320\2202((/\320\223J]

-\342\231\246<72 X'QX.
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16.2. Recall that the variance of bTis given by

\302\243(br
-

\320\255)(\320\254\320\263
- P)' =

= J T
\320\223(\320\223+1)/2

\\_T{T + l)/2 T(T + 1)B\320\223+1)B\320\223
\342\226\240

Pre- and postmultiplying by Yr results in

\302\243[Yr(br
- P)(br -

P)'Yr]

=
\320\241\320\24224

\321\202 r(r + l^ TV
\\T(T + l)/2 T(T + 1)B\320\223+ l)/6j

T

\321\206\321\202+\321\202

+ 1)B\320\223+ 1)/\320\261]
\320\242

The B, 2) element of this matrix expression holds that

\302\243[rM(Sr
-

S)]2
-\342\231\24612<72,

and so

T(ST
-

S) \"^ 0.

16.3. Notice that

\321\203,+ B/\320\223)\321\2032+ \342\226\240\342\226\240\342\226\240+ (TIT)yT

which has expectation

\320\265\320\223\320\263-2
(r/r)y,J

= T'2 {[A/\320\223J + B/\320\223J+
\342\226\240\342\226\240\342\200\242+ (TITy]y0

B/\320\223)C/\320\223)+ \342\226\240\342\200\242\342\226\240+ [(\320\223
-

B/\320\223)D/\320\223)+ \342\200\242\342\200\242\342\200\242+ [(\320\223
-

2)/\320\223](\320\223/\320\223)]2\321\2032

+ \342\226\240\342\226\240\342\200\242+ [A/\320\223)G\320\223\320\223)]2\320\243\320\263.,}

\320\223-'{|\320\242\320\254|+2|\321\203,| +2|\321\2032| + \342\226\240\342\226\240\342\226\240+ 2|\321\203\320\263.,|}

\342\231\2460.

Chapter 17. Univariate Processes with Unit Roots

17.2. (a) T(pT
-

1) = T*f*\022lU'-^ ~

from Proposition 17.3(e) and (h).

(b) \320\223-&1
=

\320\2232-52\320\223+ (

from Proposition 17.3(h) and [17.6.10].

(c) tT
= T(pT

- 1) -H (r2-3-Jr)I/2

A2-j [W(r)]
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from answers (a) and (b). This, in turn, can be written

(\320\2202/\321\203\342\200\236\320\223e - 1 in V\"' '\320\276/ \320\263r

(d) (\320\2232-\320\276-2\320\263
-f- 52r)

= V(T-*2yf-J \320\233

1/(a2-J
I

from Proposition 17.3(h). Thus,
-

\320\223\320\276)

- yj

A2
-/[W(r)p

J [W(r)P \320\2331

'

with the next-to-lastline following from answer (a).

(e) (y0M2)ln-rr
-

\320\231(\320\2202
-

\320\243\320\276)/\320\220}\321\205{T-&tT + sT}

- 1} i(A2
~

7b)

drj A2{J
[W(r)f drj

-
yo)/A} +

(a2- J [W(r)P
<fr) },

from answers (c) and (b). Adding these terms produces the desired result.
To estimate y0 and A, one could use

%
= \320\223\0212 \320\271,\320\271,\321\207for/= 0,1,..., 9

/-/+i

^2 =
% + 2 \302\243[1

-
jl{q

where u, is the OLSsample residual and q is the number of autocovariances used to represent
the serial correlation of i//(L)e,.The statistic in (d) can then be compared with the case 1
entries of Table B.5, while the statistic in (e) can be compared with the case 1 entries of

Table B.6.

17.3. (a)

'\342\226\240/
A- W{r)dr 1/2

A \342\226\240
J W(r) dr A2 \342\226\240

J [W(r)]2 dr A \342\226\240
J rW{r) dr

1/2 k-]rW(r)dr 1/3
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A-W(l)

A/2){A2-[WA)P
-

To}
(b)

(c) This follows from expression [17.4.52] and answers (a) and (b).

(d) The calculations are virtually identical to those in [17.4.54].

(e) tT
= T(fir - 1) +

{\320\240^\320\243'\302\260\320\220%
-

1) +

(f) Answer (c) establishes that

T{pT -

[0 1 0]

J W(r) dr 1/2

dr jrW(r)dr

1/2 J rW(r) dr

-
(yo/A2)}[0 1 0]

1/2

1/3

J W(r) dr 1/2

W(r)]2 dr
J rW{r) dr

\320\263\320\251\320\263)dr 1/3

\342\231\246KG/A2)(A2
-

y0)

-1}

W(r) dr

-1

01

1

0

= V + J{1
\"

Moreover, answer (d) implies that

(g) From answers (d) and (e),

(VA2)\022-^ -
{i(A2

- %)A} x {T-&)T+

\320\233\320\223(\321\200\320\263
- 1)/VQ -

{4(A2
-

\321\203\342\200\236)/\320\220}x

- 1) -
KG/A2) (A2

-
\321\203\342\200\236)}+

for/ = 0,1,...,

from the analysis of (f).
To estimate y0 and A, one could use

A2 = 7o + 2

where \320\271,is the OZ-S sample residual and q is the number of autocovanances used to
approximate the dynamics of <li(J-)s,. The statistic in (f) can then be compared with the case
4 entries of Table B.5, while the statistic in (g) can be compared with the case 4 entries of
TableB.6.
17.4. (b) Case 1 of Table B.5 is appropriate asymptotically, (c) Case 1 of TableB.6 is

appropriate asymptotically.

Chapter 18. Unit Roots in Multivariate Time Series

18.1. Under the null hypothesis \320\235\320\255
= r, we have

x\\
= [R(br -

\320\255)]'|>\320\263\320\232B\321\205,\321\205;)-\320\2471']\"[\320\232(\320\254\320\263

-
\320\255I

= [VT-R(br
-

p)]'[s?rVT-RE;x,x;)-1VT-
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For Yr the (fc x k) matrix defined in [18.2.18] and R of the specified form, observe that

Vr-R = RYr. Thus,

[RYr(br
-

[RYr(br -
br

- P)]

where the indicated convergence follows from [18.2.25], [18.2.20],and consistency of s\\.
Sinceh,

~ N@, (rsX), it foUows that

R.V-'h, ~ N{0, ct.jR^-'r;).
Hence,from Proposition 8.1, the asymptotic distribution of \\\\is X2(m)-
18.2. Here

\320\245'\321\202*

where x, is as defined in Exercise 18.1 and

0,-,'
R =

R>

From the results of Exercise18.1,

R2Q-h2
\320\276

R2Q-.R2

18.3. (a) The null hypothesis is that \321\204= 1 and \321\203
= a =

77
= 0, in which case ,

\320\265\321\212and \320\270,
=

\320\262\342\200\236.Let x, =
(\302\2432,,1, yu_lt y2,_,)' and

\320\223\0220 0 0\"

0 \320\223\0220 0
0 0 T 0 '

_ 0 0 0 \320\223

Then

0 qJ'
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where

a2- \\ W2(r) dr

a.-jw^dr

tV] [Wi(r)fdr

*2-\\w2(r)
dr

and

Yf'2x,u,

and where A,
~ N@, crfa-y and the second and third elements of the C x 1) vector h2

have a nonstandard distribution. Hence,

-
p)

= (Yf2x,x,'Yf)-

(b) Let e, denote the first column of the D x 4) identity matrix. Then

h= \320\243\321\202*
{*2\320\263\320\265;(&1,\321\205;)-1\320\2651}1\320\233

= A./f.r.o-J ~
iV@, 1).

(c) Recall that bT
=

\321\202\\\321\202
-

yT, where \321\202)\320\263is OP(T-') and yT is \320\236\320\240(\320\223\021\320\233).Under the
null hypothesis,all three values are zero; hence,

\320\223\320\260\320\254\321\202\320\233-Tll2yT,

which is asymptotically Gaussian. The (test of 8 = 0 is asymptotically equivalent to the (

test of \321\203
= 0.

Chapter 19. Cointegration
19.1. (a) The OLS estimates are given by

|\320\271\320\263|

I T

from which
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and

\320\223\320\263-\321\210\320\2761\320\223\320\260\321\2021 = \320\223\320\223\"\022\320\2361\320\223\320\2422\321\203\320\2731\"\320\242\320\263-\320\274\320\2361
'

L \320\276 rHbr-yoJ'L \320\276 \321\202\342\204\242\\[\320\263\320\2432,\320\263\320\2431\\[ \320\276 r-^J

\320\223\320\263-\320\267\320\277\320\276If 2(\320\267/\342\200\236
-

\321\203\320\276^\320\260,)1
\321\205

_\320\274
\"

=
1L \320\276 r-^JLsyj, \320\263\320\2431][\320\276

\320\263-\302\273'2]]

\320\223\320\263-\320\230\320\2361\320\2232(yt,
- yojg 1

\321\205

L \320\276 \320\242'^\\[\320\263\320\2432,{\320\24311
-

\320\243\320\260\320\2432,)]

But

and thus \320\242-22\320\243\320\263,-

more,

2&;>2(-\302\2738J2. Similarly, \320\223\0232\321\203?,\320\224\320\223-381-2^-> 8|/3. Further-

-
\320\243\320\276^\320\263,)

=
\320\223(\320\267/,.\320\276

-
\321\203\342\200\236;)>2.0)

establishing that \320\242-\320\2742{\320\243\320\270
-

\321\203\320\260\320\243\321\212)

^(^i,
-

\320\243\320\276\320\243\321\212)
=

\320\252(\320\2432.\320\260

and \321\202-\342\204\242\320\263\320\243\320\263,(\320\2431,
-

\320\243\320\276\320\24321)\320\224

(\320\254)\320\224\320\271,
=

(\321\203\342\200\236
-

\320\260\320\263

, - yd*). Similarly,

+ \320\231,
-

\320\243\320\260\320\243\320\263\320\273
~

., -
&\321\202

-
yTy2J-i)

since yr\342\200\224\302\273\321\2030.

19.2. Proposition 18.1 is used to show that

1\320\224(\320\255\320\263
-

\320\255)] fr-'2w,w,' T^Sw, \320\223\"

1\320\264(\320\260\320\263
- a) =

\320\247\320\243\320\263
- 7) .

1
{/

[W2(r)J'
dr^

w2(r)A-
AB{/[W2(r)J-[W2(r)J'<fr}Ai,_

h,

as claimed.
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19.3. Notice as in [19.3.13] that under the null hypothesis,

X\\
= {RT-?'Gr

-
7)}'\320\2542\320\263[00 RJ

T-'SWjW; T-^w, r-3ra2w,y2,]\"'ro

0' -7)}

.[R7Auv2]'-j4[0 -\320\262RJ

\"Q 0

0' 1
{f[W2(r)]' *}

J W2(r) dr \320\220\320\270
|J

[W2(r)]-[W2(r)]'

from which [19.3.25] follows immediately.

19.4.

-\320\255)

-7)

ir-\302\253)J

Q

0'

0

0'

0

1

W2(r) dr

1/2

h,

{/
[W2(r)]'

[W2(r)].[W2(r)]

r[W2(r)]'

[W2(r)]

0

1/2

A* | rW2(r) dr

1/3

as claimed.

Chapter 20. Full-Information Maximum Likelihood Analysis

of Cointegrated Systems
20.1. Form the Lagrangean
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with fik and \321\206\320\260Lagrange multipliers. First-order conditionsare

(\320\260)

(b)

Premultiply (a) by k\", and (b) by < to deduce that

2/it = 2fia = r,.

Next, premultiply (a) by r^Efi? and substitute the result into (b):

Thus, rf is an eigenvalue of 'Z^'S,XYZ^y'Zvxvntb \320\260\320\263the associated eigenvector, as claimed.

Similarly, premultiplying (b) by rr'Sxx anc* substituting the result into (a) reveals
that

20.2. The restriction when h = 0 is that \302\2430
= 0. In this case, [20.3.2]would be

XS = -(Jnll) logBir)
-

(\320\223\320\273/2)
-

(\320\223/2)Iog|i00|,

where \320\201\321\211,is the variance-covariance matrix for the residuals of [20.2.4].This will be
recognized from expression [11.1.32] as the maximum value attained for the log likelihood

for the model

\320\224\321\203,= n0 + \320\237.\320\224\321\203,.,+ \320\2372\320\224\321\203,_2+ \342\200\242\342\200\242\342\200\242+ \320\237^.\320\224\321\203,.,^+ u,,

as claimed.

20.3. The residuals g, are the same as the residuals from an unrestricted regression of u,
on v,. The MSE matrix for the latter regression is given by %vv

- 2uv2fv2!vu- Thus,

where \320\262,denotes the ith eigenvalue of 1\342\200\236
- S^uSuv^vvSvu- Recalling that A, is an eigenvalue

of i^Zuviv^ivu associated with the eigenvector k,, we have that

L
\" \302\253\320\270ov w

J
1

so that \320\262,
= A

- A,) is an eigenvalue of 1\342\200\236
-

\320\260\320\2642\320\270\302\2452^2\321\203\320\270and

ioui\320\237

Hence, the two expressionsare equivalent.

20.4. Here, A, is the scalar

and the test statistic is

-riog(l
- A,) = -

But \320\271,is the residual from a regressionof Ay, on a constant and \320\224\321\203,.,,\320\224\321\203,-2,\342\200\242\342\200\242\342\200\242, \320\224;\321\203,_,,.\321\206,

meaning that \302\243\320\270\320\270
=

rf^. Likewise, (J, is the residual from a regressionof y,., on \320\224\321\203,.,,

Ay, -2, . . . , Ay,-pfV The^ residual from a regressionof \320\271,on (?\342\200\236whose average squared
value is given by (%vu

- ^av^vv^vu)> is ^e same as the residual from a regression of y,

on a constant, y,-i, and \320\220\321\203,-\320\263,Ay,_2,. . . ,Ay,-p+u whose average squaredvalue is denoted

Hence, the test statistic is equivalent to r[log(dj?)- log(of)], as claimed.
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Chapter 22. ModelingTime Series with Changes in Regime

221 PT =[P\"
J

Ll -
Pu

~
\320\240\320\270)/B

~
P\"

~
\320\253

~

(l - Pu)/B -
\321\200\342\200\236

-
\320\240\320\263\320\263)1

2 -
Pn

-
p-a

~ Pu ~
Pn 2 \342\200\224

p,,
\342\200\224

j

A
-

\321\200\320\270)/B
- Pu- Pv)

.A -
p,,)/B

- pn ~
\320\240\320\263\320\263)\320\2202

\320\242\320\233.

-\320\220\320\233

A2 J
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D

Greek Letters and
Mathematical Symbols
Used in the Text

alpha

beta

gamma

delta

epsilon
zeta

eta

theta

kappa

lambda

mu

nu
xi

pi

rho

sigma

tau

upsilon

phi

chi

psi

omega

a

\320\255

\320\223

\320\243

\320\264

s

E

i

e
e
\320\262

\320\272

\320\233

A

M

V

i

\320\277

\320\240

2

\321\202

Y

\320\244

\320\244

X

*
\320\260

Greek letters and common interpretation

population linear projection coefficient (page 74)

population regression coefficient (page 200)
autocovariance matrix for vector process (page261)
autocovariance for scalar process (page 45)
change in value of variable (page 436)
small number;
coeffioient on time trend (page 435)
a white noise variable (page 47)
constant term in ARCH specification (page 658)

/!/?(\302\273)coefficient (page 79)
matrix of moving average coefficients (page 262)
vector of population parameters (page 747)
scalar MA(q) coefficient (page 50)
kernel (page 165)
matrix of eigenvalues (page 730)
individual eigenvalue (page 729)
Lagrange multiplier (page 135)
population mean (page 739)

degrees of freedom(page 409)
matrix of derivatives (page 339)
state vector (pages 7 and 372)

product (page747)
the number 3.14159....

autocorrelation (page49)
autoregressive coefficient (page 517)
summation
long-run variance-covariance matrix (page 614)

population standard deviation (page 745)
time index

scaling matrix to calculate asymptotic distributions (page 457)

matrix of autoregressive coefficients (page 257)
scalar autoregressive coefficient (page53)
a variable with a chi-square distribution (page 746)
matrix of moving average coefficients for vector AfA(\302\260\302\260)process (page 262)

moving average coefficient for scalarAfA(\302\273)process (page 52)
variance-covariance matrix (page 748)
frequency (page153)
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Common uses of other letters

a number of elements of unknown parameter vector (page 135)
b or br estimated OLS regression coefficient based on sample of sizeT (page 75)

\321\201 vector of constant terms for vector autoregression (page 257)
\321\201 constant term in univariate autoregression (page 53)

e, the ith column of the identity matrix
e the base for the natural logarithms (page715)
1\342\200\236 the (n x n) identity matrix (page 722)
i the square root of negative one (page 708)

/ value of Lagrangean (page 135)

\320\272 the number of explanatory variables in a regression
L the lag operator (page 26)
\320\226 value of log likelihood function (page 747)

n number of variables observed at date (in a vector system (page 257)

OP{T) order T in probability (page 460)

\320\240\321\204MSE matrix for inference about state vector (page 378)
p the order of an autoregressive process (page 58)

Q limiting value of (\320\245'\320\245/\320\223)for X the (\320\223\321\205\320\272)matrix of explanatory variables for

an OLS regression (page208);variance-covariance matrix of disturbances in

state equation (page 373)

q the order of a moving average process (page50);number of autocovariances
used in Newey-West estimate (page 281)

R variance-covariance matrix of disturbances in observation equation (page 373)
R\" the set consisting of all real n-dimensional vectors (page737)
r number of variables in state equation (page 372); index of date for a

continuous-time process

s1 or st unbiased estimate of residual variance for an OLS regressionwith sample of
size T (page 203)

s, state at date t for a Markov chain

T the number of dates included in a sample

X (\320\223x k) matrix of explanatory variables for an OLS regression(page 201)

4/, history of observationsthrough date t(page 143)
z argument of autocovariance generating function (page 61)

Mathematical symbols
X aleph (first letter of the Hebrewalphabet), used for matrix of regression

coefficients (page 636)

exp(*) the number e (the base for natural logarithms) raised to the x power (page 715)

log(;t) natural logarithm of x (page 717)

x\\ x factorial (page 713)

[\342\200\242*(\302\243)]+annihilation operator (page 78)

[x]* greatest integer less than or equal to x

\\x\\ absolute value of a real scalar or modulus of a complexscalar x (page 709)

|X| determinant of a square matrix X (page724)
X' transpose of the matrix X (page 723)

0\342\200\236\342\200\236an (n x m) matrix of zeros

0' a A x n) row vector of zeros

V gradient vector (page 735)
\302\256 Kronecker product (page 732)



\320\236 element-by-element multiplication (page 692)

\321\203\321\210x \321\203is approximately equal to x

\321\203
\342\226\240x \321\203is defined to be the value represented by x

max{y,x} the value given by the larger of \321\203or x

\321\203
= sup f(r) \321\203is the smallest number such that \321\2032: f(r) for all r in [0,1] (page481)

rS@.1]

x G A x is an element of A

AC \320\222 \320\233is a subset of \320\222(page 189)

P{A} probability that event A occurs (page 739)

fy(y) probability density of the random variable Y (page 739)

\320\243~ N(ji,a2) \320\243has a iV(/i,<72) distribution (page 745)

\320\243= N(ji,a2 Y has a distribution that is approximately N{fi,a2) (page 210)

E(X) expectationof X (page 740)

Var(X) variance of X (page 740)

\320\241\320\276\321\203(\320\224Y) covariance between X and Y (page 742)

\320\241\320\276\320\263\320\263\320\236\320\243,\320\243) correlation between X and Y (page 743)

Y\\X \320\243conditional on X (page741)
P(Y\\X) linear projection of \320\232on X (pages 74-75)

\302\243(\320\243|\320\233)linear projection of Y on X and a constant (pages 74-75)

$,+# hnear projectionof y,+, on a constant and a set of variables observed at
date t(page 74)

xT
-\302\273\321\203 lim jcr =

\321\203(page 180)
r\342\200\224\302\273

xT^*y xT converges in probability to \321\203(pages 181, 749)

\321\205\321\202
^\302\273\321\203 *\320\263converges in mean square to \321\203(pages 182, 749)

xT -\302\273\321\203 *\320\263converges in distribution to \321\203(page 184)

*,-(\342\200\242)
-^ *(\342\226\240)the sequence of functions whose value at r is xT(r) converges in

probability to the function whose value at r is x(r) (page 481)

x-j{-)
~* x{-) the sequenceof functions whose value at r is xT(r) converges in

probability law to the function whose value at r is x(r) (page 481)
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posterior, 352

prior, 351-52
probability, 739
r, 205, 356-57, 409-10, 746, 755

Duplication matrix, 301

Dynamic multipliers, 2-7, 442-44
calculating by simulation, 2-3

Efficient estimate, 741
Efficient markets hypothesis, 306

Eigenvalues, 729-32
Eigenvectors, 729-30

Elasticity, logarithms and, 717-18
EM algorithm, 688-89, 696
Endogenous variables, 225-26
Ergodicity, 46-47

Ergodic Markov chain, 681-82
Error-correction representation, 580-81
Euler equations, 422
Euler relations, 716-17

Exchange rates, 572, 582-86, 598, 647-48
Exclusion restrictions, 244

Expectation, 740

adaptive, 440
conditional, 72-73, 742
of infinite sum, 52

stochastic processes and, 43-45
Exponential functions, 714-15
Exponential smoothing, 440

F distribution, 205-7, 357, 746, 756-60

Filters, 63-64, 169-72, 277-79. See also
Kalman filter

multivariate, 264
FIML. See Full-information maximum

likelihood
First-difference operator, 436

First-order autoregressive process, 53-56

asymptotic distribution and, 215, 486-504

First-order difference equations, 1-7
lag operators and, 27-29

First-order moving average, 48-49

Fisher effect, 651
Forecasts/forecasting:

ARMA processes, 83-84
AR process,80-82
Box-Jenkins methods, 109-10
conditional expectation and, 72-73
finite number of observations and, 85-87
for Gaussian processes, 100-102
infinite number of observations and, 77-84
Kalman filter and, 381-85
linear projection and, 74-76, 92-100
macroeconomic, 109
MA process, 82-83, 95-98
Markov chain and, 680

for noninvertible MA, 97

nonlinear, 73, 109

unit root process and, 439-41
vectors, 77

Fractional integration, 448-49

Frequency, 708

Frequency domain. See Spectral analysis
Full-information maximum likelihood (FIML),

247-50, 331-32. See also Cointegration,
full-information maximum likelihood

and
Functional central limit theorem, 479-86

Fundamental innovation, 67, 97, 260

Gain, 275

Kalman, 380
Gamma distribution, 355
Gamma function, 355
Gaussian:

distribution, 745-46, 748-49, 751-52

forecasting, 100-102
kernel, 671

maximum likelihood estimation for Gaussian
ARMAprocess,132-33

maximum likelihood estimation for Gaussian
AR process, 118-27

maximum likelihood estimation for Gaussian
MA process, 127-31

process, 46
white noise, 25, 43, 48

Gauss-Markov theorem, 203, 222
Generalized error distribution, 668
Generalized least squares (GLS):

autocorrelated disturbances, 221-22
covariance matrix and, 220-21
estimator, 221
heteroskedastic disturbances, 221
maximum likelihood estimation and, 222

Generalized method of moments (GMM):
ARCH models,664
asymptotic distribution of, 414-15
estimation by, 409-15
estimation of dynamic rational expectation

models, 422-24
examples of, 415-24
extensions, 424-27
identification (econometric) and, 426
information matrix equality, 429

instrumental variable estimation, 418-20
instruments of choice for, 426-27
maximum likelihood estimation and, 427-31
nonlinear systems of simultaneous equations,

421-22
nonstationary data, 424
optimal weighting matrix, 412-14
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ordinary least squares and, 416-18
orthogonality conditions, 411
overidentifying restrictions, 415
specification testing, 415, 424-26

testing for structural stability, 424-26
two-stage least squares and, 420-21

Geometricseries,713,732
Global identification, 388
Global maximum, 134, 137, 226
GLS. See Generalized least squares
GMM. See Generalized method of moments
GNP. See Gross national product
Gradient, 735-36
Granger causality test, 302-9
Granger representation theorem, 582

Grid search, 133-34
Grossnational product, 112, 307, 444, 450,

697-98. See also Business cycle

frequency; Industrial production;
Recessions

H
Hessian matrix, 139, 736
Heteroskedasticity, 217-20, 227. See also

Autoregressive conditional
heteroskedasticity (ARCH); Newey-
West estimator

consistent standard error, 219, 282-83
GLS and, 221

Haider's inequality, 197

Hypothesis tests:
cointegration and, 601-18, 645-50

efficient score, 430
Lagrange multiplier, 145, 430

likelihood ratio, 144-45, 296-98
linear restrictions, 205

nonlinear restrictions, 214, 429-30
time trends and, 461-63
Wald, 205, 214, 429-30

l(d). See Integrated of order d

Idempotent, 201

Identification, 110, 243-46
covariance restrictions, 246-47
exclusion restrictions, 244
global, 388
GMM and, 426

just identified, 250
Kalman filter and, 387-88
local, 334, 388
order condition, 244, 334
overidentified, 250
rank condition, 244, 334
structural VAR, 332

Identity matrix, 722
i.i.d., 746
Imaginary number, 708
Impulse-response function:

calculating by simulation, 10
orthogonalized, 322
standard errors, 336-40
univariate system, 5
vector autoregression and, 318-23

Independence:

linear, 728, 729-30
random variables, 742

Industrial production, 167
Inequalities:

Cauchy-Schwarz, 49, 745

Chebyshev's, 182-83
Hdlder, 197

triangle, 70
Inequality constraints, 146-48
Infinite-order moving average, 51-52
Information matrix, 143-44

equality, 429

Innovation, fundamental, 67
Instrumental variable (IV) estimation, 242-43

418-20
Instruments, 238, 253, 426-27

Integrals:
definite, 719-21
indefinite, 718-19

multiple, 738-39
Integrated of order d, 437, 448

Integrated process, 437. See also Unit root
process

fractional, 448-49
Integration, 718

constant of, 719
Interest rates, 376, 501, 511-12, 528, 651
Invertibility, 64-68
IV. See Instrumental variable (IV) estimation

J
Jacobian matrix, 737
Johansen's algorithm, 635-38
Joint density, 741
Joint density-distribution, 686
Jordan decomposition, 730-31

\320\232

Kalman filter:

autocovariance-generating function and,
391-94

background of, 372
derivation of, 377-81

estimating ARMAprocesses,387

forecasting and, 381-85
gain matrix, 380
identification, 387-88

MAA) process and, 381-84
maximum likelihood estimation and,

385-89

parameter uncertainty, 398

quasi-maximum likelihood and, 389
smoothing and, 394-97
state-space representation of dynamic

system, 372-77
statistical inference with, 397-98
steady-state, 389-94

time-varying parameters, 399-403
Wold representation and, 391-94

Kernel estimates, 165-67. See also
Nonparametric estimation

Bartlett, 167, 276-77
Gaussian, 671

Parzen, 283
quadratic spectral, 284

Khinchine's theorem, 183
Kronecker product, 265, 732-33
Kurtosis, 746

Lag operator:
first-order difference equations and, 27-29
initial conditions and unbounded sequences,

36-42
polynomial, 27
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pth-order difference equations and, 33-36

purpose of, 26
second-order difference equations and,

29-33
Lagrange multiplier, 135, 145, 430
Law of iterated expectations, 742

Law of iterated projections, 81, 100
Law of large numbers, 183, 749

covariance-stationary processes, 186-89
mixingales, 190-92

Leverage effect, 668
Likelihood function, 746-47. See also

Maximum likelihood estimation (MLE)

concentrating, 638
vector autoregression and, 291-94, 310-11

Likelihood ratio test, 144-45, 296-98, 648-50
Limit. See Convergence
Linear dependence, 728-29

Geweke'smeasure of, 313-14
Linearly deterministic, 109
Linearly indeterministic, 109
Linear projection:

forecasts and, 74-76, 92-100
multivariate, 75

ordinary least squares regression and,
75-76,113-14

properties of, 74-75
updating, 94

Linear regression. See also Generalized least
squares (GLS); Generalized method of

moments (\320\261\320\234\320\234);Ordinary least
squares (OLS)

algebra of, 200-202
review of OLS and i.i.d., 200-207

Local identification, 334, 388

Local maximum, 134, 137, 226

Logarithms, 717-18
Long-run effect, 6-7
Loss function, 72

M
MA. SeeMoving average
Markov chain, 678

absorbing state, 680

ergodic, 681-82'
forecasting, 680

periodic, 685
reducible, 680
transition matrix, 679

two-state, 683-84
vector autoregressive representation, 679

Martingale difference sequence, 189-90,
193-95

Matrix/matrices:

adjoint, 727
conjugate transposes, 734-35
determinant, 724-27

diagonal, 721
duplication, 301

gain, 380

geometric series, 732

Hessian, 139, 736
idempotent, 201

identity, 722

information, 143-44, 429

inverse, 727-28
Jacobian, 737
Jordan decomposition, 730-31
lower triangular, 725

nonsingular, 728

optimal weighting, 412-14
partitioned, 724

positive definite, 733-34

positive semidefinite, 733

power of, 722

singular, 728

square, 721
symmetric, 723
trace of, 723-24
transition, 679

transposition, 723

triangular, 729
triangular factorization, 87
upper triangular, 727

Maximum likelihood estimation (MLE), 117,
747. See also Quasi-maximum likelihood

asymptotic properties of, 142-45, 429-30
concentrated, 638

conditional, 122, 125-26
EM algorithm and, 688-89
full-information maximum likelihood,

247-50

Gaussian ARMA process and, 132-33
Gaussian AR process and, 118-27
Gaussian MA process and, 127-31
general coefficient constraints and, 315-18

global maximum, 134,137
GLS and, 222
GMM and, 427-31
Kalman filter and, 385-89
local, 134, 137
prediction error decomposition, 122, 129

regularity conditions, 427, 698
standard errors for, 143-44, 429-30
statistical inference with, 142-45
vector autoregression and, 291-302, 309-18
Wald test for, 429-30

Mean:

ergodic for the, 47

population, 739
sample, 186-95, 279-85, 740-41
unconditional, 44

Mean square, convergence in, 182-83, 749

Mean squared error (MSE), 73
of linear projection, 74, 75, 77

Mean-value theorem, 196
Mixingales, 190-92
Mixture distribution, 685-89
MLE. See Maximum likelihood estimation

(MLE)

Modulus, 709
Moments. See also Generalizedmethod of

moments (GMM)
population, 739-40, 744-45
posterior, 363-65

sample, 740-41
second, 45, 92-95, 192-93

Money demand, 1, 324
Monte Carlo method, 216, 337, 365-66, 398

Moving average (MA):

cointegration and, 574-75

first order, 48-49
forecasting, 82-83, 95-98
infinite order, 51-52
maximum likelihood estimation for

Gaussian, 127-31, 387
parameter estimation, 132, 387
population spectrum for, 154-55, 276

ifth order, 50-51
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sums of, 102-7
vector, 262-64

MSE. See Mean squared error (MSE)

N

Newey-West estimator, 220, 281-82
Newton-Raphson, 138-39

Nonparametric estimation. See also Kernel
bandwidth, 165, 671
conditional variance and, 671
cross validation, 671
population spectrum, 165-67

Nonsingular, 728

Nonstochastic, 739
Normal distribution, 745-46, 748-49, 751-52
Normalization, cointegration and, 589
Numerical optimization:

convergence criterion, 134, 137
Davidon-Fletcher-Powell, 139-42
EM algorithm, 688-89, 696
grid search, 133-34
inequality constraints, 146-48
Newton-Raphson, 138-39
numerical maximization, 133, 146
numerical minimization, 142
steepest ascent, 134-37

\320\236

Observation equation, 373
Oil prices, effects of, 307-8
OLS. See Ordinary least squares
Op. See Order in probability

Operators:
annihilation, 78

first-difference, 436
time series, 25-26

Option prices, 672
Order in probability, 460

Ordinary least squares (OLS). See also
Generalized least squares (GLS);
Hypothesis tests; Regression

algebra of, 75-76, 200-202

autocorrelated disturbances, 217, 282-83

chi-square test, 213
distribution theory, 209, 432-33
estimated coefficient vector, 202-3
F test,205-7
GMM and, 416-18
heteroskedasticity, 217, 282-83
linear projection and, 75-76, 113-14
non-Gaussian disturbances, 209
time trends and, 454-60
r test, 204, 205

Orthogonal, 743
Orthogonality conditions, 411
Orthogonalized impulse-response function, 322
Outer-product estimate, 143

Partial autocorrelation:

population, 111-12
sample, 111-12

Parzen kernel, 283

Period, 708
Periodic, 707

Markov chain, 685

Periodogram:
multivariate, 272-75
univariate, 158-63

Permanent income, 440

Phase, 275, 708

Phillips-Ouliaris-Hansen tests, 599
Phillips-Perron tests, 506-14, 762-63
Phillips triangular representation, 576-78

Plim, 181, 749

Polar coordinates, 704-5, 710
Polynomial m lag operator, 27, 258
Population:

canonical correlations, 630-33
coherence,275

correlation, 743
covariance, 742

moments, 739-40, 744-45

spectrum, 61-62, 152-57, 163-67, 269,
276-77

Posterior density, 352
Powerseries,714
Precision, 355

Predetermined, 238

Prediction error decomposition, 122, 129, 310
Present value, 4, 19-20
Principal diagonal, 721
Prior distribution, 351
Probability limit, 181, 749

pth-order autoregressive process, 58-59

pth-order difference equations, 7-20, 33-36
Purchasing power parity. See Exchange rates

Q
\302\253yth-ordermoving average, 50-51
Quadratic equations, 710-11
Quadratic spectral kernel, 284

Quadrature spectrum, 271

Quasi-maximum likelihood estimate, 126, 145,
430-31

ARCH, 663-64
GLS, 222
GMM and, 430-31
Kalman filter and, 389
standard errors, 145

R
Radians, 704
Random variable, 739
Random walk, 436. See also Unit root process

OLS estimation, 486-504
Rational expectations, 422

efficient markets hypothesis, 306
Real interest rate, 376
Real number, 708
Recessions, 167-68, 307-8, 450,697-98
Recursive substitution, 1-2
Reduced form, 245-46, 250-52

VAR, 327,329

Reducible Markov chain, 680

Regime-switching models:

Bayesian estimation, 689

derivation of equations, 692-93

description of, 690-91
EM algorithm, 696
maximum likelihood, 692, 695-96
singularity, 689
smoothed inference and forecasts, 694-95

Regression. See also Generalized least squares
(GLS); Generalized method of

moments (GMM); Ordinary least

squares (OLS)
classical assumptions, 202

time-varying parameters, 400

Regularity conditions, 427, 698
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Residual sum of squares (RSS), 200
Ridge regression, 355
RSS. See Residual sum of squares
R2, 202

Sample autocorrelations, 110-11
Sample canonical correlations, 633-35
Sample likelihood function, 747

Sample mean:
definition of, 741
variance of, 188, 279-81

Sample moments, 740-41

Sample periodogram, 158-63, 272-75
Scalar, 721

Score, 427-28

Seasonality, 167-69
Second moments, 45, 92-95

consistent estimation of, 192-93
Second-order autoregressive process, 56-58
Second-order difference equations, 17, 29-33

Seemingly unrelated regressions, 315
Serial correlation, 225-27

Sims-Stock-Watson:

scaling matrix, 457
transformation, 464, 518

Simultaneous equations. See also Two-stage
least squares

bias, 233-38, 252-53
estimation based on the reduced form,

250-52 *
full-information maximum likelihood

estimation, 247-50
identification, 243-47
instrumental variables and two-stage least

squares, 238-43
nonlinear systems of, 421-22
overview of, 252-53

Sine, 704, 706-7

Singular, 728

Singularity, 689
Sinusoidal, 706

Skew,746
Small-sample distribution, 216-17, 516

Smoothing, Kalman filter and, 394-97
Spectral analysis:

population spectrum, 152-57, 163-67, 269

sample periodogram, 158-63, 272-75
uses of, 167-72

Spectral representation theorem, 157

Spectrum. See also Kernel estimates;
Periodogram

coherence, 275

cospectrum, 271-72
cross, 270
estimates of, 163-67, 276-77, 283-85
frequency zero and, 189, 283

gain, 275

low-frequency, 169
phase, 275

population, 61-62, 152-57,163-67,269,
276-77

quadrature, 271

sample, 158-63, 272-75

sums of processes and, 172

transfer function, 278

vector processes and, 268-78

Spurious regression, 557-62

Square summable, 52

Standard deviation, population, 740

State equation, 372

State-space model. See Kalman filter

State vector, 372
Stationary/stationarity:

covariance, 45-46
difference, 444

strictly, 46
trend-stationary, 435

vector, 258-59
weakly, 45-46

Steepest ascent, 134-37
Stochastic processes:

central limit theorem for stationary, 195
composite, 172

expectations and, 43-45
Stochastic variable, 739
Stock prices, 37-38, 306-7, 422-24, 668-69,

672
Structural econometric models, vector

autoregression and, 324-36
Student's \320\263distribution. See t distribution

Summable:

absolute, 52, 64

square, 52

Sums of ARMA processes, 102-8
autocovariance generating function of, 106
AR, 107-8
MA, 102-7

spectrum of, 172

Superconsistent, 460

Sup operator, 481

Taxes, 361
Taylor series, 713-14, 737-38
Taylor theorem, 713, 737-38
r distribution, 205, 213, 356-57, 409-10, 746,

755
Theorems (named after authors):

Cramer-Wold, 184

DeMoivre, 153,716-17
Gauss-Markov, 203, 222
Granger representation, 582
Khinchine's, 183

Taylor, 713, 737-38
Three-stageleast squares, 250
Time domain, 152
Time series operators, 25-26
Time series process, 43
Time trends, 25, 435. See also Trend-stationary

approaches to, 447-50

asymptotic distribution of, 454-60

asymptotic inference for autoregressive
process around, 463-72

breaks in, 449-50
hypothesis testing for, 461-63
linear, 438
OLS estimation, 463

Time-varying parameters, Kalman filter and,
398-403

Trace, 723
Transition matrix, 679

Transposition, 723

Trends representation (Stock-Watson),

common, 578
Trend-stationary, 435

comparison of unit root process and, 438-44
forecasts for, 439

Triangular factorization:

block, 98-100
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covariance matrix and, 114-15

description of, 87-91
maximum likelihood estimation and, 128-29
of a second-moment matrix and linear

projection, 92-95

Triangular representation, 576-78

Trigonometry, 157, 166, 704-8
r statistic, 204
2SLS. See Two-stage least squares
Two-stage least squares BSLS):

asymptotic distribution of, 241-42
coefficient estimator, 238
consistency of, 240-41
general description of, 238-39
GMM and, 420-21
instrumental variable estimation, 242-43

\320\270

Unconditional density, 44

Unconditional mean, 44

Uncorrelated, 92, 743

Unidentified, 244
Uniformly integrable, 191
Unimodal, 134
Unit circle, 32, 709

Unit root process, 435-36. See also
Cointegration; Dickey-Fuller test

asymptotic distribution, 475-77, 504-6
Bayestan analysis, 532-34
Beveridge-Nelson decomposition, 504,

545-46

comparison of trend-stationary and, 438-44
difference versus not to difference, 651-53

dynamic multipliers, 442-44
forecasts for, 439-41
functional central limit theorem and, 483-86
Johansen's test, 646
meaning of tests for, 444-47, 515-16
multivariate asymptotic theory, 544, 547
observational eqnivalence, 444-47, 515-16
OLS estimation of autoregression, 527
Phillips-Perron tests, 506-14
small-sample distribution, 516
spurious regression, 557-62
variance ratio test, 531-32
vector autoregression, 549-57

decomposition, 323-24

population, 740

of sample mean, 188, 279-81
Variance ratio test, 531-32
Vech operator, 300-301
Vecoperator,265

Vector autoregression. See also Cointegration;
Impulse-response function

autocovariances and convergence results for,
264-66

autocovariance generating function and, 267

Bayesian analysis and, 360-62
cointegration and, 579-80
impulse-response function and, 318-23
introduction to, 257-61
likelihood ratio test, 296-98

Markov chain and, 679
maximum likelihood estimation and,

291-302, 309-18
restricted, 309-18

spectrum for, 276
standard errors, 298, 301, 336-340
stationarity, 259
structural econometric models and, 324-36
time-varying parameters, 401-3
unit roots, 549-57
univariate representation, 349

Vector martingale difference sequence, 189

Vector processes, asymptotic results for

nonstationary, 544-48

Vectors, forecasting, 77

w
Wald form, 213, 299

Wald test, 205, 214
for maximum likelihood estimation, 429-30

White noise:
Gaussian, 25, 43, 48

independent, 48
process, 47-48

Wiener process, 478

Wiener-Kolmogorov prediction formula, 80
Wold's decomposition, 108-9

Kalman filter and, 391-94

VAR. SeeVector autoregression
Variance, 44-45, 740 Yule-Walker equations, 59
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