
Scaling Online Social Networks without Pains

Josep M. Pujol, Georgos Siganos, Vijay Erramilli and Pablo Rodriguez
Telefonica Research

{jmps,georgos,vijay,pablorr}@tid.es

ABSTRACT
Online Social Networks (OSN) face serious scalability chal-
lenges due to their growth and popularity. In this paper we
present a novel approach to scale up OSN that exploits some
structural characteristics of social networks: 1) information
is one-hop away, and 2) the underlying community structure.
We propose theone-hop replication scheme that relies on a
combination of partitioning and replication. This scheme al-
lows OSNs to automatically scale without the need to resort
to highly-distributed architectures. We also evaluate thepo-
tential benefits and overheads of our system using data from
real OSNs: Twitter and Orkut.

1. INTRODUCTION
The growth and popularity of Online Social Networks

(OSNs) [9] is unprecedented and pose unique challenges
in terms of scaling, management and maintenance. Some
examples include managing and processing on a net-
work consisting of hundreds of millions of edges (e.g.
LinkedIn) on a single machine [5], distributing status
updates to millions of users (e.g. Twitter, Facebook) [4,
6] and managing and distributing user generated con-
tent (UGC) to millions of users spread geographically
[4, 2].

Scaling OSNs is in general non-trivial and often in-
volves a complete redesign of the original system, which
is often focused on functionality rather than on future
scalability. Consider the case of Twitter whose initial
architecture had to be changed multiple times to accom-
modate the rapid growth (for instance, 1382% growth in
one month(Feb-Mar 09) [9]) with significant downtimes
due to the limitations of the initial architecture [6]. Cur-
rently Twitter resembles the prototypical distributed
architecture depicted in Fig. 1 (left side). These ar-
chitectures consist of a number of layers: Application
logic (Ruby on Rails, Scala), caching (Memcache, SQL
query caching) and database backend (RDBMS clus-
ters, CouchDB, Google’s BigTable or Amazon’s Dy-
namo) that interact through asynchronous message pass-
ing. In this highly distributed architecture, each layer
consists of a number of machines devoted to perform
their respective tasks. Dealing with scalability, how-
ever comes with a substantial increase in complexity,

Application Logic Caching Backend

Database Backend

PC

Typical Architecture
(Each Layer - Separate Cloud)

Social Based Architecture
(All Layers within the same machine)

PC

PC

PC

PC

Figure 1: Typical DB Architecture vs Social
Based Architecture

both for the developers (that need to switch to a dis-
tributed framework and embrace new paradigms such as
message queuing [6]) and for the administrators (that
need to manage a system composed of heterogeneous
machines).

In this paper, we propose a simple scheme to scale
OSNs systems automatically and without completely
redesigning the original system. By taking advantage of
the unique structural properties that OSNs possess, we
propose a new scaling paradigm for OSNs that can hide
the complexities derived from scaling up. We call our
scheme One-Hop Replication (OHR) and is based on a
combination of partitioning and replication of the user-
space. Using large datasets of real OSNs (Twitter and
Orkut), we study the efficacy of this scheme and show
how one can use OHR to scale by only adding more
instances of homogenous servers (shown in Fig. 1 (right
side)), rather than resorting to a complete redesign of
the initial system.

2. ONE HOP REPLICATION OHR

Replication of users across different machines imme-
diately begs the questions - which users to replicate?
On one hand, all users can be replicated, but that would
entirely defeat the purpose of using replication for scal-
ing. However, one can do better; one can exploit the
structural properties of OSNs, in particular the com-
munity structure that is prevalent in OSNs [8, 11], and
the fact that most interaction happens within one hop
(consisting of friends, followers etc) of every user.

Consider a simple social network represented in Fig. 2,

1

Cluster 1 Cluster 2

Machine 2Machine 1

Figure 2: From Community to Scaling. Each
machine can operate independently.

where nodes represent users and edges between nodes
represent interactions or social connections. The graph
contains two communities (clusters 1 & 2), that consists
of users that have more interactions between themselves
than with the rest of the users. In addition, there also
exist users (dark nodes in Fig.2) that lie on the bound-
ary of such communities and have edges to users in dif-
ferent communities. We refer to such users as bridge
users and these users can be thought of having weak
‘ties’ [3]. It is these users that we replicate.

One hop replication (OHR) then works as follows.
Given a graph representing an OSN, we obtain a parti-
tion P : N → S so that the N users are classified into S

communities. We assign different partitions to different
servers; P (u) is the server that is hosting the original
data associated to user u. The majority of users in
the partition will have all their neighbors in the same
server due to the community structure, and all the re-
quired data for u is local in the server. However, we
replicate the bridge users; formally, a user u is a bridge
if ∃v ∈ Nu : P (u) 6= P (v), then, v’s data (whose origi-
nal is hosted in P (v)) needs to be replicated on server
P (u) so that operations on u remain local, and we mini-
mize communication between servers. In Fig.2 the dark
nodes are bridge nodes that are replicated in 2 servers
hosting the natives users (from the partition) plus the
replicates. Therefore all communication is limited to
within a server by using the one-hop replication scheme.
In order to extract communities, we rely on a variant of
modularity optimization algorithm that gives us equal
sized communities1 [12].

2.1 System
The OHR system consists of two different parts. The

controller is in charge of the OHR core: assigning users
to servers, reshuffling them as the social network evolves
and deciding what users to replicate where. The con-

1The choice of a particular partitioning scheme is not sacro-
sanct; our objective here is to study the efficacy of OHR

troller is agnostic of the system that it is supports, runs
on a different server and carries out the processing of-
fline. The other component of the OHR system is the
middleware that sits on top of the data layer of each
server and ensures replication consistency. For instance,
the middleware for the database (e.g. Mysql) would let
selects on a given user through without intervention.
However all insert, deletes and updates would have to be
intercepted and forwarded to all servers that are hosting
replicates of the user. This is not a problem for OSNs
as they do not have strict consistency requirements like
atomicity and consistency.

This high-level presentation of the system does not
cover issues such as failure recovery, high availability,
etc. Note that some of them are solved implicitly, for
example the replication protects the data from being
lost. A full-fledged system description and evaluation
is left for future work, here we focus on evaluating the
potential of the OHR scheme. In particular we are in-
terested in understanding the benefits of using OHR
and the overhead involved.

3. EVALUATION
We want to understand the trade-offs involved in us-

ing the OHR scheme. In order to do so, we rely on real
datasets gleaned from two large scale OSNs - Twitter
and Orkut. We collected the Twitter dataset during a
crawl (Nov. 25 - Dec. 4 2008). In addition to the struc-
ture (2.4M users, 38.8M edges), we also collected user
activity in the form of tweets (12.5M). The information
associated with the 2.4M users; pictures, location, de-
scription, etc. amounts to approximately 11.44G and
the 38.8M undirected edges amount to 860M (24 bytes
per edge). The tweets (content, time-stamps and id’s)
amount to 125M of new data per day during the crawl.
On average a tweet is sent every 0.13 seconds, that
gives us the average write rate of 7.6 writes/s. Un-
fortunately, the data-set does not include information
regarding reads, but since most reads are mediated via
clients using Twitter’s API [6] we choose a conservative
rate of 1000 read operations per second (assuming each
client polls for updates every 10 minutes and that only
25% of the users are concurrently active). For a typi-
cal OSN the number of reads should be higher than the
number of writes since an item can be accessed many
times by many different users, a behavior that is shared
with many other systems.

Orkut dataset consists of 3.07M users and 117.18M
edges. We do not have data about user activity on
Orkut. More details about the datasets can be found
in [10, 12].

In order to understand the trade-offs involved in using
OHR, we primarily focus on read and write operations,
and how these operations impact memory, storage and
network bandwidth. We also want to understand the
behavior of the overheads incurred as a function of scal-
ing. For this, we choose 8 different settings, in which the

2

Twitter

S Ui U
′

i
ru Ei E

′

i
re Wi W

′

i
rw

1 2.4M 0.0 0.0 38.8M 0.0 0.0 12.52M 0.0 0.0
4 602K (5.2K) 455K (44.6K) 0.76 9.6M (2.89M) 3.1M (760K) 0.32 3.13M (357K) 6.08M (178K) 1.94
8 301K (8K) 385K (68.8K) 1.28 4.8M (1.9M) 2.1M (900K) 0.43 1.57M (241K) 5.81M (676K) 3.71
16 150K (5.8K) 272K (82.6K) 1.80 2.4M (1.56M) 1.1M (831K) 0.46 783K (240K) 4.56M (1.03M) 5.83
32 75.3K (4.2K) 184K (76.8K) 2.45 1.2M (764K) 640K (517K) 0.53 391K (140K) 3.38M (1.21M) 8.64
64 37.6K (3K) 118K (63.8K) 3.15 600K (458K) 356K (341K) 0.59 196K (79.6K) 2.33M (1.17M) 11.87
128 18.9K (445) 75.8K (46.5K) 4.0 301K (231K) 196K (185K) 0.65 98.6K (42.8K) 1.58M (973K) 16.04
256 9408 (240) 46.2K (34.1K) 4.87 151K (132K) 105K (111K) 0.69 49.3K (24.8K) 1.01M (778K) 20.50
512 4704 (203) 27.4K (23.6K) 5.83 75K (71K) 55K (62K) 0.74 24.5K (13.7K) 624K (577K) 25.5

Orkut

S Ui U
′

i
ru Ei E

′

i
re Wi W

′

i
rw

1 3.07M 0.0 0.0 117.18M 0.0 0.0 n/a n/a n/a
4 768K (13K) 1.16M (308K) 1.50 29.30M (7.5M) 5.5M (1.5M) 0.20 n/a n/a n/a
8 384K (10K) 988K (165.6K) 2.57 15.65M (5.8M) 3.4M (1.2M) 0.23 n/a n/a n/a
16 192K (7K) 812K (231.2K) 4.23 7.32M (3.06M) 2.3M (978K) 0.31 n/a n/a n/a
32 96K (5.2K) 632K (170.6K) 6.58 3.66M (1.59M) 1.4M (697K) 0.37 n/a n/a n/a
64 48K (3.6K) 440K (131.5K) 9.16 1.83M (901K) 778K (459K) 0.42 n/a n/a n/a
128 24K (520) 285.8K (101K) 11.81 923K (490K) 447K (321K) 0.48 n/a n/a n/a
256 12K (256) 182.6K (73K) 15.10 461K (255K) 247K (186K) 0.54 n/a n/a n/a
512 6K (223) 112K (51.1K) 18.55 231K (134K) 135K (109K) 0.59 n/a n/a n/a

Table 1: Summary of the results for Twitter and Orkut data-sets. S is the number of servers used in
the replication. Ui, Ei,Wi are the number of users, edges and writes whose native is hosted in server
i. U

′

i
, E

′

i
,W

′

i
are the number users, edges and writes that come from the replication scheme hosted in

server i. rx is the replication ratio for, e.g. ru =
U

′

i

Ui

for the users. Results are the average across the
servers, the standard deviation is within brackets.

OSNs are split into 4 to 512 partitions. As mentioned
earlier, we use the partitioning scheme based on find-
ing equal sized social partitions, where the number of
inter-partition edges are minimized and the partitions
contain approximately the same number of users [12].
We split the users U , the edges E (their connections to
other users) and the content the users have generated
as writes W into different partitions. Each of these
partitions is assigned to one server. We then identify
the bridge users and replicate the users across different
servers. In order to gauge the overhead due to repli-
cation we define the replication ratio for users ru, that
is the ratio between the number of replicated users U

′

and the number of native users U on a given server. In
addition, we also keep define similar measures for edges
re and writes rw. Our results are presented in Table 1.
The columns Ui, Ei and Wi contain the number of na-
tive users, native edges and native writes that a server
is hosting due to the partition process. On the other
hand, the columns U

′

i
, E

′

i
and W

′

i
, contain the number

of users, edges and writes the server is hosting due to
OHR. By the term native we refer to the information
that is not the result of the duplication by replication,
i.e. a user u can have many replicas in different servers,
but only one server is hosting the original information
of that user.

3.1 Implications of OHR on server require-
ments

Let us first discuss the implications of the one-hop
replication scheme using the Twitter data-set. We fix

the number of servers to 32, therefore we partition the
data-set into 32 parts. The results are shown in Table 1.
The requirements of a single server to effectively deal
with the load described earlier would be high both in
specifications and cost but it could be feasible2. But
with more servers, the total costs could be lower since
we could use more affordable commodity servers or vir-
tual machines in the Cloud. We now investigate the
overheads involved in greater detail.

a) Read operations: After partitioning and repli-
cating the bridge users all reads are local, hence the load
due to read operations is spread across the 32 servers
as N

S
, S being the number of servers. Thus, each server

would need to be able to serve 31.25 req/s instead of
1000 req/s. The one-hop replication scheme ensures
that all reads can be carried out locally, saving on net-
work traffic.
b) Write operations: Each server needs to deal
with the writes of both the native users and their repli-
cates. Since writes are not homogeneously distributed,

each server needs to be provisioned for (rw+1)W
S

write
operations. This implies that each server will have to
serve 2 req/s instead of the 7.6 req/s as given by the
load profile of Twitter, if entire load were handled by a
single server. The replication scheme will also produce

2It has been reported that LinkedIn– one of the biggest OSN
– relies on a single back end server where all users are repli-
cated 40 times for load balancing. Each server contains a
full replica of the whole network with the data; this man-
dates each server to have at least 12GB of memory to fit the
LinkedIn SN graph (120M edges) alone [5].

3

8.64 (rw) times more traffic. The replication process is
fully mediated by the OHR middleware, hence trans-
parent to the developers. However, we note that reads
are more frequent than writes by 132 to 1, and that we
have reduced the traffic by reads to zero.
c) Memory: Memory requirements are one of the
limiting factors on system’s performance. In order to
achieve fast response times on read operations, it is
common to minimize disk I/O in favor of memory I/O
and solutions like Memcache, denormalization, SQL caching,
etc. have been designed to address this. The impact of

OHR on the memory requirements is (re+1)E+(ru+1)kN

S
,

that corresponds to have all the social network and the
last k tweets of all users loaded in memory3. There-
fore each server needs to have at least 1GB of RAM
(42MB for the edges and 987MB to store the last 20
tweets) to perform read operations avoiding disk I/O.
This requirement is still in the low range in what can be
provided by a cloud computing service such as Amazon
EC2. On the other hand, without partitioning, a server
would require about 860MB of memory to store the so-
cial network alone and 9GB to tweets to avoid disk I/O.
This would imply purchasing a more expensive server or
reducing the number of users that are cached in mem-
ory, trading off cost for response time.
d) Storage capacity: The server needs to be pro-
visioned to store all the information of natives plus the

replicates: (ru+1)N+(rw+1)W+(re+1)E
S

. Thus each server
would have to store in their database (or filesystem)
1.24GB on partitioned user profile, 42MB on the parti-
tioned edges and 37.5MB a day on the user generated
tweets. On the other hand, a single server would have
to store 11.5GB for users, 860MB for the social network
and 125MB per day on tweets. As expected, storage is
the factor more affected by the OHR overhead.
e) Network traffic: The bandwidth requirements for
the one-hop replication are limited to write rw requests.
This replication would require to spend 8.64 times more
bandwidth to update the replicas across the 32 servers.
This bandwidth overhead, however, is compensated by
having all read operations local, thus consuming zero
bandwidth and reducing the network latency to zero
for systems that require network access for reads such as
distributed RDBMS or distributed document databases
(e.g. BigTable, CouchDB, etc.). Note that network
traffic costs within a data center are almost negligible4

but as data centers become more and more distributed
they will become an important issue both in terms of
cost and latency [7, 1].

The picture that emerges is as follows. ORH saves on
network traffic and latency, however, the most impor-

3We set k to 20 since it is the default number of tweets
returned in the API results and the web front-end.
4Amazon Cloud Computing EC2 charges $0.10 for each GB
of external traffic, for within data-center traffic they charge
nothing if servers are in the same region and $0.01 if they
are in different regions.

tant factor is that the original system does not have to
be redesigned to account for a distributed architecture.
Thus, we could obtained an out-of-the box scalable sys-
tem by only incurring in a relatively small overhead in
memory, storage and network traffic for write opera-
tions. We next study how the overheads evolve as a
function of the number of servers.

3.2 Analysis of the Replication Overhead
Fig. 3.a shows the percentage of users that need to

be replicated on different servers for different config-
urations. For instance, in the case of Twitter and 8
servers 45% of users appear only on one server; they
are not replicated, while 4% of the users need to be
replicated on all 8 servers. Fig. 3.b gives an idea of the
scaling of overhead as it shows the replication ratios r

grow sub-linearly with the number of servers. Although
the replication ratio increases monotonically, the rela-
tive impact diminishes as the system gets larger. For
instance, if we consider the provisioning for the number

of users, (ru+1)N
S

as S grows, the server requirements
for every machine decreases.

In Fig. 3.c, we plot the resources allocated (natives
+ replicates) as a function of the number of servers. If
there were no replicates, the number of users per server
would scale as S−1 (lower bound). We note that as the
servers of increase, the scaling behavior of the distribu-
tion is maintained, although it decreases at a lower rate
than the lower bound due to the overhead introduced
by OHR. Note that, this overhead is the price to pay
for automatic scaling without the need for redesigning
the original system that we are trying to scale up.
Why does OHR work for OSNs?

If we study the difference in the evolution of the over-
head due to users replication (ru) vs. the overhead due
to edge replication (re), we find that the former is al-
ways lower than the latter. This is directly attributed
to the presence of a strong community structure present
in OSNs as well as the ability of the method we use to
extract such communities. In contrast, if OSNs had a
random graph as a social network, the overhead would
be much higher due, limiting the benefits of the OHR.
On the other hand, the overhead due to writes (rw) is
higher than the overhead due to users (ru). The values
should be the same if writes (user generated content,
e.g. tweets) were uniformly distributed across the users.
However, this is not the case; the frequency of writes are
generally correlated to the connections of a user in an
OSN (in the case of Twitter, the number of followers
of a user) and hence follow a heterogenous distribution.
Unfortunately we do not have user generated content
for the Orkut data-set, however, we expect to observe
the same effect (rw < ru) although at a smaller scale
since Orkut has less power users who are connected to
hundreds of thousands of people.

As we observed in Fig 3.a and 3.b Orkut’s users needs
to be replicated on average more than Twitter’s users,

4

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

number of servers

us
er

 r
ep

lic
at

io
n

C
D

F

TW, 8 Servers
TW, 32 Servers
TW, 128 Servers
OR, 8 Servers
OR, 32 Servers
OR, 128 Servers

0 100 200 300 400 500 600 700
10

−1

10
0

10
1

10
2

number of servers

re
pl

ic
at

io
n

ov
er

he
ad

TW, r
u

TW, r
e

TW, r
w

OR, r
u

OR, r
e

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

number of servers

na
tiv

e
+

 r
ep

lic
at

es
 d

is
tr

ib
ut

io
n

Lower bound
TW, U + U’
TW, E + E’
TW, W + W’
OR, U + U’
OR, E + E’

(a) (b) (c)

Figure 3: (a) CDF - % of Users Replicated vs # of Servers (b) Replication overhead as a function of
the number of servers, and c) Distribution of native plus replicates for users, edges and writes.

this difference is due to the higher density of Orkut’s
SN, leading to higher ru. However, in terms of edge
replication, Orkut has lower overhead than Twitter, this
is due to the stronger community structure of the Orkut
SN. The actual replication overhead is a non-trivial in-
terplay on the properties of the social network (commu-
nity structure, density, degree distribution) and the way
the users interact (producer/consumer roles). While
studying the interplay of all the components is left for
future work, we show that exploiting structural aspects
of OSNs can yield potential benefits.The quantitative
results of this paper cannot be extrapolated to other
OSNs, however, the qualitative results on the scaling
of the overhead as a function of the number of servers
can be. These qualitative point towards the feasibil-
ity of using our one-hop replication scheme as a way to
automatically scale OSNs.

4. CONCLUSIONS
The wide-scale prevalence and proliferation of OSNs

have led to new challenges in management, maintenance
and scalability. Scaling up systems to meet future de-
mands is non-trivial, is often times a costly endeavor
and makes it harder for system administrators and de-
velopers to play catch-up. Scaling can be specially chal-
lenging for systems that are relatively young and have
scarce resources that have to diverted to address scaling
issues, while they can used for increasing functionalities
of the system. We present a simple replication scheme
called One Hop Replication that is targeted for OSN
systems and relies on exploiting the unique structural
properties of OSNs. We show the efficacy of this scheme
using real data-sets, and show that by incurring a little
overhead, OHR can help in scaling OSN systems au-
tomatically, without re-engineering, thereby making it
easier for system administrators and developers. Future
work includes studying structural properties of OSNs in
greater detail for enhancing OHR as well as informing
system design in general.

5. REFERENCES
[1] Kenneth Church, Albert Greenberg, and James

Hamilton. On delivering embarrassingly
distributed cloud services. In ACM HotNets VII,
2008.

[2] Facebook. Cassandra. http://www.facebook.com/
note.php?note id=24413138919.

[3] M.S. Granovetter. The Strength of Weak Ties.
The American Journal of Sociology,
78(6):1360–1380, 1973.

[4] James Hamilton. Geo-replication at facebook.
http://perspectives.mvdirona.com/2008/08/21/
GeoReplicationAtFacebook.aspx.

[5] James Hamilton. Scaling linkedin.
http://perspectives.mvdirona.com/2008/06/08/
ScalingLinkedIn.aspx.

[6] highscalability.com. Twitter architecture.
http://highscalability.com/scaling-twitter-
making-twitter-10000-percent-faster.

[7] Nikolaos Laoutaris, Pablo Rodriguez, and Laurent
Massoulie. Echos: edge capacity hosting overlays
of nano data centers. SIGCOMM Comput.
Commun. Rev., 38(1):51–54, 2008.

[8] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta,
and Michael W. Mahoney. Community structure
in large networks: Natural cluster sizes and the
absence of large well-defined clusters. CoRR,
abs/0810.1355, 2008.

[9] Nielsen Media. Growth of twitter.
http://blog.nielsen.com/nielsenwire/online mobile/
twitters-tweet-smell-of-success/.

[10] Alan Mislove, Massimiliano Marcon, Krishna P.
Gummadi, Peter Druschel, and Bobby
Bhattacharjee. Measurement and analysis of
online social networks. In IMC ’07: Proceedings of
the 7th ACM SIGCOMM conference on Internet
measurement, pages 29–42. ACM, 2007.

[11] M.E.J. Newman and J. Park. Why social
networks are different from other types of
networks. Phys. Rev. E, 68:036122, 2003.

[12] Josep M. Pujol, Vijay Erramilli, and Pablo
Rodriguez. Divide and conquer: Partitioning
online social networks. CoRR, abs/0905.4918,
2009.

5

